[1]
|
杜新业. 2型糖尿病合并动脉粥样硬化患者血清中LDL-C、HDL-C和TG水平检测及其临床意义[J]. 医学综述, 2009, 15(20): 3192-3194.
|
[2]
|
唐红珍. 中医综合减肥法对肥胖症大鼠血清总胆固醇和甘油三酯的影响[J]. 时珍国医国药, 2010, 21(7): 1587-1588.
|
[3]
|
张代民, 张莹, 许会彬. 糖尿病肾病患者血清甘油三酯的变化[J]. 国外医学.临床生物化学与检验学分册, 2005, 26(12): 956-957.
|
[4]
|
Ye, S., Ran, H., Zhang, H., Wu, H., Li, W., Du, S., et al. (2021) Elevated Serum Triglycerides Are Associated with Ketosis-Prone Type 2 Diabetes in Young Individuals. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 497-504. https://doi.org/10.2147/dmso.s296085
|
[5]
|
Maffeis, C., Morandi, A., Zusi, C., Olivieri, F., Fornari, E., Cavarzere, P., et al. (2024) Hepatic Lipogenesis Marked by GCKR‐Modulated Triglycerides Increases Serum FGF21 in Children/Teens with Obesity. Diabetes, Obesity and Metabolism, 27, 825-834. https://doi.org/10.1111/dom.16081
|
[6]
|
中国成人血脂异常防治指南修订联合委员会. 中国成人血脂异常防治指南(2016年修订版) [J]. 中华心血管病杂志, 2016, 44(10): 833-853.
|
[7]
|
王增武, 刘静, 李建军, 等. 中国血脂管理指南(2023年) [J]. 中国循环杂志, 2023, 38(3): 237-271.
|
[8]
|
王薇, 赵冬, 吴兆苏, 等. 中国11省市35-64岁人群血清甘油三酯分布特点及与其他心血管病危险因素关系的研究[J]. 中华流行病学杂志, 2001, 22(1): 26-29.
|
[9]
|
Araya, J., Rodrigo, R., Videla, L.A., Thielemann, L., Orellana, M., Pettinelli, P., et al. (2004) Increase in Long-Chain Polyunsaturated Fatty Acid N-6/N-3 Ratio in Relation to Hepatic Steatosis in Patients with Non-Alcoholic Fatty Liver Disease. Clinical Science, 106, 635-643. https://doi.org/10.1042/cs20030326
|
[10]
|
Pawlosky, R.J. and Salem, N. (2004) Perspectives on Alcohol Consumption: Liver Polyunsaturated Fatty Acids and Essential Fatty Acid Metabolism. Alcohol, 34, 27-33. https://doi.org/10.1016/j.alcohol.2004.07.009
|
[11]
|
Spadaro, L., Magliocco, O., Spampinato, D., Piro, S., Oliveri, C., Alagona, C., et al. (2008) Effects of N-3 Polyunsaturated Fatty Acids in Subjects with Nonalcoholic Fatty Liver Disease. Digestive and Liver Disease, 40, 194-199. https://doi.org/10.1016/j.dld.2007.10.003
|
[12]
|
Kotronen, A., Velagapudi, V.R., Yetukuri, L., Westerbacka, J., Bergholm, R., Ekroos, K., et al. (2009) Serum Saturated Fatty Acids Containing Triacylglycerols Are Better Markers of Insulin Resistance than Total Serum Triacylglycerol Concentrations. Diabetologia, 52, 684-690. https://doi.org/10.1007/s00125-009-1282-2
|
[13]
|
张莹, 周铁成, 童开, 等. 不同方法对血清三酰甘油检测结果的差异性分析[J]. 国际检验医学杂志, 2013, 34(2): 198-199.
|
[14]
|
Klotzsch, S.G., 陈元硕, 程国翔. 血清甘油三酯测定方法学和影响因素的回顾[J]. 国外医学: 临床生物化学与检验学分册, 1992(1): 33-36.
|
[15]
|
鄢盛恺, 夏良裕. 血清甘油三酯的测定方法与标准化研究最新进展[J]. 中华检验医学杂志, 2005, 28(4): 454-456.
