肝细胞癌中外泌体microRNA改变肿瘤微环境影响治疗及预后的研究进展
Advances in the Study of Exosomal MicroRNAs in Hepatocellular Carcinoma
DOI: 10.12677/md.2025.153036, PDF, HTML, XML,    科研立项经费支持
作者: 丁乐平:济宁医学院临床医学院,山东 济宁;张 晶*:济宁医学院附属医院消化内科,山东 济宁
关键词: 肝细胞癌microRNA肿瘤微环境免疫细胞基因脂质Hepatocellular Carcinoma microRNA Tumor Microenvironment Immune Cell Gene Lipid
摘要: 近年来,肝细胞癌(HCC)已成为全球范围内最常见、最致命且最具侵袭性的肝脏恶性肿瘤之一。肝细胞癌患者拥有多种治疗选项,包括肝移植、手术切除、经皮消融、放疗以及经动脉和全身治疗。目前,免疫疗法也逐渐被引入肝细胞癌的治疗领域。尽管肝细胞癌的治疗方法持续进步,但肝癌的死亡率仍在逐年上升,预后情况亦令人担忧。微小RNA (microRNA)已成为近年来的研究焦点,它在生物体内广泛分布,作为生物标志物和治疗靶点参与肝细胞癌的发生和发展过程,在肿瘤微环境(TME)中调节肿瘤免疫。本文综述了外泌体microRNA在肝细胞癌中细胞间通讯的作用网络,阐释了其与肿瘤微环境的相互作用如何影响肝癌的进展,并探讨了miRNA靶向脂质代谢相关酶对肝癌进展的影响,以及低氧诱导的外泌体如何作用于肝细胞癌,旨在突破microRNA在HCC诊断、治疗和预后方面的研究进展。
Abstract: In recent years, hepatocellular carcinoma (HCC) has become one of the most common, deadly and aggressive liver malignancies worldwide. Patients with hepatocellular carcinoma have a variety of treatment options, including liver transplantation, surgical resection, percutaneous ablation, radiotherapy, and transarterial and systemic therapy. Immunotherapy is also now being introduced to the treatment of hepatocellular carcinoma. Despite continued advances in the treatment of hepatocellular carcinoma, the mortality rate of hepatocellular carcinoma continues to increase year after year, and the prognosis of hepatocellular carcinoma is of concern. MicroRNAs (microRNAs) have become a focus of research in recent years, which are widely distributed in organisms, participate in the process of hepatocellular carcinoma genesis and progression as biomarkers and therapeutic targets, and regulate tumor immunity in the tumor microenvironment (TME). In this paper, we reviewed the role network of exosomal microRNAs in intercellular communication in hepatocellular carcinoma, elucidated how their interactions with the tumor microenvironment affect hepatocellular carcinoma progression, and explored the effects of miRNA targeting of lipid metabolism-related enzymes on the progression of hepatocellular carcinoma, as well as how hypoxia-induced exosomes act in hepatocellular carcinoma, with the aim of breaking through the role of microRNAs in the diagnosis, treatment and prognosis of HCC Research progress in HCC diagnosis, treatment and prognosis.
文章引用:丁乐平, 张晶. 肝细胞癌中外泌体microRNA改变肿瘤微环境影响治疗及预后的研究进展[J]. 医学诊断, 2025, 15(3): 275-282. https://doi.org/10.12677/md.2025.153036

1. 引言

肝脏是人类第六大最常见的原发性癌症部位,也是全球第四大癌症相关死亡原因[1]。在过去的二十年里,HCC患者的总体生存率并未显著提升,且对HCC发生和发展的机制了解有限。肝癌的治疗策略依据癌症的分期而定:对于早期肝癌,消融、切除和肝移植可作为治愈性治疗手段;中期HCC可采用经动脉化疗栓塞(TACE)、经动脉栓塞(TAE)、经动脉放射栓塞(TARE)以及全身治疗(如索拉非尼、乐伐替尼作为一线治疗);至于晚期患者,使用多激酶抑制剂或免疫检查点抑制剂进行全身治疗可延长总生存期(OS)。然而,目前的5年病因特异性生存率依然较低。miRNA是一种长约17~25个核苷酸的非编码RNA,其主要生物学功能是通过与靶mRNA的3'非翻译区(3'UTR)结合来调节靶基因表达,这与细胞增殖、细胞死亡和信号通路调节密切相关。miRNA的调节与多种疾病,尤其是癌症,有着紧密的联系[2]。本文在总结肝细胞癌中外泌体miRNA如何改变肿瘤微环境并影响疾病进展的基础上,进一步阐述了脂质代谢在肝细胞癌中的作用,旨在为开发新的治疗策略,更有效地抑制肝癌进展提供新的思路。

