甘油三酯的检测及其在代谢性疾病中的研究进展
Triglycerides Detection and Research Progress in Metabolic Diseases
摘要: 甘油三酯(Triglyceride, TG)是生物体内主要的中性脂质之一,在细胞生长、新陈代谢及生理功能调控中发挥关键作用,其含量及分子组成的异常变化与多种代谢性疾病密切相关,如动脉粥样硬化、糖尿病和肥胖等。本文综述了当前生物样本中TG检测的方法,主要包括化学法、酶法、红外光谱、核磁共振、直接进样质谱、气相色谱–质谱(Gas Chromatography-Mass Spectrometry, GC-MS)和液相色谱–质谱(Liquid Chromatography-Mass Spectrometry, LC-MS),重点探讨LC-MS在TG定性定量分析中的应用。同时分析比较了各方法的优缺点及适用性,展望TG检测技术未来的发展趋势。此外,本文结合近年研究,讨论了TG分子种类在代谢性疾病中的研究进展。
Abstract: Triglycerides (TG), as one of the key neutral lipids, play vital roles in cellular growth, metabolism, and physiological regulation. Altered TG levels and molecular composition are closely associated with metabolic diseases, including atherosclerosis, diabetes, and obesity. This review summarizes current TG detection methods in biological samples, such as chemical/enzymatic assays, IR, NMR, DI-MS, GC-MS, and LC-MS, with emphasis on LC-MS-based qualitative/quantitative analysis. We compare their advantages, limitations, and applicability while envisioning future technological trends. Furthermore, we discuss recent advances in TG molecular species and their implications in metabolic disorders.
文章引用:杨玉莲, 尚靖. 甘油三酯的检测及其在代谢性疾病中的研究进展[J]. 临床医学进展, 2025, 15(6): 646-654. https://doi.org/10.12677/acm.2025.1561772

1. 引言

多项大规模临床研究证实,血清TG水平异常升高与动脉粥样硬化、2型糖尿病及肥胖等代谢性疾病的发生风险呈显著正相关[1]-[5]。目前《中国成人血脂异常防治指南》等多个权威指南已将血清TG水平列为常规血脂检测指标之一[6] [7]。随着脂质组学研究的深入,人们发现在疾病状态下,TG不仅表现出整体水平的显著变化,其分子组成也呈现明显的动态差异[8]。例如Araya和Rhee等人研究发现脂肪肝患者血清中含多不饱和脂肪酸(Polyunsaturated fatty acids, PUFA)的TG分子丰度显著降低[9]-[11],Shen T等人报道了特定TG分子亚型(如TG (16:0/16:0/18:1))的血清浓度可能较总TG水平更能精准反映胰岛素抵抗程度[12]。这种分子层面的特异性改变可以为代谢性疾病机制研究提供全新视角。因此,深入解析TG分子谱的动态变化规律,不仅有助于揭示疾病发生发展的分子机制,还将为开发基于脂质组学的新型生物标志物提供理论依据。

当前,TG的检测方法主要包括化学法、酶法、红外光谱、核磁共振、GC-MS和LC-MS。其中化学法通过皂化反应可以测定总TG含量,酶法利用脂蛋白脂肪酶(Lipoprotein lipase, LPL)水解并耦合显色反应,适用于快速临床检测。这两种办法操作简便,但无法获取TG的具体结构信息[13]-[15]。红外光谱和核磁共振检测基于TG官能团特性,可实现生物样本中TG的非破坏性检测;而GC-MS通过脂肪酸甲酯化,能够有效解析TG的脂肪酰基组成。LC-MS结合了色谱分离与高灵敏度质谱检测,已经成为当前代谢性疾病研究中解析生物样本来源的TG分子结构的主流技术。通过优化LC-MS的色谱分离和数据采集策略,可实现数百种TG分子的定性与定量分析,为研究疾病状态下TG分子谱变化提供了技术支持。

2. TG的结构和代谢

TG由一分子甘油与三分子脂肪酸通过酯键连接而成,其分子种类因脂肪酰基的碳链长度、饱和度及连接位置的不同而呈现出高度复杂性。生物体内脂肪酸种类繁多,导致TG的分子多样性呈指数级增长,并且脂肪酸的合成、代谢及修饰过程往往具有组织特异性,例如奇数碳脂肪酸和PUFA主要在肝脏合成,而其他组织(如脂肪组织)则更倾向于储存外源性脂肪酸[16]-[19]。这些差异使得各组织间脂肪酸的种类和含量不尽相同,进一步赋予TG显著的组织特异性。此外,TG合成酶对底物的选择性以及脂肪酰基的空间构型也会影响其在甘油骨架上的分布规律,例如饱和脂肪酸(Saturated fatty acids,SFA)和单不饱和脂肪酸(Monounsaturated fatty acids, MUFA)通常优先酯化于sn-1位,而PUFA则更倾向于占据sn-2位[20] [21]。同时,TG在体内持续参与循环代谢,其分子组成和含量随之发生动态变化。这些生物因素共同决定了TG分子的高度复杂性,因此,精确且全面的TG分子定性定量分析对于深入研究其生理功能和代谢调控具有至关重要的意义。

