[1]
|
Lin, H., Luo, S., Zhang, H. and Ye, J. (2022) Toward Solar-Driven Carbon Recycling. Joule, 6, 294-314. https://doi.org/10.1016/j.joule.2022.01.001
|
[2]
|
Pan, Q., Wu, Y., Su, X., Yin, Y., Shi, S., Oderinde, O., et al. (2023) A Review on the Recent Development of Bismuth-Based Catalysts for CO2 Photoreduction. Journal of Molecular Structure, 1294, Article 136404. https://doi.org/10.1016/j.molstruc.2023.136404
|
[3]
|
马占峰. 长余辉材料应用于全天候光催化还原CO2的研究[D]: [硕士学位论文]. 杭州: 杭州电子科技大学, 2023.
|
[4]
|
魏振浩, 黄益平, 倪泽雨, 等. 直接法合成碳酸二甲酯的催化剂研究进[J]. 南京工业大学学报(自然科学版), 2023, 45(3): 237-247.
|
[5]
|
邓志勇, 王馨雨, 刘源, 等. CO2和甲醇直接合成碳酸二甲酯催化剂研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(5): 1-7.
|
[6]
|
王玮. 氧化铈催化CO2和甲醇直接反应合成碳酸二甲酯[D]: [博士学位论文]. 天津: 天津大学, 2011.
|
[7]
|
Salusso, D., Grillo, G., Manzoli, M., et al. (2023) CeO2 Frustrated Lewis Pairs Improving CO2 and CH3OH Conversion to Monomethyl Carbonate. ACS Applied Materials & Interfaces, 15, 15396-15408.
|
[8]
|
Marciniak, A.A., C. S. Santos, E., Caraballo-Vivas, R.J., Alves, O.C., Maia da Costa, M.E.H., Garcia, F., et al. (2023) CeO2-Decorated Α-Fe2O3 Nanorings for the Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol. Energy & Fuels, 38, 628-636. https://doi.org/10.1021/acs.energyfuels.3c03050
|
[9]
|
Hou, G., Wang, Q., Xu, D., Fan, H., Liu, K., Li, Y., et al. (2024) Dimethyl Carbonate Synthesis from CO2 over CeO2 with Electron-Enriched Lattice Oxygen Species. Angewandte Chemie International Edition, 63, e202402053. https://doi.org/10.1002/anie.202402053
|
[10]
|
Darbha, S. (2016) Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol over CeO2 Catalysts of Different Morphologies. Journal of Chemical Sciences, 128, 957-965. https://doi.org/10.1007/s12039-016-1094-0
|
[11]
|
Tian, L., Tan, Z., Wang, Q., Liao, Y., Chou, J., Wu, J., et al. (2023) Cerium Coordination-Dependent Surface Intermediates Regulate Activity in Dimethyl Carbonate Synthesis from CO2 and Methanol. Applied Catalysis B: Environmental, 336, Article 122914. https://doi.org/10.1016/j.apcatb.2023.122914
|
[12]
|
Ren, Y., Foo, J.J., Zeng, D. and Ong, W. (2022) ZnIn2S4-Based Nanostructures in Artificial Photosynthesis: Insights into Photocatalytic Reduction toward Sustainable Energy Production. Small Structures, 3, Article 2270033. https://doi.org/10.1002/sstr.202270033
|
[13]
|
Du, J., Shi, H., Wu, J., Li, K., Song, C. and Guo, X. (2023) Interface and Defect Engineering of a Hollow TiO2@ZnIn2S4 Heterojunction for Highly Enhanced CO2 Photoreduction Activity. ACS Sustainable Chemistry & Engineering, 11, 2531-2540. https://doi.org/10.1021/acssuschemeng.2c06693
|
[14]
|
Chen, K., Wang, X., Li, Q., Feng, Y., Chen, F. and Yu, Y. (2021) Spatial Distribution of ZnIn2S4 Nanosheets on G-C3N4 Microtubes Promotes Photocatalytic CO2 Reduction. Chemical Engineering Journal, 418, Article 129476. https://doi.org/10.1016/j.cej.2021.129476
|
[15]
|
Shandilya, P., Sambyal, S., Sharma, R., Mandyal, P. and Fang, B. (2022) Properties, Optimized Morphologies, and Advanced Strategies for Photocatalytic Applications of WO3 Based Photocatalysts. Journal of Hazardous Materials, 428, Article 128218. https://doi.org/10.1016/j.jhazmat.2022.128218
|
[16]
|
Liao, M., Su, L., Deng, Y., Xiong, S., Tang, R., Wu, Z., et al. (2021) Strategies to Improve WO3-Based Photocatalysts for Wastewater Treatment: A Review. Journal of Materials Science, 56, 14416-14447. https://doi.org/10.1007/s10853-021-06202-8
|
[17]
|
Xu, A., Zhang, Y., Fan, H., Liu, X., Wang, F., Qu, X., et al. (2024) WO3 Nanosheet/ZnIn2S4 S-Scheme Heterojunctions for Enhanced CO2 Photoreduction. ACS Applied Nano Materials, 7, 3488-3498. https://doi.org/10.1021/acsanm.4c00147
|
[18]
|
郝亮, 张慧娜, 闫建成, 等. 氧空位缺陷对光催化活性的影响及其机制[J]. 天津科技大学学报, 2018, 33(5): 1-13+72.
|
[19]
|
Wang, Y., Chen, T., Chen, F., Tang, R. and Huang, H. (2022) Metal-Induced Oxygen Vacancies on Bi2WO6 for Efficient CO2 Photoreduction. Science China Materials, 65, 3497-3503. https://doi.org/10.1007/s40843-022-2093-x
|
[20]
|
成海英, 张磊, 张家辉, 等. TiO2的氧空位调控及其超声协同光催化性能研究[J]. 湖北大学学报(自然科学版), 2023, 45(4): 620-627.
|
[21]
|
Wang, M., Shen, M., Jin, X., Tian, J., Zhou, Y., Shao, Y., et al. (2020) Mild Generation of Surface Oxygen Vacancies on CeO2 for Improved CO2 Photoreduction Activity. Nanoscale, 12, 12374-12382. https://doi.org/10.1039/d0nr00717j
|