2. microRNA在肝细胞癌中细胞间通讯的作用机制

肿瘤相关中性粒细胞(TANs)在肿瘤微环境中的发展和进展中扮演着关键角色。Zhou等人通过将抗miRNA慢病毒载体转染至肝细胞癌(HCC)细胞系中,成功抑制了miRNA的表达。研究结果表明,miR-301b-3p的抑制显著减轻了TAN对HCC细胞的增殖、集落形成、侵袭、抗凋亡活性和球体形成作用。这表明TAN通过诱导miR-301b-3p的表达来增强HCC细胞的干细胞特性[3]。此外,巨噬细胞在HCC的进展中也发挥着至关重要的作用。例如,在HCC患者,特别是复发的患者中,miR-200b-3p外泌体的表达水平显著升高。HCC细胞衍生的miR-200b-3p外泌体被M0巨噬细胞内化,并通过下调ZEB1和上调白细胞介素-4诱导M2极化。因此,M2巨噬细胞中的JAK/STAT信号通路被激活,导致PIM1和VEGFα表达的增加,进而促进了巨噬细胞的增殖和极化,最终导致了HCC的转移[4]。源自M1型巨噬细胞的外泌体将miR-628-5p传递至肝细胞癌(HCC)细胞内,以降低人类甲基转移酶样14 (METTL14)的表达水平,从而抑制circFUT8的m6A修饰,并促进其从核内转移到细胞质。在细胞质中,M1型巨噬细胞通过调节circFUT8/miR-552-3p/CHMP4B通路,抑制了HCC的进展[5]。肝癌中,巨噬细胞通过外泌体递送miR-92a-2-5p靶向抑制雄激素受体(AR),激活PHLPP/p-AKT/β-catenin通路,从而增强癌细胞侵袭性。临床前研究显示,利用miR-92a-2-5p抑制剂针对这一新发现的信号传导途径,能够抑制肝癌的发展[6]。MiR-155通过靶向SHIP1的表达并诱导巨噬细胞向M2型极化,加速了HCC细胞的增殖、迁移和侵袭[7]。miR-21-5p通过靶向抑制巨噬细胞中RhoB,降低IL-1β、升高IL-10,并抑制MAPK通路,从而促进肝细胞癌(HCC)恶性进展。[8]。肝星状细胞通过多种途径影响肝细胞癌,在HCC组织样本中,CXCL1、TGF-β1和MIR4435-2HG水平升高,而miR-506-3p表达降低。肝星状细胞释放的CXCL1通过MIR4435-2HG/miR-506-3p/TGFB1轴加重了HCC细胞的恶性行为[9]。此外,miR-132高表达的Th17细胞的条件培养基可增加肝星状细胞的活化,从而强烈促进HCC细胞的迁移和上皮–间质转化(EMT) [10]。hAMSC的调节可能部分通过细胞内miR17-5P和615-5p表达的失调来实现,当间充质基质细胞(MSC)被募集到肝损伤部位时,它们会获得促癌表型[11]。这些证据揭示了肿瘤微环境中癌细胞与免疫细胞之间存在反馈回路,HCC衍生的外泌体通过多种途径进行细胞间交流,进而发挥免疫抑制和促进肿瘤恶性进展的作用。