|
[16]
|
Sobhi, H.F., Mercer, K.E., Lan, R.S., Yeruva, L., Ten Have, G.A.M., Deutz, N.E.P., et al. (2024) Novel Odd-Chain Cyclopropane Fatty Acids: Detection in a Mammalian Lipidome and Uptake by Hepatosplanchnic Tissues. Journal of Lipid Research, 65, Article ID: 100632. https://doi.org/10.1016/j.jlr.2024.100632
|
[17]
|
Ampong, I., John Ikwuobe, O., Brown, J.E.P., Bailey, C.J., Gao, D., Gutierrez-Merino, J., et al. (2022) Odd Chain Fatty Acid Metabolism in Mice after a High Fat Diet. The International Journal of Biochemistry & Cell Biology, 143, Article ID: 106135. https://doi.org/10.1016/j.biocel.2021.106135
|
[18]
|
Pfeuffer, M. and Jaudszus, A. (2016) Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids. Advances in Nutrition, 7, 730-734. https://doi.org/10.3945/an.115.011387
|
[19]
|
Mika, A., Stepnowski, P., Kaska, L., Proczko, M., Wisniewski, P., Sledzinski, M., et al. (2016) A Comprehensive Study of Serum Odd‐ and Branched‐Chain Fatty Acids in Patients with Excess Weight. Obesity, 24, 1669-1676. https://doi.org/10.1002/oby.21560
|
[20]
|
Wurie, H.R., Buckett, L. and Zammit, V.A. (2012) Diacylglycerol Acyltransferase 2 Acts Upstream of Diacylglycerol Acyltransferase 1 and Utilizes Nascent Diglycerides and de Novo Synthesized Fatty Acids in HEPG2 Cells. The FEBS Journal, 279, 3033-3047. https://doi.org/10.1111/j.1742-4658.2012.08684.x
|
[21]
|
Chen, Y.J., Zhou, X.H., Han, B., Li, S.M., Xu, T., Yi, H.X., et al. (2020) Composition Analysis of Fatty Acids and Stereo-Distribution of Triglycerides in Human Milk from Three Regions of China. Food Research International, 133, Article ID: 109196. https://doi.org/10.1016/j.foodres.2020.109196
|
[22]
|
Yen, C.E., Stone, S.J., Koliwad, S., Harris, C. and Farese, R.V. (2008) Thematic Review Series: Glycerolipids. DGAT Enzymes and Triacylglycerol Biosynthesis. Journal of Lipid Research, 49, 2283-2301. https://doi.org/10.1194/jlr.r800018-jlr200
|
[23]
|
Feingold, K.R. (2022) Lipid and Lipoprotein Metabolism. Endocrinology and Metabolism Clinics of North America, 51, 437-458. https://doi.org/10.1016/j.ecl.2022.02.008
|
[24]
|
Frayn, K.N. and Langin, D. (2003) Triacylglycerol Metabolism in Adipose Tissue. Advances in Molecular and Cell Biology, 33, 337-356. https://doi.org/10.1016/s1569-2558(03)33017-6
|
[25]
|
Nye, C., Kim, J., Kalhan, S.C. and Hanson, R.W. (2008) Reassessing Triglyceride Synthesis in Adipose Tissue. Trends in Endocrinology & Metabolism, 19, 356-361. https://doi.org/10.1016/j.tem.2008.08.003
|
[26]
|
Leibel, R., Hirsch, J., Berry, E. and Gruen, R. (1985) Alterations in Adipocyte Free Fatty Acid Re-Esterification Associated with Obesity and Weight Reduction in Man. The American Journal of Clinical Nutrition, 42, 198-206. https://doi.org/10.1093/ajcn/42.2.198
|
[27]
|
Santos-Baez, L.S. and Ginsberg, H.N. (2021) Nonalcohol Fatty Liver Disease: Balancing Supply and Utilization of Triglycerides. Current Opinion in Lipidology, 32, 200-206. https://doi.org/10.1097/mol.0000000000000756
|
[28]
|
Faquih, T.O., van Klinken, J.B., Li‐Gao, R., Noordam, R., van Heemst, D., Boone, S., et al. (2023) Hepatic Triglyceride Content Is Intricately Associated with Numerous Metabolites and Biochemical Pathways. Liver International, 43, 1458-1472. https://doi.org/10.1111/liv.15575