TG主要通过甘油一酯途径和甘油二酯(Diglycerides, DG)途径合成。甘油一酯途径以甘油一酯(Monoglycerides, MG)为起始物,在小肠黏膜细胞中经脂酰转移酶催化,与脂酰辅酶A酯化生成TG。甘油二酯途径以α-磷酸甘油为起始物,在肝脏和脂肪组织中通过多步酯化反应生成磷脂酸,继而脱磷酸形成DG,最终酯化生成TG [22]。合成的TG在不同组织中的储存方式有所差异。肝脏通常不储存TG,而是将其包装为极低密度脂蛋白(Very Low-Density Lipoprotein, VLDL)通过血液循环输送至外周组织;脂肪组织的脂滴则是TG的主要储存场所[23]。TG的水解由脂肪酶(Adipose triglyceride lipase, ATGL)催化,依次生成DG、MG、甘油和脂肪酸。这些产物可用于能量供给或再合成TG,维持整体能量平衡。此外,组织之间的TG也处于动态平衡状态当中,例如,脂肪组织水解TG释放的脂肪酸可进入血液,被肝脏摄取后进一步代谢或重新合成TG,以满足机体能量需求[24]-[26]

在代谢性疾病状态下,TG水平和分子组成常发生显著变化。在TG水平方面,脂肪肝患者表现为肝脏TG显著升高,同时血清TG浓度也同步增加[27]-[30]。在TG组成方面,Shen T等人的研究发现,高脂饮食会使血清中饱和TG的比例上升,富含PUFA的TG比例下降,他们并进一步分析,这一变化可能源于肝脏硬脂酰-CoA去饱和酶活性降低及ω-3 PUFA减少,进而影响脂肪酸代谢和TG合成[31]。此外,治疗干预也能有效调控TG的水平和组成。例如,Schwab U等人研究发现减重治疗会使肥胖人群短链饱和TG的水平显著降低从而改善胰岛素敏感性[32]。以上这些证据表明,TG水平及其组成的异常变化不仅是代谢性疾病的重要特征,还可能影响疾病进展。

3. TG的传统检测办法

3.1. 化学检测法

化学检测法是利用TG的酯键在碱性条件下水解的特性进行定量分析。通过有机试剂提取生物样本中的TG,使用硅酸去除磷脂和游离甘油等干扰物质后,以强碱催化皂化反应生成甘油,再通过氧化和显色反应测定甘油的量,间接计算TG含量[33]。该方法能有效排除其他脂质干扰,适用于代谢性疾病研究中高血脂样本的TG水平测定,但因操作复杂,临床应用较少。

3.2. 酶法检测法

酶法检测法通过LPL将TG水解为甘油和游离脂肪酸,再由甘油激酶催化甘油磷酸化,形成可在可见光或紫外区吸收的化合物后,使用分光光度法就能够测定TG总浓度。因该方法适配于临床生化分析仪而广泛用于代谢性疾病患者的血清TG监测,以评估高脂血症、糖尿病和动脉粥样硬化等疾病风险[34]。然而,受酶专一性和活性的限制,该方法易受样本中甘油和磷脂等物质的干扰,影响TG检测的准确性[35] [36]

3.3. 红外光谱检测法

红外光谱主要依赖TG官能团的特征振动吸收(如酯基C=O伸缩振动、CH2和CH3伸缩振动及C-O-C键振动),通过分析特定吸收峰的强度和位置定量样本中TG的含量。该方法无需破坏样品,检测速度快,适用于高通量TG测定。例如,近期Sherpa D等人利用ATR-FTIR光谱结合传统生化检测,发现了复发性流产患者子宫内膜组织TG水平升高的特征[37]。然而,该方法数据分析复杂,且易受背景干扰和基线漂移影响。

3.4. 核磁共振检测法

核磁共振主要基于1H NMR技术,通过TG分子在不同化学环境下的氢核共振峰强度,可以测定TG总量、不饱和度及碳链长度的信息。该方法无需样品前处理,具有非破坏性,可直接分析复杂生物样本并提供TG代谢的整体特征,广泛应用于代谢性疾病研究中血浆脂蛋白颗粒内TG总量的测定,以评估高脂血症和心血管疾病的代谢异常风险[38]。例如,Moreno-Vedia J等人利用1H NMR技术测定了代谢相关脂肪肝病(Metabolic dysfunction-associated fatty liver disease, MAFLD)患者血浆中富含TG的脂蛋白(TRL),发现TG相关的核磁共振信号与脂肪肝发生密切相关[39]。然而,生物样本中TG分子种类繁多,核磁共振的谱峰易发生重叠,限制了该方法对单一TG分子的解析能力。