3. 低氧诱导的外泌体对肝癌进展的影响及其不同结果

miR-1307-3p,作为一种新兴的缺氧反应因子,是由HIF-1α而非HIF-2α转录产生的。在缺氧条件下,miR-1307-3p的表达被驱动,并通过抑制DAB2IP促进了肝细胞癌(HCC)细胞的增殖与侵袭。针对HIF-1α/miR-1307-3p/DAB2IP轴的靶向策略,也被证明能够调节体内肿瘤的生长和转移[12]。此外,miR-1273f在缺氧环境下以更高水平存在,它不仅激活了Wnt/β-catenin信号通路,还直接参与了HCC细胞内缺氧外泌体的复制。同时,miR-1273f还确定了Wnt/β-catenin通路的已知抑制剂LHX6作为其靶标[13]。源自骨髓间充质干细胞(BMSCs)的外泌体构成了癌症微环境的一部分。在缺氧条件下,由BMSCs衍生的外泌体miR-652-3p通过抑制TNRC6A促进了肝细胞癌(HCC)细胞的增殖,这一发现可能为肝癌患者的治疗策略提供新的方向[14]。miR-223通过抑制HCC中HIF-1α介导的CD39/CD73腺苷通路,调节肿瘤微环境并间接下调PD-1/PD-L1表达。此外,在Fu等人构建的两种HCC模型中,通过腺病毒介导的miR-223基因传递,抑制了血管生成和缺氧–凋亡介导的PD-1/PD-L1激活,有效阻碍了HCC的进展[15]。Yang等人回顾了ncRNA在缺氧微环境中肝癌发生、上皮–间质转化(EMT)和血管生成中的作用,以及ncRNA与肿瘤微环境(TME)关键组分之间的相互作用。特别是miRNA模拟物(agomiR)显示出巨大的潜力,其补充靶向oncomiR依赖性肿瘤位点的肿瘤抑制剂miRNA和/或miRNA抑制剂(agomiR) [16]。这些外泌体存在于局部缺氧的肿瘤微环境中,能够转移microRNA至其他细胞,从而有效地促进细胞间的通信。低氧条件下诱导的肝癌细胞外泌体产生增加,这些外泌体反过来促进或抑制HCC的增殖、迁移和侵袭。

4. 微小RNA在肝癌肿瘤微环境中的作用

肝癌微环境的酸性特征与患者的不良预后紧密相关。这种酸性环境激活了HIF-1α和HIF-2α,并促进了外泌体miR-21和miR-10b的表达。这些分子在体内和体外显著增强了肝细胞癌(HCC)细胞的增殖、迁移和侵袭能力。因此,外泌体miR-21和miR-10b有潜力成为HCC的预后分子标志物和治疗靶点[17]。来自癌症相关成纤维细胞(CAF)的外泌体在外调节肝细胞癌(HCC)的肿瘤微环境中扮演着重要角色。LIMA1是一种抑制Wnt/β-连环蛋白信号通路的肿瘤抑制因子,CAF释放的外泌体miR-20a-5p通过LIMA1介导的β-Catenin通路促进了HCC的进展[18]。hsa_circ_0110102可作为miR-580-5p的分子海绵,通过降低肝癌细胞中PPARα的表达,抑制CCL2分泌进入肿瘤微环境,从而抑制肝细胞癌的进展。这表明hsa_circ_0110102有望成为HCC的潜在预后预测因子或治疗靶点[19]。miR-362-3p/miR-425-5p-ZC3H13通路通过靶向抑制ZC3H13调控肝细胞癌(HCC)免疫微环境,是潜在的诊断标志物及治疗靶点[20]。miR-136-5p的重新表达抑制了HCC细胞的生长和转移,然而KIAA1522的过表达却减弱了这种抑制效果,外泌体circTTLL5通过miR-136-5p/KIAA1522轴促进了HCC的进展[21]。circ_002136通过阻断miR-19a-3p的表达,提升了RAB1A的表达活性,对HCC患者的生存产生了不利影响[22]。源自肝细胞癌(HCC)的外泌体miR-761通过激活SOCS2/JAK2/STAT3信号通路,依赖性地激活癌症相关成纤维细胞(CAFs),从而调节肿瘤微环境[23]。一组被称为抗纤维化microRNAs (AF-miRNAs)的miRNAs,包括let-7、miR-30、miR-29c、miR-335和miR-338,能够下调细胞外基质的关键结构、信号传导和重塑成分,进而促进HCC的发展[24]。SNHG1通过海绵吸附miR-199a上调FANCD2/G6PD表达,其下调可抑制肝癌(HCC)恶性表型,是潜在的预后标志物及治疗靶点[25]。lncRNAH19作为miR-193b的海绵分子,保护MAPK1免受攻击,TAMs(肿瘤相关巨噬细胞)诱导的lncRNAH19通过触发和激活miR-193b/MAPK1轴促进HCC的侵袭性,介导HCC与免疫微环境之间的相互作用,并导致不良的临床预后[26]。miR-130-3p的过表达显著促进了肝细胞癌(HCC)细胞的凋亡,并有效抑制了其迁移和增殖。研究揭示,miR-130-3p通过靶向EPHB4,抑制了HCC细胞的增殖和迁移[27]。肿瘤源性外泌体miR-4669和甘油醛3-磷酸脱氢酶(GAPDH)的主动释放,有助于通过诱导M2巨噬细胞极化,形成免疫抑制性的肿瘤微环境,并增强肿瘤的侵袭性[28]。miR-137能够与AFM的3'-非翻译区结合,促进肝癌细胞株的侵袭和转移。miR-137及其在肝脏微环境中调控的靶基因AFM的表达,与HCC的进展密切相关,这表明miR-137及其靶基因AFM的组合是HCC中总生存期(OS)和无复发生存期(RFS)的独立预后因素[29]。miR-210-3p和miR-106a-5p能显著提高活性氧(ROS)水平,并使HCC细胞周期停滞在G2/M期,这两个miRNA抑制了huh7和smmc7721细胞的增殖、迁移和侵袭,并促进了细胞凋亡[30]。lncMMPA不仅能够抑制M2型巨噬细胞的增殖,还能作为microRNA海绵与miR-548相互作用,提升ALDH1A3的mRNA水平,从而促进肝癌细胞的糖代谢和增殖。lncMMPA通过与miR-548的相互作用,增强了肝细胞癌(HCC)细胞的增殖[31]。这些发现表明,miRNA可以作为一种有潜力的工具,用于开发单独或与其他疗法联合使用的靶向治疗策略。