|
[29]
|
Ouyang, S., Zhuo, S., Yang, M., Zhu, T., Yu, S., Li, Y., et al. (2024) Glycerol Kinase Drives Hepatic De Novo Lipogenesis and Triglyceride Synthesis in Nonalcoholic Fatty Liver by Activating SREBP‐1C Transcription, Upregulating DGAT1/2 Expression, and Promoting Glycerol Metabolism. Advanced Science, 11, Article ID: 2401311. https://doi.org/10.1002/advs.202401311
|
[30]
|
Abdelmoemen, G., Khodeir, S.A., Zaki, A.N., Kassab, M., Abou-Saif, S. and Abd-Elsalam, S. (2019) Overexpression of Hepassocin in Diabetic Patients with Nonalcoholic Fatty Liver Disease May Facilitate Increased Hepatic Lipid Accumulation. Endocrine, Metabolic & Immune Disorders—Drug Targets, 19, 185-188. https://doi.org/10.2174/1871530318666180716100543
|
[31]
|
Shen, T., Oh, Y., Jeong, S., Cho, S., Fiehn, O. and Youn, J.H. (2024) High-Fat Feeding Alters Circulating Triglyceride Composition: Roles of FFA Desaturation and Ω-3 Fatty Acid Availability. International Journal of Molecular Sciences, 25, Article 8810. https://doi.org/10.3390/ijms25168810
|
[32]
|
Schwab, U., Seppänen-Laakso, T., Yetukuri, L., Ågren, J., Kolehmainen, M., Laaksonen, D.E., et al. (2008) Triacylglycerol Fatty Acid Composition in Diet-Induced Weight Loss in Subjects with Abnormal Glucose Metabolism—The GENOBIN Study. PLOS ONE, 3, e2630. https://doi.org/10.1371/journal.pone.0002630
|
[33]
|
Wahlefeld, A.W. (1974) Triglycerides Determination after Enzymatic Hydrolysis. In: Bergmeyer, H.U. and Gawehn, K., Eds., Methods of Enzymatic Analysis, Elsevier, 1831-1835. https://doi.org/10.1016/b978-0-12-091304-6.50036-7
|
[34]
|
Hearne, C.R. and Fraser, C.G. (1981) Assessment of Colorimetric Enzymatic Determination of Triglyceride, by Manual and Centrifugal Analyzer Techniques, and Comparison with a CDC Standardized Method. Clinical Biochemistry, 14, 28-31. https://doi.org/10.1016/0009-9120(81)90150-8
|
[35]
|
Herold, D.A. and Reed, A.E. (1988) Interference by Endogenous Glycerol in an Enzymatic Assay of Phosphatidylglycerol in Amniotic Fluid. Clinical Chemistry, 34, 560-563. https://doi.org/10.1093/clinchem/34.3.560
|
[36]
|
Sampson, M., Ruddel, M. and Elin, R.J. (1994) Effects of Specimen Turbidity and Glycerol Concentration on Nine Enzymatic Methods for Triglyceride Determination. Clinical Chemistry, 40, 221-226. https://doi.org/10.1093/clinchem/40.2.221
|
[37]
|
Sherpa, D., Bhowmick, C., Pavan, T., Rajwade, D.A., Halder, S., Mitra, I., et al. (2024) Classification of Idiopathic Recurrent Spontaneous Miscarriage Using FTIR and Raman Spectroscopic Fusion Technology. Systems Biology in Reproductive Medicine, 70, 228-239. https://doi.org/10.1080/19396368.2024.2384386
|
[38]
|
Ala-Korpela, M., Korhonen, A., Keisala, J., Hörkkö, S., Korpi, P., Ingman, L.P., et al. (1994) 1H NMR-Based Absolute Quantitation of Human Lipoproteins and Their Lipid Contents Directly from Plasma. Journal of Lipid Research, 35, 2292-2304. https://doi.org/10.1016/s0022-2275(20)39935-1
|
[39]
|