4. 质谱分析方法

4.1. 直接进样质谱法

直接进样质谱法通过将样品直接引入质谱仪,结合电喷雾电离或基质辅助激光解吸电离技术的高分辨率质谱(如Orbitrap或Q-TOF),能够实现TG的快速定性和定量分析。该方法可检测TG的加合离子,例如[M + NH4]⁺、[M + Li]⁺、[M + Na]⁺等,并通过中性丢失扫描技术解析脂肪酰基链的碳链长度及双键数量。因其具备高通量和分析效率高的显著优势,尤其适用于鸟枪法脂质组学研究或者大规模生物样品筛查[40] [41]。例如Wunderling K等人利用标记脂肪酸结合直接进样质谱检测,证明TG循环并非徒劳而是对脂肪酸的选择性清除、修饰、重新分配和储存具有关键作用[42]。然而,因缺乏色谱分离,直接进样质谱检测易受基质效应和离子抑制影响,可能导致定量结果存在系统性偏差。

4.2. 色谱质谱联用法

4.2.1. 气质联用法

GC-MS法通常不直接测定TG分子,而是通过衍生化分析其脂肪酰基组成。先采用薄层色谱或固相萃取从生物样本中分离TG,再以水解酶或强碱将其水解为游离脂肪酸,随后通过脂肪酸甲酯化转化为脂肪酸甲酯,利用GC-MS解析TG内部的脂肪酰基的组成和丰度。若使用特定位点水解酶(如胰脂肪酶或肝脂酶),可进一步确定TG中脂肪酰基的位置异构[43] [44]。该方法广泛应用于代谢性疾病研究中,用于分析血清或组织样本中TG的脂肪酰基组成及其空间分布。例如,Donnelly等通过稳定同位素示踪结合GC-MS研究发现,非酒精性脂肪肝病(NAFLD)患者肝脏TG主要来源于非酯化脂肪酸(59.0%)、从头脂肪生成(26.1%)和膳食脂肪酸(14.9%) [45]。然而,GC-MS需经TG分离、水解和衍生化等多步前处理,操作复杂,且高温检测环境可能引发PUFA异构化或热降解,影响其检测准确性。

4.2.2. 液质联用

LC-MS通过液相色谱分离TG分子,结合质谱检测TG的质荷比和碎片信息可以解析TG分子的具体组成,是研究代谢性疾病中TG分子的主要方法。反相色谱和银离子色谱是TG分析中常用的分离技术。反相色谱基于TG与色谱柱的疏水性相互作用进行分离,遵循等效碳数规则(ECD = CN-2BD,ECD越大,保留时间越长),虽可通过优化流动相梯度提升分离效果,但难以分离TG异构体,因其对质谱电离源适应性强且脂质分离效率高,仍是分析生物样本来源TG的首选[46]。银离子色谱利用银离子与TG所含双键之间的弱π络合作用进行分离,双键越多、空间位阻越小,保留时间越长,但当TG含五个以上双键时,作用趋于饱和,分离效果下降[47]。此外,正相色谱因分离度较低,主要用于TG大类分离;手性色谱可分离TG对映异构体,但效率不高,尤其在处理多双键TG时表现不佳[48]。由于生物样本中TG种类复杂,当前色谱技术仍难以实现所有TG分子的完全基线分离。

电喷雾电离是LC-MS检测TG的主要离子源,在此模式下,TG易形成[M + NH4]⁺、[M + Li]⁺、[M + Na]⁺等加合离子,其丰度取决于流动相中的盐类种类及浓度[49]。为避免钠盐或锂盐污染离子源,通常引入铵盐,以[M + NH4]⁺作为前体离子进行定量,其二级碎片包括脂肪酰基离子和脂肪酸中性丢失离子,可用于推测TG脂肪酰基组成。LC-MS检测TG的常用数据采集模式包括数据依赖采集(DDA)、多反应监测(MRM)和中性丢失扫描。DDA自动选择高丰度前体离子进行MS/MS分析,适合快速检测但依赖色谱分离;MRM针对预设离子扫描,适用于已知TG定量;中性丢失扫描常与DDA或MRM结合,筛查特定脂肪酸组成的TG [50]。然而,生物样本TG分析面临基质效应差异和标准品不足的挑战。生物样本中的TG种类繁多,逐一合成标准品并不现实,所以目前TG的定性分析主要依赖二级碎片注释,但手动解析耗时较长,建立TG理论碎片数据库并结合算法匹配可提升效率。此外,TG的LC-MS检测的准确性高度依赖于色谱分离能力,特别是同分异构体,因为这些同分异构体在反相色谱中保留时间相近且质谱二级碎片可能交叉干扰,增加了定性和定量的难度。

5. TG检测在代谢性疾病中的研究进展

TG的总体水平作为血脂四项检测之一,其生理意义在临床上广受认可,已广泛应用于代谢性疾病的发生、发展和预防治疗的辅助判断[51]-[53]。随着技术进步,尤其是脂质组学的发展,TG内部分子种类的研究取得了显著进展。