5. 肝细胞癌中外泌体miRNA与脂质代谢的关联

肝癌细胞代谢需求的增加凸显了代谢途径在癌细胞生存中的关键作用,其中脂质代谢在肝细胞癌的发生和发展中扮演了重要角色。在多种实体人类肿瘤中,可以观察到几种关键酶的异常高表达[32]。这些酶在不同程度上受到miRNA的靶向调控,从而促进或抑制肝细胞癌的发展。肝脏中的胆固醇积累以及高胆固醇血症与肝细胞癌(HCC)密切相关。在c-Myc小鼠模型中,胆固醇合成与磷酸戊糖途径(PPP)之间形成了正反馈,而非与糖酵解。阻断磷酸戊糖途径可以抑制胆固醇合成,进而阻止c-Myc小鼠的HCC发生。miR-206通过靶向胆固醇合成和磷酸戊糖途径(PPP)的限速酶HMGCR/G6PD,破坏c-Myc依赖的正反馈环路,从而抑制肝细胞癌(HCC)发生。研究指出,胆固醇合成过程而非胆固醇本身,是导致HCC的主要原因[33]。酰基-CoA硫代酯酶9 (ACOT9)是细胞利用脂肪酸的关键调节因子。在肝细胞癌(HCC)中,ACOT9的表达显著升高,这在一定程度上归因于miR-449c-3p的下调。研究显示,抑制ACOT9在HCC细胞中的表达能显著降低细胞增殖、集落形成、迁移和侵袭能力,这主要通过抑制G1到S期的细胞周期转换和上皮到间质的转变(EMT)来实现。ACOT9通过促进新脂肪的生成,重塑了HCC细胞的脂质代谢。此外,脂肪生成的增加也参与了ACOT9促进HCC生长和转移的过程。综上所述,ACOT9通过重编程HCC中的脂质代谢,在促进肿瘤生长和转移方面发挥了关键的致癌作用[34]α-Solanine通过诱导氧化应激(脂质过氧化增强及抗氧化能力下降)抑制肝细胞癌(HCC),其机制涉及线粒体损伤(ΔΨm↓)、NF-κB通路激活及促氧化/抑癌miRNA的调控失衡,三者协同驱动抗肿瘤效应[35]。通过CRISPR/Cas9筛选,发现miR-4310能够通过靶向脂肪酸合成酶(FASN)和硬脂酰-CoA去饱和酶-1 (SCD1)来抑制脂质合成。在肝细胞癌(HCC)患者中,miR-4310的表达显著降低,且其表达水平与脂肪酸合成酶(FASN)和硬脂酰辅酶A脱氢酶(SCD1)的表达呈负相关。miR-4310的低表达与不良预后相关。通过抑制SCD1和FASN介导的脂质合成,miR-4310在体外抑制了HCC细胞的增殖、迁移和侵袭,在体内抑制了HCC肿瘤的生长和转移。因此,靶向miR-4310-FASN/SCD通路为HCC治疗提供了一种新的策略[36]。脂肪生成一直被认为是导致HCC发生和发展的关键因素。锌指和同源染色体2 (ZHX2)是一种与HCC相关的肿瘤抑制因子,是新生脂肪生成的重要抑制因子。ZHX2作为肝癌(HCC)抑癌因子,通过激活miR-24-3p靶向降解脂肪生成主调控因子SREBP1c,抑制FASN/ACL等脂肪生成酶表达,从而阻断HCC进展[37]。尽管脂质代谢是治疗HCC的一个有前景的靶点,但其调控机制尚未得到充分阐明。