Moreno-Vedia, J., Rosales, R., Ozcariz, E., Llop, D., Lahuerta, M., Benavent, M., et al. (2022) Triglyceride-Rich Lipoproteins and Glycoprotein a and B Assessed by 1H-NMR in Metabolic-Associated Fatty Liver Disease. Frontiers in Endocrinology, 12, Article 775677. https://doi.org/10.3389/fendo.2021.775677
|
[40]
|
Kozlova, A., Shkrigunov, T., Gusev, S., Guseva, M., Ponomarenko, E. and Lisitsa, A. (2022) An Open-Source Pipeline for Processing Direct Infusion Mass Spectrometry Data of the Human Plasma Metabolome. Metabolites, 12, Article 768. https://doi.org/10.3390/metabo12080768
|
[41]
|
Gutbrod, K., Peisker, H. and Dörmann, P. (2021) Direct Infusion Mass Spectrometry for Complex Lipid Analysis. In: Bartels, D. and Dörmann, P., Eds., Plant Lipids, Springer, 101-115. https://doi.org/10.1007/978-1-0716-1362-7_7
|
[42]
|
Wunderling, K., Zurkovic, J., Zink, F., Kuerschner, L. and Thiele, C. (2023) Triglyceride Cycling Enables Modification of Stored Fatty Acids. Nature Metabolism, 5, 699-709. https://doi.org/10.1038/s42255-023-00769-z
|
[43]
|
Svendsen, A. (2000) Lipase Protein Engineering. Biochimica et Biophysica Acta (BBA)—Protein Structure and Molecular Enzymology, 1543, 223-238. https://doi.org/10.1016/s0167-4838(00)00239-9
|
[44]
|
Mao, Y., Lee, Y., Xie, X., Wang, Y. and Zhang, Z. (2023) Preparation, Acyl Migration and Applications of the Acylglycerols and Their Isomers: A Review. Journal of Functional Foods, 106, Article ID: 105616. https://doi.org/10.1016/j.jff.2023.105616
|
[45]
|
Tamura, S. and Shimomura, I. (2005) Contribution of Adipose Tissue and de Novo Lipogenesis to Nonalcoholic Fatty Liver Disease. The Journal of Clinical Investigation, 115, 1139-1142.
|
[46]
|
Lísa, M., Holčapek, M. and Sovová, H. (2009) Comparison of Various Types of Stationary Phases in Non-Aqueous Reversed-Phase High-Performance Liquid Chromatography-Mass Spectrometry of Glycerolipids in Blackcurrant Oil and Its Enzymatic Hydrolysis Mixture. Journal of Chromatography A, 1216, 8371-8378. https://doi.org/10.1016/j.chroma.2009.09.060
|
[47]
|
Holčapek, M., Dvořáková, H., Lísa, M., Girón, A.J., Sandra, P. and Cvačka, J. (2010) Regioisomeric Analysis of Triacylglycerols Using Silver-Ion Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry: Comparison of Five Different Mass Analyzers. Journal of Chromatography A, 1217, 8186-8194. https://doi.org/10.1016/j.chroma.2010.10.064
|
[48]
|
Řezanka, T. and Sigler, K. (2014) Separation of Enantiomeric Triacylglycerols by Chiral‐Phase HPLC. Lipids, 49, 1251-1260. https://doi.org/10.1007/s11745-014-3959-7
|
[49]
|
Bonner, R. and Hopfgartner, G. (2022) The Origin and Implications of Artifact Ions in Bioanalytical LC-MS. LCGC North America, 40, 10-13. https://doi.org/10.56530/lcgc.na.pd4884b8
|
[50]
|
Han, X. and Ye, H. (2021) Overview of Lipidomic Analysis of Triglyceride Molecular Species in Biological Lipid Extracts. Journal of Agricultural and Food Chemistry, 69, 8895-8909. https://doi.org/10.1021/acs.jafc.0c07175
|
[51]
|
廖丽萍, 周跟东, 张晓红. 血清甘油三酯葡萄糖乘积指数与代谢性疾病的研究进展[J]. 心血管病学进展, 2020, 41(11): 1189-1191, 1195.
|
[52]
|
殷娇, 常浩瀚, 刘萍, 等. 体重指数和血清甘油三酯与痛性糖尿病神经病变相关性的研究[J]. 中国糖尿病杂志, 2023, 31(1): 27-30.
|
[53]
|
周明, 楚佳琪, 郭晓燕, 等. 在非高血压和糖尿病成年人群中血清三酰甘油水平与免疫球蛋白M的关联[J]. 中华健康管理学杂志, 2016, 10(2): 159-161.