研究发现,不同生理状态下TG种类的变化存在差异。例如,Jordy AB等人研究发现,运动状态下骨骼肌TG水平显著降低,其中TG (16:1_16:1_18:1)和TG (16:1_18:1_18:1)贡献了主要的TG下降幅度[54]。在疾病状态下,TG的组成及丰度也会随之发生改变。例如,Chakraborty A等人发现在总TG水平无明显变化的情况下,认知障碍的2型糖尿病患者体内长链不饱和TG水平降低[55]。含亚油酸的TG与胰岛素抵抗系数呈负相关,而富含SFA和MUFA的TG与之呈正相关[56]。关于疾病状态下TG分子种类变化的原因,许多研究认为这可能与脂质合成和代谢路径的酶调控有关。例如,Barranco-Altirriba M等人的研究发现,与2型糖尿病相比,1型糖尿病患者TG (18:1_18:1_18:2)显著升高,而多不饱和TG和DG普遍下调,这一现象可能与胰岛素缺乏导致SREBP-1c通路失衡,进而降低去饱和酶活性有关[57]。此外,Schlager S团队的研究证实了ATGL基因的敲除或抑制不仅显著提高总TG水平,还会改变TG分子的相对丰度,增加PUFA的比例[58]。在药物治疗方面,尽管尚无针对特定TG种类的调控药物,但已有研究探讨了降脂药物对TG分子的影响。例如,Camacho-Muñoz D等人发现贝特类药物可更显著降低低饱和度TG (如TG (50:1)、TG (50:2)等)的分子水平[59]。与此同时,也有研究已将药物对TG种类调控的作用纳入新药评价的范畴。Loomba R团队指出,脂肪酸合成酶抑制剂TVB-2640能够显著降低短链、低双键TG (如三棕榈酸TG)的水平,展现出治疗NAFLD的潜力[60]。因此,深入探究TG的组成及其丰度变化(即TG谱)将有助于更全面地理解TG异常与不同疾病状态之间的特异性联系,并为疾病治疗和新药研发提供重要依据。

6. 总结与展望

如前所述,TG的检测方法多种多样,各具适用性,从传统化学法到现代质谱技术,为生物样本中TG分析提供了多样化选择。随着代谢性疾病研究的深入,检测技术正向更高分辨率和分子水平解析迈进。当前,TG分子检测新方法的发展主要聚焦于优化LC-MS的分离与检测性能,并在此基础上发展出二维液相色谱(Two-Dimensional Liquid Chromatography, 2D-LC)和离子淌度质谱(Ion Mobility-Mass Spectrometry, IM-MS)技术,显著提升TG异构体的分离精度,从而更有效地应对复杂生物样本中TG分析的挑战。

2D-LC通过串联两根具有正交选择性的色谱柱实现色谱分离,第一维完成初步分离后,第二维进一步提升分辨率,特别适用于解决复杂生物样本中TG共洗脱的难题。例如,Arena P等人结合反相色谱与银离子色谱构建2D-LC系统,并配合大气压化学电离质谱,成功从琉璃苋籽油中鉴定出94种TG分子[61]。IM-MS基于离子在电场中穿越惰性气体时的碰撞截面差异可以实现异构体分离,当与LC-MS联用(LC-IM-MS)时,其分离能力得到进一步增强。George AD等人利用LC-IM-MS技术从母乳样本中鉴定出98种此前未报道的新型TG,凸显了该技术在解析复杂生物样本TG分子谱方面的广阔应用前景[62]

与色谱和质谱技术进步并行,数据分析策略在TG检测中的作用日益凸显。LC-MS/MS难以完全分离TG同分异构体,基于通用碎片模型和优化算法的分析方法成为关键补充手段。最小二乘法、非负最小二乘法、稀疏编码、多元曲线分辨(MCR-ALS)、贝叶斯推断、机器学习及深度学习等方法,常常用于TG的质谱数据解析,以实现同分异构体的定量、去卷积与结构识别等目的。其中非负最小二乘法(Non-Negative Least Squares, NNLS)算法在脂质组学中广泛应用,可估算LC-MS/MS数据中共洗脱TG异构体的相对丰度。例如,安捷伦开发的Lipid Annotator软件通过拟合理论与实验MS/MS光谱并结合NNLS算法[63]。这一策略在一定程度上弥补了当前LC-MS检测的局限性,为代谢性疾病研究中TG分子谱的精准解析提供了创新且高效的解决方案。

总而言之,生物样本中TG检测技术的进步将加深对代谢性疾病分子机制的认识。未来研究可进一步探索特定TG异构体在器官特异性代谢调控中的功能差异及其信号转导作用,提出“功能型TG”作为潜在疾病标志物的新概念。通过整合多组学数据和代谢流向分析,可进一步阐明TG分子谱变化与疾病发生、发展及病理过程的联系。这些技术突破将促进疾病的早期识别、机制探究和疗效评价,从而优化诊疗策略,提高研究和临床应用的精确性,为代谢性疾病的精准防治提供有力支撑。