6. 讨论

微小RNA (microRNAs, miRNAs)是外泌体中含量最丰富的分子,它们被选择性地包装进外泌体以发挥其生物学功能。Wang等人综述了不同细胞来源的外泌体miRNAs在肝细胞癌(HCC)中的组成和功能[38]。miRNA表达失调与肿瘤的发生和发展密切相关,并影响HCC的耐药性。关于miRNA作为生物标记物和治疗靶点的潜力,研究将特别关注miRNA在代谢途径中的参与以及在调节肿瘤微环境中的作用,以支持在特定情况下利用它们[39]。Han等人综述了非编码RNA (包括microRNA等)在肝癌中的潜在调控机制,总结了来自体液(血浆/血清/尿液)的新型生物标志物,进而发现多种miRNA或miRNA与已经广泛使用的甲胎蛋白(AFP)的组合可能是更理想的诊断模式,血清/血浆中差异表达的miRNAs也有助于HCC的预后[40]。Pascut等人总结了外泌体衍生的miRNAs在肿瘤细胞和不同肝脏常驻细胞之间的交叉交流中的作用的最新研究结果[41]。针对缺氧条件下衍生的外泌体进行剖析有助于研发HCC新的治疗策略。此外,外泌体miRNA通过靶向作用于脂质代谢途径的各种酶来影响肝癌进展的机制仍需进一步探讨。因此,深入研究HCC中的外泌体miRNA将为未来肝癌的诊断、治疗和预后带来更多潜在的价值,并在延长患者中位生存期过程中发挥巨大的作用。未来可以着眼于探索特异性递送抑癌miRNA或促癌miRNA,逆转肿瘤微环境免疫抑制,并进一步整合外泌体microRNA组、肿瘤微环境单细胞转录组及代谢组数据,构建调控网络图谱,识别潜在治疗靶点,推动外泌体microRNA针对HCC精准诊疗的突破。

基金项目

济宁市科技计划项目(2024YXNS039, 2024YXNS108),济宁医学院附属医院英才培养计划(2022-yxyc-003, 2022-yxyc-013),济宁医学院附属医院博士后基金(JYFY364860)。

