[1]
|
Donne, R. and Lujambio, A. (2023) The Liver Cancer Immune Microenvironment: Therapeutic Implications for Hepatocellular Carcinoma. Hepatology, 77, 1773-1796. https://doi.org/10.1002/hep.32740
|
[2]
|
Shi, T., Morishita, A., Kobara, H. and Masaki, T. (2021) The Role of Long Non-Coding RNA and Microrna Networks in Hepatocellular Carcinoma and Its Tumor Microenvironment. International Journal of Molecular Sciences, 22, Article 10630. https://doi.org/10.3390/ijms221910630
|
[3]
|
Zhou, S., Yin, D., Hu, Z., Luo, C., Zhou, Z., Xin, H., et al. (2019) A Positive Feedback Loop between Cancer Stem‐Like Cells and Tumor‐Associated Neutrophils Controls Hepatocellular Carcinoma Progression. Hepatology, 70, 1214-1230. https://doi.org/10.1002/hep.30630
|
[4]
|
Xu, Y., Luan, G., Liu, F., Zhang, Y., Li, Z., Liu, Z., et al. (2023) Exosomal miR-200b-3p Induce Macrophage Polarization by Regulating Transcriptional Repressor ZEB1 in Hepatocellular Carcinoma. Hepatology International, 17, 889-903. https://doi.org/10.1007/s12072-023-10507-y
|
[5]
|
Wang, L., Yi, X., Xiao, X., Zheng, Q., Ma, L. and Li, B. (2022) Exosomal miR-628-5p from M1 Polarized Macrophages Hinders M6a Modification of circFUT8 to Suppress Hepatocellular Carcinoma Progression. Cellular & Molecular Biology Letters, 27, Article No. 106. https://doi.org/10.1186/s11658-022-00406-9
|
[6]
|
Liu, G., Ouyang, X., Sun, Y., Xiao, Y., You, B., Gao, Y., et al. (2020) The miR-92a-2-5p in Exosomes from Macrophages Increases Liver Cancer Cells Invasion via Altering the AR/PHLPP/p-AKT/β-Catenin Signaling. Cell Death & Differentiation, 27, 3258-3272. https://doi.org/10.1038/s41418-020-0575-3
|
[7]
|
Fei, Y., Wang, Z., Huang, M., Wu, X., Hu, F., Zhu, J., et al. (2023) miR‐155 Regulates m2 Polarization of Hepatitis B Virus‐Infected Tumour‐Associated Macrophages Which in Turn Regulates the Malignant Progression of Hepatocellular Carcinoma. Journal of Viral Hepatitis, 30, 417-426. https://doi.org/10.1111/jvh.13809
|
[8]
|
Yu, H., Pan, J., Zheng, S., Cai, D., Luo, A., Xia, Z., et al. (2023) Hepatocellular Carcinoma Cell-Derived Exosomal Mir-21-5p Induces Macrophage M2 Polarization by Targeting RhoB. International Journal of Molecular Sciences, 24, Article 4593. https://doi.org/10.3390/ijms24054593
|
[9]
|
Li, S., Hu, X., Yu, S., Yi, P., Chen, R., Huang, Z., et al. (2022) Hepatic Stellate Cell‐Released CXCL1 Aggravates HCC Malignant Behaviors through the MIR4435‐2HG/miR‐506‐3p/TGFB1 Axis. Cancer Science, 114, 504-520. https://doi.org/10.1111/cas.15605
|
[10]
|
Feng, R., Cui, Z., Liu, Z. and Zhang, Y. (2020) Upregulated MicroRNA‐132 in T Helper 17 Cells Activates Hepatic Stellate Cells to Promote Hepatocellular Carcinoma Cell Migration in vitro. Scandinavian Journal of Immunology, 93, e13007. https://doi.org/10.1111/sji.13007
|
[11]
|
Salah, R.A., Nasr, M.A., El-Derby, A.M., Abd Elkodous, M., Mohamed, R.H., El-Ekiaby, N., et al. (2022) Hepatocellular Carcinoma Cell Line-Microenvironment Induced Cancer-Associated Phenotype, Genotype and Functionality in Mesenchymal Stem Cells. Life Sciences, 288, Article 120168. https://doi.org/10.1016/j.lfs.2021.120168
|
[12]
|
Chen, S., Liu, R., Wang, H. and Liu, Q. (2022) Hypoxia-Driven miR-1307-3p Promotes Hepatocellular Carcinoma Cell Proliferation and Invasion by Modulating DAB2 Interacting Protein. Pathology-Research and Practice, 237, Article 154066. https://doi.org/10.1016/j.prp.2022.154066