NOTES

*通讯作者。

参考文献

[1] 杜新业. 2型糖尿病合并动脉粥样硬化患者血清中LDL-C、HDL-C和TG水平检测及其临床意义[J]. 医学综述, 2009, 15(20): 3192-3194.
[2] 唐红珍. 中医综合减肥法对肥胖症大鼠血清总胆固醇和甘油三酯的影响[J]. 时珍国医国药, 2010, 21(7): 1587-1588.
[3] 张代民, 张莹, 许会彬. 糖尿病肾病患者血清甘油三酯的变化[J]. 国外医学.临床生物化学与检验学分册, 2005, 26(12): 956-957.
[4] Ye, S., Ran, H., Zhang, H., Wu, H., Li, W., Du, S., et al. (2021) Elevated Serum Triglycerides Are Associated with Ketosis-Prone Type 2 Diabetes in Young Individuals. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 497-504.
https://doi.org/10.2147/dmso.s296085
[5] Maffeis, C., Morandi, A., Zusi, C., Olivieri, F., Fornari, E., Cavarzere, P., et al. (2024) Hepatic Lipogenesis Marked by GCKR‐Modulated Triglycerides Increases Serum FGF21 in Children/Teens with Obesity. Diabetes, Obesity and Metabolism, 27, 825-834.
https://doi.org/10.1111/dom.16081
[6] 中国成人血脂异常防治指南修订联合委员会. 中国成人血脂异常防治指南(2016年修订版) [J]. 中华心血管病杂志, 2016, 44(10): 833-853.
[7] 王增武, 刘静, 李建军, 等. 中国血脂管理指南(2023年) [J]. 中国循环杂志, 2023, 38(3): 237-271.
[8] 王薇, 赵冬, 吴兆苏, 等. 中国11省市35-64岁人群血清甘油三酯分布特点及与其他心血管病危险因素关系的研究[J]. 中华流行病学杂志, 2001, 22(1): 26-29.
[9] Araya, J., Rodrigo, R., Videla, L.A., Thielemann, L., Orellana, M., Pettinelli, P., et al. (2004) Increase in Long-Chain Polyunsaturated Fatty Acid N-6/N-3 Ratio in Relation to Hepatic Steatosis in Patients with Non-Alcoholic Fatty Liver Disease. Clinical Science, 106, 635-643.
https://doi.org/10.1042/cs20030326
[10] Pawlosky, R.J. and Salem, N. (2004) Perspectives on Alcohol Consumption: Liver Polyunsaturated Fatty Acids and Essential Fatty Acid Metabolism. Alcohol, 34, 27-33.
https://doi.org/10.1016/j.alcohol.2004.07.009
[11] Spadaro, L., Magliocco, O., Spampinato, D., Piro, S., Oliveri, C., Alagona, C., et al. (2008) Effects of N-3 Polyunsaturated Fatty Acids in Subjects with Nonalcoholic Fatty Liver Disease. Digestive and Liver Disease, 40, 194-199.
https://doi.org/10.1016/j.dld.2007.10.003
[12] Kotronen, A., Velagapudi, V.R., Yetukuri, L., Westerbacka, J., Bergholm, R., Ekroos, K., et al. (2009) Serum Saturated Fatty Acids Containing Triacylglycerols Are Better Markers of Insulin Resistance than Total Serum Triacylglycerol Concentrations. Diabetologia, 52, 684-690.
https://doi.org/10.1007/s00125-009-1282-2
[13] 张莹, 周铁成, 童开, 等. 不同方法对血清三酰甘油检测结果的差异性分析[J]. 国际检验医学杂志, 2013, 34(2): 198-199.
[14] Klotzsch, S.G., 陈元硕, 程国翔. 血清甘油三酯测定方法学和影响因素的回顾[J]. 国外医学: 临床生物化学与检验学分册, 1992(1): 33-36.
[15] 鄢盛恺, 夏良裕. 血清甘油三酯的测定方法与标准化研究最新进展[J]. 中华检验医学杂志, 2005, 28(4): 454-456.
[16] Sobhi, H.F., Mercer, K.E., Lan, R.S., Yeruva, L., Ten Have, G.A.M., Deutz, N.E.P., et al. (2024) Novel Odd-Chain Cyclopropane Fatty Acids: Detection in a Mammalian Lipidome and Uptake by Hepatosplanchnic Tissues. Journal of Lipid Research, 65, Article ID: 100632.
https://doi.org/10.1016/j.jlr.2024.100632
[17] Ampong, I., John Ikwuobe, O., Brown, J.E.P., Bailey, C.J., Gao, D., Gutierrez-Merino, J., et al. (2022) Odd Chain Fatty Acid Metabolism in Mice after a High Fat Diet. The International Journal of Biochemistry & Cell Biology, 143, Article ID: 106135.
https://doi.org/10.1016/j.biocel.2021.106135
[18] Pfeuffer, M. and Jaudszus, A. (2016) Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids. Advances in Nutrition, 7, 730-734.
https://doi.org/10.3945/an.115.011387
[19] Mika, A., Stepnowski, P., Kaska, L., Proczko, M., Wisniewski, P., Sledzinski, M., et al. (2016) A Comprehensive Study of Serum Odd‐ and Branched‐Chain Fatty Acids in Patients with Excess Weight. Obesity, 24, 1669-1676.
https://doi.org/10.1002/oby.21560
[20] Wurie, H.R., Buckett, L. and Zammit, V.A. (2012) Diacylglycerol Acyltransferase 2 Acts Upstream of Diacylglycerol Acyltransferase 1 and Utilizes Nascent Diglycerides and de Novo Synthesized Fatty Acids in HEPG2 Cells. The FEBS Journal, 279, 3033-3047.