利益冲突声明

本文不存在任何利益冲突。

NOTES

*通讯作者。

参考文献

[1] Donne, R. and Lujambio, A. (2023) The Liver Cancer Immune Microenvironment: Therapeutic Implications for Hepatocellular Carcinoma. Hepatology, 77, 1773-1796.
https://doi.org/10.1002/hep.32740
[2] Shi, T., Morishita, A., Kobara, H. and Masaki, T. (2021) The Role of Long Non-Coding RNA and Microrna Networks in Hepatocellular Carcinoma and Its Tumor Microenvironment. International Journal of Molecular Sciences, 22, Article 10630.
https://doi.org/10.3390/ijms221910630
[3] Zhou, S., Yin, D., Hu, Z., Luo, C., Zhou, Z., Xin, H., et al. (2019) A Positive Feedback Loop between Cancer Stem‐Like Cells and Tumor‐Associated Neutrophils Controls Hepatocellular Carcinoma Progression. Hepatology, 70, 1214-1230.
https://doi.org/10.1002/hep.30630
[4] Xu, Y., Luan, G., Liu, F., Zhang, Y., Li, Z., Liu, Z., et al. (2023) Exosomal miR-200b-3p Induce Macrophage Polarization by Regulating Transcriptional Repressor ZEB1 in Hepatocellular Carcinoma. Hepatology International, 17, 889-903.
https://doi.org/10.1007/s12072-023-10507-y
[5] Wang, L., Yi, X., Xiao, X., Zheng, Q., Ma, L. and Li, B. (2022) Exosomal miR-628-5p from M1 Polarized Macrophages Hinders M6a Modification of circFUT8 to Suppress Hepatocellular Carcinoma Progression. Cellular & Molecular Biology Letters, 27, Article No. 106.
https://doi.org/10.1186/s11658-022-00406-9
[6] Liu, G., Ouyang, X., Sun, Y., Xiao, Y., You, B., Gao, Y., et al. (2020) The miR-92a-2-5p in Exosomes from Macrophages Increases Liver Cancer Cells Invasion via Altering the AR/PHLPP/p-AKT/β-Catenin Signaling. Cell Death & Differentiation, 27, 3258-3272.
https://doi.org/10.1038/s41418-020-0575-3
[7] Fei, Y., Wang, Z., Huang, M., Wu, X., Hu, F., Zhu, J., et al. (2023) miR‐155 Regulates m2 Polarization of Hepatitis B Virus‐Infected Tumour‐Associated Macrophages Which in Turn Regulates the Malignant Progression of Hepatocellular Carcinoma. Journal of Viral Hepatitis, 30, 417-426.
https://doi.org/10.1111/jvh.13809
[8] Yu, H., Pan, J., Zheng, S., Cai, D., Luo, A., Xia, Z., et al. (2023) Hepatocellular Carcinoma Cell-Derived Exosomal Mir-21-5p Induces Macrophage M2 Polarization by Targeting RhoB. International Journal of Molecular Sciences, 24, Article 4593.
https://doi.org/10.3390/ijms24054593
[9] Li, S., Hu, X., Yu, S., Yi, P., Chen, R., Huang, Z., et al. (2022) Hepatic Stellate Cell‐Released CXCL1 Aggravates HCC Malignant Behaviors through the MIR4435‐2HG/miR‐506‐3p/TGFB1 Axis. Cancer Science, 114, 504-520.
https://doi.org/10.1111/cas.15605
[10] Feng, R., Cui, Z., Liu, Z. and Zhang, Y. (2020) Upregulated MicroRNA‐132 in T Helper 17 Cells Activates Hepatic Stellate Cells to Promote Hepatocellular Carcinoma Cell Migration in vitro. Scandinavian Journal of Immunology, 93, e13007.
https://doi.org/10.1111/sji.13007
[11] Salah, R.A., Nasr, M.A., El-Derby, A.M., Abd Elkodous, M., Mohamed, R.H., El-Ekiaby, N., et al. (2022) Hepatocellular Carcinoma Cell Line-Microenvironment Induced Cancer-Associated Phenotype, Genotype and Functionality in Mesenchymal Stem Cells. Life Sciences, 288, Article 120168.
https://doi.org/10.1016/j.lfs.2021.120168
[12] Chen, S., Liu, R., Wang, H. and Liu, Q. (2022) Hypoxia-Driven miR-1307-3p Promotes Hepatocellular Carcinoma Cell Proliferation and Invasion by Modulating DAB2 Interacting Protein. Pathology-Research and Practice, 237, Article 154066.
https://doi.org/10.1016/j.prp.2022.154066
[13] You, Y., Zou, M., Zhou, Z., Mao, L., Ran, T., Liu, Y., et al. (2019) Hypoxia-Induced Exosomes Promote Hepatocellular Carcinoma Proliferation and Metastasis via miR-1273f Transfer. Experimental Cell Research, 385, Article 111649.
https://doi.org/10.1016/j.yexcr.2019.111649
[14] Li, M., Zhai, P., Mu, X., Song, J., Zhang, H. and Su, J. (2023) Hypoxic BMSC-Derived Exosomal miR-652-3p Promotes Proliferation and Metastasis of Hepatocarcinoma Cancer Cells via Targeting TNRC6A. Aging, 15, 12780-12793.