|
[54]
|
Jordy, A.B., Kraakman, M.J., Gardner, T., Estevez, E., Kammoun, H.L., Weir, J.M., et al. (2015) Analysis of the Liver Lipidome Reveals Insights into the Protective Effect of Exercise on High-Fat Diet-Induced Hepatosteatosis in Mice. American Journal of Physiology-Endocrinology and Metabolism, 308, E778-E791. https://doi.org/10.1152/ajpendo.00547.2014
|
[55]
|
Chakraborty, A., Hegde, S., Praharaj, S.K., Prabhu, K., Patole, C., Shetty, A.K., et al. (2021) Age Related Prevalence of Mild Cognitive Impairment in Type 2 Diabetes Mellitus Patients in the Indian Population and Association of Serum Lipids with Cognitive Dysfunction. Frontiers in Endocrinology, 12, Article 798652. https://doi.org/10.3389/fendo.2021.798652
|
[56]
|
Rhee, E.P., Cheng, S., Larson, M.G., Walford, G.A., Lewis, G.D., McCabe, E., et al. (2011) Lipid Profiling Identifies a Triacylglycerol Signature of Insulin Resistance and Improves Diabetes Prediction in Humans. Journal of Clinical Investigation, 121, 1402-1411. https://doi.org/10.1172/jci44442
|
[57]
|
Barranco-Altirriba, M., Alonso, N., Weber, R.J.M., Lloyd, G.R., Hernandez, M., Yanes, O., et al. (2024) Lipidome Characterisation and Sex-Specific Differences in Type 1 and Type 2 Diabetes Mellitus. Cardiovascular Diabetology, 23, Article No. 109. https://doi.org/10.1186/s12933-024-02202-5
|
[58]
|
Schlager, S., Goeritzer, M., Jandl, K., Frei, R., Vujic, N., Kolb, D., et al. (2015) Adipose Triglyceride Lipase Acts on Neutrophil Lipid Droplets to Regulate Substrate Availability for Lipid Mediator Synthesis. Journal of Leukocyte Biology, 98, 837-850. https://doi.org/10.1189/jlb.3a0515-206r
|
[59]
|
Camacho‐Muñoz, D., Kiezel‐Tsugunova, M., Kiss, O., Uddin, M., Sundén, M., Ryaboshapkina, M., et al. (2021) ω‐3 Carboxylic Acids and Fenofibrate Differentially Alter Plasma Lipid Mediators in Patients with Non‐Alcoholic Fatty Liver Disease. The FASEB Journal, 35, e21976. https://doi.org/10.1096/fj.202100380rrr
|
[60]
|
Loomba, R., Mohseni, R., Lucas, K.J., Gutierrez, J.A., Perry, R.G., Trotter, J.F., et al. (2021) TVB-2640 (FASN Inhibitor) for the Treatment of Nonalcoholic Steatohepatitis: FASCINATE-1, a Randomized, Placebo-Controlled Phase 2a Trial. Gastroenterology, 161, 1475-1486. https://doi.org/10.1053/j.gastro.2021.07.025
|
[61]
|
Arena, P., Sciarrone, D., Dugo, P., Donato, P. and Mondello, L. (2021) Pattern-Type Separation of Triacylglycerols by Silver Thiolate × Non-Aqueous Reversed Phase Comprehensive Liquid Chromatography. Separations, 8, Article 88. https://doi.org/10.3390/separations8060088
|
[62]
|
George, A.D., Gay, M.C.L., Wlodek, M.E., Trengove, R.D., Murray, K. and Geddes, D.T. (2020) Untargeted Lipidomics Using Liquid Chromatography-Ion Mobility-Mass Spectrometry Reveals Novel Triacylglycerides in Human Milk. Scientific Reports, 10, Article 9255. https://doi.org/10.1038/s41598-020-66235-y
|
[63]
|
Koelmel, J.P., Li, X., Stow, S.M., Sartain, M.J., Murali, A., Kemperman, R., et al. (2020) Lipid Annotator: Towards Accurate Annotation in Non-Targeted Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS) Lipidomics Using a Rapid and User-Friendly Software. Metabolites, 10, Article 101. https://doi.org/10.3390/metabo10030101
|