https://doi.org/10.1111/j.1742-4658.2012.08684.x
[21] Chen, Y.J., Zhou, X.H., Han, B., Li, S.M., Xu, T., Yi, H.X., et al. (2020) Composition Analysis of Fatty Acids and Stereo-Distribution of Triglycerides in Human Milk from Three Regions of China. Food Research International, 133, Article ID: 109196.
https://doi.org/10.1016/j.foodres.2020.109196
[22] Yen, C.E., Stone, S.J., Koliwad, S., Harris, C. and Farese, R.V. (2008) Thematic Review Series: Glycerolipids. DGAT Enzymes and Triacylglycerol Biosynthesis. Journal of Lipid Research, 49, 2283-2301.
https://doi.org/10.1194/jlr.r800018-jlr200
[23] Feingold, K.R. (2022) Lipid and Lipoprotein Metabolism. Endocrinology and Metabolism Clinics of North America, 51, 437-458.
https://doi.org/10.1016/j.ecl.2022.02.008
[24] Frayn, K.N. and Langin, D. (2003) Triacylglycerol Metabolism in Adipose Tissue. Advances in Molecular and Cell Biology, 33, 337-356.
https://doi.org/10.1016/s1569-2558(03)33017-6
[25] Nye, C., Kim, J., Kalhan, S.C. and Hanson, R.W. (2008) Reassessing Triglyceride Synthesis in Adipose Tissue. Trends in Endocrinology & Metabolism, 19, 356-361.
https://doi.org/10.1016/j.tem.2008.08.003
[26] Leibel, R., Hirsch, J., Berry, E. and Gruen, R. (1985) Alterations in Adipocyte Free Fatty Acid Re-Esterification Associated with Obesity and Weight Reduction in Man. The American Journal of Clinical Nutrition, 42, 198-206.
https://doi.org/10.1093/ajcn/42.2.198
[27] Santos-Baez, L.S. and Ginsberg, H.N. (2021) Nonalcohol Fatty Liver Disease: Balancing Supply and Utilization of Triglycerides. Current Opinion in Lipidology, 32, 200-206.
https://doi.org/10.1097/mol.0000000000000756
[28] Faquih, T.O., van Klinken, J.B., Li‐Gao, R., Noordam, R., van Heemst, D., Boone, S., et al. (2023) Hepatic Triglyceride Content Is Intricately Associated with Numerous Metabolites and Biochemical Pathways. Liver International, 43, 1458-1472.
https://doi.org/10.1111/liv.15575
[29] Ouyang, S., Zhuo, S., Yang, M., Zhu, T., Yu, S., Li, Y., et al. (2024) Glycerol Kinase Drives Hepatic De Novo Lipogenesis and Triglyceride Synthesis in Nonalcoholic Fatty Liver by Activating SREBP‐1C Transcription, Upregulating DGAT1/2 Expression, and Promoting Glycerol Metabolism. Advanced Science, 11, Article ID: 2401311.
https://doi.org/10.1002/advs.202401311
[30] Abdelmoemen, G., Khodeir, S.A., Zaki, A.N., Kassab, M., Abou-Saif, S. and Abd-Elsalam, S. (2019) Overexpression of Hepassocin in Diabetic Patients with Nonalcoholic Fatty Liver Disease May Facilitate Increased Hepatic Lipid Accumulation. Endocrine, Metabolic & Immune DisordersDrug Targets, 19, 185-188.
https://doi.org/10.2174/1871530318666180716100543
[31] Shen, T., Oh, Y., Jeong, S., Cho, S., Fiehn, O. and Youn, J.H. (2024) High-Fat Feeding Alters Circulating Triglyceride Composition: Roles of FFA Desaturation and Ω-3 Fatty Acid Availability. International Journal of Molecular Sciences, 25, Article 8810.
https://doi.org/10.3390/ijms25168810
[32] Schwab, U., Seppänen-Laakso, T., Yetukuri, L., Ågren, J., Kolehmainen, M., Laaksonen, D.E., et al. (2008) Triacylglycerol Fatty Acid Composition in Diet-Induced Weight Loss in Subjects with Abnormal Glucose Metabolism—The GENOBIN Study. PLOS ONE, 3, e2630.
https://doi.org/10.1371/journal.pone.0002630
[33] Wahlefeld, A.W. (1974) Triglycerides Determination after Enzymatic Hydrolysis. In: Bergmeyer, H.U. and Gawehn, K., Eds., Methods of Enzymatic Analysis, Elsevier, 1831-1835.
https://doi.org/10.1016/b978-0-12-091304-6.50036-7
[34] Hearne, C.R. and Fraser, C.G. (1981) Assessment of Colorimetric Enzymatic Determination of Triglyceride, by Manual and Centrifugal Analyzer Techniques, and Comparison with a CDC Standardized Method. Clinical Biochemistry, 14, 28-31.