https://doi.org/10.18632/aging.205025
[15] Fu, Y., Mackowiak, B., Feng, D., Lu, H., Guan, Y., Lehner, T., et al. (2023) MicroRNA-223 Attenuates Hepatocarcinogenesis by Blocking Hypoxia-Driven Angiogenesis and Immunosuppression. Gut, 72, 1942-1958.
https://doi.org/10.1136/gutjnl-2022-327924
[16] Yang, Q., Tian, H., Guo, Z., Ma, Z. and Wang, G. (2023) The Role of Noncoding RNAs in the Tumor Microenvironment of Hepatocellular Carcinoma. Acta Biochimica et Biophysica Sinica, 55, 1697-1706.
https://doi.org/10.3724/abbs.2023231
[17] Tian, X., Wang, C., Jin, X., Li, M., Wang, F., Huang, W., et al. (2019) Acidic Microenvironment Up-Regulates Exosomal miR-21 and miR-10b in Early-Stage Hepatocellular Carcinoma to Promote Cancer Cell Proliferation and Metastasis. Theranostics, 9, 1965-1979.
https://doi.org/10.7150/thno.30958
[18] Qi, Y., Wang, H., Zhang, Q., Liu, Z., Wang, T., Wu, Z., et al. (2022) CAF-Released Exosomal miR-20a-5p Facilitates HCC Progression via the LIMA1-Mediated β-Catenin Pathway. Cells, 11, Article 3857.
https://doi.org/10.3390/cells11233857
[19] Wang, X., Sheng, W., Xu, T., Xu, J., Gao, R. and Zhang, Z. (2021) CircRNA Hsa_Circ_0110102 Inhibited Macrophage Activation and Hepatocellular Carcinoma Progression via miR-580-5p/PPARα/CCL2 Pathway. Aging, 13, 11969-11987.
https://doi.org/10.18632/aging.202900
[20] Wu, S., Liu, S., Cao, Y., Chao, G., Wang, P. and Pan, H. (2022) Downregulation of ZC3H13 by miR-362-3p/miR-425-5p Is Associated with a Poor Prognosis and Adverse Outcomes in Hepatocellular Carcinoma. Aging, 14, 2304-2319.
https://doi.org/10.18632/aging.203939
[21] Liu, C., Ren, C., Guo, L., Yang, C. and Yu, Q. (2023) Exosome-Mediated Circttll5 Transfer Promotes Hepatocellular Carcinoma Malignant Progression through miR-136-5p/KIAA1522 Axis. Pathology-Research and Practice, 241, Article 154276.
https://doi.org/10.1016/j.prp.2022.154276
[22] Yuan, P., Song, J., Wang, F. and Chen, B. (2022) Exosome-Transmitted Circ_002136 Promotes Hepatocellular Carcinoma Progression by miR-19a-3p/RAB1A Pathway. BMC Cancer, 22, Article No. 1284.
https://doi.org/10.1186/s12885-022-10367-z
[23] Zhou, X., Xu, H., Xu, C., Yan, Y., Zhang, L., Sun, Q., et al. (2022) Hepatocellular Carcinoma-Derived Exosomal miRNA-761 Regulates the Tumor Microenvironment by Targeting the SOCS2/JAK2/STAT3 Pathway. World Journal of Emergency Medicine, 13, 379-385.
https://doi.org/10.5847/wjem.j.1920-8642.2022.089
[24] Winkler, I., Bitter, C., Winkler, S., Weichenhan, D., Thavamani, A., Hengstler, J.G., et al. (2019) Identification of PPAR γ-Modulated Mirna Hubs That Target the Fibrotic Tumor Microenvironment. Proceedings of the National Academy of Sciences, 117, 454-463.
https://doi.org/10.1073/pnas.1909145117
[25] Zhou, L., Zhang, Q., Cheng, J., Shen, X., Li, J., Chen, M., et al. (2023) LncRNA SNHG1 Upregulates FANCD2 and G6PD to Suppress Ferroptosis by Sponging miR-199a-5p/3p in Hepatocellular Carcinoma. Drug Discoveries & Therapeutics, 17, 248-256.
https://doi.org/10.5582/ddt.2023.01035
[26] Ye, Y., Guo, J., Xiao, P., Ning, J., Zhang, R., Liu, P., et al. (2020) Macrophages-Induced Long Noncoding RNA H19 Up-Regulation Triggers and Activates the miR-193b/MAPK1 Axis and Promotes Cell Aggressiveness in Hepatocellular Carcinoma. Cancer Letters, 469, 310-322.
https://doi.org/10.1016/j.canlet.2019.11.001
[27] Shao, L., Ye, Q. and Jia, M. (2021) miR-130-3p Promotes MTX-Induced Immune Killing of Hepatocellular Carcinoma Cells by Targeting EPHB4. Journal of Healthcare Engineering, 2021, Article ID: 4650794.
https://doi.org/10.1155/2021/4650794
[28] Nakano, T., Chen, C., Chen, I., Tseng, H., Chiang, K., Lai, C., et al. (2023) Overexpression of miR-4669 Enhances Tumor Aggressiveness and Generates an Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma: Its Clinical Value as a Predictive Biomarker. International Journal of Molecular Sciences, 24, Article 7908.