https://doi.org/10.1016/0009-9120(81)90150-8
[35] Herold, D.A. and Reed, A.E. (1988) Interference by Endogenous Glycerol in an Enzymatic Assay of Phosphatidylglycerol in Amniotic Fluid. Clinical Chemistry, 34, 560-563.
https://doi.org/10.1093/clinchem/34.3.560
[36] Sampson, M., Ruddel, M. and Elin, R.J. (1994) Effects of Specimen Turbidity and Glycerol Concentration on Nine Enzymatic Methods for Triglyceride Determination. Clinical Chemistry, 40, 221-226.
https://doi.org/10.1093/clinchem/40.2.221
[37] Sherpa, D., Bhowmick, C., Pavan, T., Rajwade, D.A., Halder, S., Mitra, I., et al. (2024) Classification of Idiopathic Recurrent Spontaneous Miscarriage Using FTIR and Raman Spectroscopic Fusion Technology. Systems Biology in Reproductive Medicine, 70, 228-239.
https://doi.org/10.1080/19396368.2024.2384386
[38] Ala-Korpela, M., Korhonen, A., Keisala, J., Hörkkö, S., Korpi, P., Ingman, L.P., et al. (1994) 1H NMR-Based Absolute Quantitation of Human Lipoproteins and Their Lipid Contents Directly from Plasma. Journal of Lipid Research, 35, 2292-2304.
https://doi.org/10.1016/s0022-2275(20)39935-1
[39] Moreno-Vedia, J., Rosales, R., Ozcariz, E., Llop, D., Lahuerta, M., Benavent, M., et al. (2022) Triglyceride-Rich Lipoproteins and Glycoprotein a and B Assessed by 1H-NMR in Metabolic-Associated Fatty Liver Disease. Frontiers in Endocrinology, 12, Article 775677.
https://doi.org/10.3389/fendo.2021.775677
[40] Kozlova, A., Shkrigunov, T., Gusev, S., Guseva, M., Ponomarenko, E. and Lisitsa, A. (2022) An Open-Source Pipeline for Processing Direct Infusion Mass Spectrometry Data of the Human Plasma Metabolome. Metabolites, 12, Article 768.
https://doi.org/10.3390/metabo12080768
[41] Gutbrod, K., Peisker, H. and Dörmann, P. (2021) Direct Infusion Mass Spectrometry for Complex Lipid Analysis. In: Bartels, D. and Dörmann, P., Eds., Plant Lipids, Springer, 101-115.
https://doi.org/10.1007/978-1-0716-1362-7_7
[42] Wunderling, K., Zurkovic, J., Zink, F., Kuerschner, L. and Thiele, C. (2023) Triglyceride Cycling Enables Modification of Stored Fatty Acids. Nature Metabolism, 5, 699-709.
https://doi.org/10.1038/s42255-023-00769-z
[43] Svendsen, A. (2000) Lipase Protein Engineering. Biochimica et Biophysica Acta (BBA)—Protein Structure and Molecular Enzymology, 1543, 223-238.
https://doi.org/10.1016/s0167-4838(00)00239-9
[44] Mao, Y., Lee, Y., Xie, X., Wang, Y. and Zhang, Z. (2023) Preparation, Acyl Migration and Applications of the Acylglycerols and Their Isomers: A Review. Journal of Functional Foods, 106, Article ID: 105616.
https://doi.org/10.1016/j.jff.2023.105616
[45] Tamura, S. and Shimomura, I. (2005) Contribution of Adipose Tissue and de Novo Lipogenesis to Nonalcoholic Fatty Liver Disease. The Journal of Clinical Investigation, 115, 1139-1142.
[46] Lísa, M., Holčapek, M. and Sovová, H. (2009) Comparison of Various Types of Stationary Phases in Non-Aqueous Reversed-Phase High-Performance Liquid Chromatography-Mass Spectrometry of Glycerolipids in Blackcurrant Oil and Its Enzymatic Hydrolysis Mixture. Journal of Chromatography A, 1216, 8371-8378.
https://doi.org/10.1016/j.chroma.2009.09.060
[47] Holčapek, M., Dvořáková, H., Lísa, M., Girón, A.J., Sandra, P. and Cvačka, J. (2010) Regioisomeric Analysis of Triacylglycerols Using Silver-Ion Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry: Comparison of Five Different Mass Analyzers. Journal of Chromatography A, 1217, 8186-8194.
https://doi.org/10.1016/j.chroma.2010.10.064
[48] Řezanka, T. and Sigler, K. (2014) Separation of Enantiomeric Triacylglycerols by Chiral‐Phase HPLC. Lipids, 49, 1251-1260.
https://doi.org/10.1007/s11745-014-3959-7
[49] Bonner, R. and Hopfgartner, G. (2022) The Origin and Implications of Artifact Ions in Bioanalytical LC-MS. LCGC North America, 40, 10-13.