https://doi.org/10.3390/ijms24097908
[29] Wei, Q., Zhao, L., Jiang, L., Bi, J., Yu, Z., Zhao, L., et al. (2018) Prognostic Relevance of miR‐137 and Its Liver Microenvironment Regulatory Target Gene AFM in Hepatocellular Carcinoma. Journal of Cellular Physiology, 234, 11888-11899.
https://doi.org/10.1002/jcp.27855
[30] Xu, Y., He, X., Deng, J., Xiong, L., Chen, B., Chen, J., et al. (2022) Ros-Related miRNAs Regulate Immune Response and Chemoradiotherapy Sensitivity in Hepatocellular Carcinoma by Comprehensive Analysis and Experiment. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 4713518.
https://doi.org/10.1155/2022/4713518
[31] Xu, M., Zhou, C., Weng, J., Chen, Z., Zhou, Q., Gao, J., et al. (2022) Tumor Associated Macrophages-Derived Exosomes Facilitate Hepatocellular Carcinoma Malignance by Transferring LncMMPA to Tumor Cells and Activating Glycolysis Pathway. Journal of Experimental & Clinical Cancer Research, 41, Article No. 253.
https://doi.org/10.1186/s13046-022-02458-3
[32] Pope, E.D., Kimbrough, E.O., Vemireddy, L.P., Surapaneni, P.K., Copland, J.A. and Mody, K. (2019) Aberrant Lipid Metabolism as a Therapeutic Target in Liver Cancer. Expert Opinion on Therapeutic Targets, 23, 473-483.
https://doi.org/10.1080/14728222.2019.1615883
[33] Hu, J.J., Liu, N.N., Song, D., et al. (2023) A Positive Feedback between Cholesterol Synthesis and the Pentose Phosphate Pathway Rather than Glycolysis Promotes Hepatocellular Carcinoma. Oncogene, 42, 2892-2904.
https://doi.org/10.1038/s41388-023-02757-9
[34] Wang, B., Zhang, H., Chen, Y.F., Hu, L.Q., Tian, Y.Y., Tong, H.W., et al. (2022) Acyl‐CoA Thioesterase 9 Promotes Tumour Growth and Metastasis through Reprogramming of Fatty Acid Metabolism in Hepatocellular Carcinoma. Liver International, 42, 2548-2561.
https://doi.org/10.1111/liv.15409
[35] Gouhar, S.A., Abo‐elfadl, M.T., Gamal‐Eldeen, A.M. and El‐Daly, S.M. (2021) Involvement of miRNAs in Response to Oxidative Stress Induced by the Steroidal Glycoalkaloid α‐Solanine in Hepatocellular Carcinoma Cells. Environmental Toxicology, 37, 212-223.
https://doi.org/10.1002/tox.23390
[36] Li, H., Chen, Z., Zhang, Y., Yuan, P., Liu, J., Ding, L., et al. (2021) miR-4310 Regulates Hepatocellular Carcinoma Growth and Metastasis through Lipid Synthesis. Cancer Letters, 519, 161-171.
https://doi.org/10.1016/j.canlet.2021.07.029
[37] Yu, X., Lin, Q., Wu, Z., Zhang, Y., Wang, T., Zhao, S., et al. (2020) ZHX2 Inhibits SREBP1c‐Mediated de novo Lipogenesis in Hepatocellular Carcinoma via miR‐24‐3p. The Journal of Pathology, 252, 358-370.
https://doi.org/10.1002/path.5530
[38] Wang, H., Yin, W., Jiang, M., Han, J., Kuai, X., Sun, R., et al. (2023) Function and Biomedical Implications of Exosomal MicroRNAs Delivered by Parenchymal and Nonparenchymal Cells in Hepatocellular Carcinoma. World Journal of Gastroenterology, 29, 5435-5451.
https://doi.org/10.3748/wjg.v29.i39.5435
[39] Gramantieri, L., Giovannini, C., Piscaglia, F. and Fornari, F. (2021) MicroRNAs as Modulators of Tumor Metabolism, Microenvironment, and Immune Response in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 8, 369-385.
https://doi.org/10.2147/jhc.s268292
[40] Han, Q., Wang, M., Dong, X., Wei, F., Luo, Y. and Sun, X. (2022) Non-Coding RNAs in Hepatocellular Carcinoma: Insights into Regulatory Mechanisms, Clinical Significance, and Therapeutic Potential. Frontiers in Immunology, 13, Article 985815.
https://doi.org/10.3389/fimmu.2022.985815
[41] Pascut, D., Pratama, M.Y., Vo, N.V.T., Masadah, R. and Tiribelli, C. (2020) The Crosstalk between Tumor Cells and the Microenvironment in Hepatocellular Carcinoma: The Role of Exosomal MicroRNAs and Their Clinical Implications. Cancers, 12, Article 823.
https://doi.org/10.3390/cancers12040823