https://doi.org/10.56530/lcgc.na.pd4884b8
[50] Han, X. and Ye, H. (2021) Overview of Lipidomic Analysis of Triglyceride Molecular Species in Biological Lipid Extracts. Journal of Agricultural and Food Chemistry, 69, 8895-8909.
https://doi.org/10.1021/acs.jafc.0c07175
[51] 廖丽萍, 周跟东, 张晓红. 血清甘油三酯葡萄糖乘积指数与代谢性疾病的研究进展[J]. 心血管病学进展, 2020, 41(11): 1189-1191, 1195.
[52] 殷娇, 常浩瀚, 刘萍, 等. 体重指数和血清甘油三酯与痛性糖尿病神经病变相关性的研究[J]. 中国糖尿病杂志, 2023, 31(1): 27-30.
[53] 周明, 楚佳琪, 郭晓燕, 等. 在非高血压和糖尿病成年人群中血清三酰甘油水平与免疫球蛋白M的关联[J]. 中华健康管理学杂志, 2016, 10(2): 159-161.
[54] Jordy, A.B., Kraakman, M.J., Gardner, T., Estevez, E., Kammoun, H.L., Weir, J.M., et al. (2015) Analysis of the Liver Lipidome Reveals Insights into the Protective Effect of Exercise on High-Fat Diet-Induced Hepatosteatosis in Mice. American Journal of Physiology-Endocrinology and Metabolism, 308, E778-E791.
https://doi.org/10.1152/ajpendo.00547.2014
[55] Chakraborty, A., Hegde, S., Praharaj, S.K., Prabhu, K., Patole, C., Shetty, A.K., et al. (2021) Age Related Prevalence of Mild Cognitive Impairment in Type 2 Diabetes Mellitus Patients in the Indian Population and Association of Serum Lipids with Cognitive Dysfunction. Frontiers in Endocrinology, 12, Article 798652.
https://doi.org/10.3389/fendo.2021.798652
[56] Rhee, E.P., Cheng, S., Larson, M.G., Walford, G.A., Lewis, G.D., McCabe, E., et al. (2011) Lipid Profiling Identifies a Triacylglycerol Signature of Insulin Resistance and Improves Diabetes Prediction in Humans. Journal of Clinical Investigation, 121, 1402-1411.
https://doi.org/10.1172/jci44442
[57] Barranco-Altirriba, M., Alonso, N., Weber, R.J.M., Lloyd, G.R., Hernandez, M., Yanes, O., et al. (2024) Lipidome Characterisation and Sex-Specific Differences in Type 1 and Type 2 Diabetes Mellitus. Cardiovascular Diabetology, 23, Article No. 109.
https://doi.org/10.1186/s12933-024-02202-5
[58] Schlager, S., Goeritzer, M., Jandl, K., Frei, R., Vujic, N., Kolb, D., et al. (2015) Adipose Triglyceride Lipase Acts on Neutrophil Lipid Droplets to Regulate Substrate Availability for Lipid Mediator Synthesis. Journal of Leukocyte Biology, 98, 837-850.
https://doi.org/10.1189/jlb.3a0515-206r
[59] Camacho‐Muñoz, D., Kiezel‐Tsugunova, M., Kiss, O., Uddin, M., Sundén, M., Ryaboshapkina, M., et al. (2021) ω‐3 Carboxylic Acids and Fenofibrate Differentially Alter Plasma Lipid Mediators in Patients with Non‐Alcoholic Fatty Liver Disease. The FASEB Journal, 35, e21976.
https://doi.org/10.1096/fj.202100380rrr
[60] Loomba, R., Mohseni, R., Lucas, K.J., Gutierrez, J.A., Perry, R.G., Trotter, J.F., et al. (2021) TVB-2640 (FASN Inhibitor) for the Treatment of Nonalcoholic Steatohepatitis: FASCINATE-1, a Randomized, Placebo-Controlled Phase 2a Trial. Gastroenterology, 161, 1475-1486.
https://doi.org/10.1053/j.gastro.2021.07.025
[61] Arena, P., Sciarrone, D., Dugo, P., Donato, P. and Mondello, L. (2021) Pattern-Type Separation of Triacylglycerols by Silver Thiolate × Non-Aqueous Reversed Phase Comprehensive Liquid Chromatography. Separations, 8, Article 88.
https://doi.org/10.3390/separations8060088
[62] George, A.D., Gay, M.C.L., Wlodek, M.E., Trengove, R.D., Murray, K. and Geddes, D.T. (2020) Untargeted Lipidomics Using Liquid Chromatography-Ion Mobility-Mass Spectrometry Reveals Novel Triacylglycerides in Human Milk. Scientific Reports, 10, Article 9255.
https://doi.org/10.1038/s41598-020-66235-y
[63] Koelmel, J.P., Li, X., Stow, S.M., Sartain, M.J., Murali, A., Kemperman, R., et al. (2020) Lipid Annotator: Towards Accurate Annotation in Non-Targeted Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS) Lipidomics Using a Rapid and User-Friendly Software. Metabolites, 10, Article 101.
https://doi.org/10.3390/metabo10030101