|
[13]
|
You, Y., Zou, M., Zhou, Z., Mao, L., Ran, T., Liu, Y., et al. (2019) Hypoxia-Induced Exosomes Promote Hepatocellular Carcinoma Proliferation and Metastasis via miR-1273f Transfer. Experimental Cell Research, 385, Article 111649. https://doi.org/10.1016/j.yexcr.2019.111649
|
[14]
|
Li, M., Zhai, P., Mu, X., Song, J., Zhang, H. and Su, J. (2023) Hypoxic BMSC-Derived Exosomal miR-652-3p Promotes Proliferation and Metastasis of Hepatocarcinoma Cancer Cells via Targeting TNRC6A. Aging, 15, 12780-12793. https://doi.org/10.18632/aging.205025
|
[15]
|
Fu, Y., Mackowiak, B., Feng, D., Lu, H., Guan, Y., Lehner, T., et al. (2023) MicroRNA-223 Attenuates Hepatocarcinogenesis by Blocking Hypoxia-Driven Angiogenesis and Immunosuppression. Gut, 72, 1942-1958. https://doi.org/10.1136/gutjnl-2022-327924
|
[16]
|
Yang, Q., Tian, H., Guo, Z., Ma, Z. and Wang, G. (2023) The Role of Noncoding RNAs in the Tumor Microenvironment of Hepatocellular Carcinoma. Acta Biochimica et Biophysica Sinica, 55, 1697-1706. https://doi.org/10.3724/abbs.2023231
|
[17]
|
Tian, X., Wang, C., Jin, X., Li, M., Wang, F., Huang, W., et al. (2019) Acidic Microenvironment Up-Regulates Exosomal miR-21 and miR-10b in Early-Stage Hepatocellular Carcinoma to Promote Cancer Cell Proliferation and Metastasis. Theranostics, 9, 1965-1979. https://doi.org/10.7150/thno.30958
|
[18]
|
Qi, Y., Wang, H., Zhang, Q., Liu, Z., Wang, T., Wu, Z., et al. (2022) CAF-Released Exosomal miR-20a-5p Facilitates HCC Progression via the LIMA1-Mediated β-Catenin Pathway. Cells, 11, Article 3857. https://doi.org/10.3390/cells11233857
|
[19]
|
Wang, X., Sheng, W., Xu, T., Xu, J., Gao, R. and Zhang, Z. (2021) CircRNA Hsa_Circ_0110102 Inhibited Macrophage Activation and Hepatocellular Carcinoma Progression via miR-580-5p/PPARα/CCL2 Pathway. Aging, 13, 11969-11987. https://doi.org/10.18632/aging.202900
|
[20]
|
Wu, S., Liu, S., Cao, Y., Chao, G., Wang, P. and Pan, H. (2022) Downregulation of ZC3H13 by miR-362-3p/miR-425-5p Is Associated with a Poor Prognosis and Adverse Outcomes in Hepatocellular Carcinoma. Aging, 14, 2304-2319. https://doi.org/10.18632/aging.203939
|
[21]
|
Liu, C., Ren, C., Guo, L., Yang, C. and Yu, Q. (2023) Exosome-Mediated Circttll5 Transfer Promotes Hepatocellular Carcinoma Malignant Progression through miR-136-5p/KIAA1522 Axis. Pathology-Research and Practice, 241, Article 154276. https://doi.org/10.1016/j.prp.2022.154276
|
[22]
|
Yuan, P., Song, J., Wang, F. and Chen, B. (2022) Exosome-Transmitted Circ_002136 Promotes Hepatocellular Carcinoma Progression by miR-19a-3p/RAB1A Pathway. BMC Cancer, 22, Article No. 1284. https://doi.org/10.1186/s12885-022-10367-z
|
[23]
|
Zhou, X., Xu, H., Xu, C., Yan, Y., Zhang, L., Sun, Q., et al. (2022) Hepatocellular Carcinoma-Derived Exosomal miRNA-761 Regulates the Tumor Microenvironment by Targeting the SOCS2/JAK2/STAT3 Pathway. World Journal of Emergency Medicine, 13, 379-385. https://doi.org/10.5847/wjem.j.1920-8642.2022.089
|
[24]
|
Winkler, I., Bitter, C., Winkler, S., Weichenhan, D., Thavamani, A., Hengstler, J.G., et al. (2019) Identification of PPAR γ-Modulated Mirna Hubs That Target the Fibrotic Tumor Microenvironment. Proceedings of the National Academy of Sciences, 117, 454-463. https://doi.org/10.1073/pnas.1909145117
|
[25]
|
Zhou, L., Zhang, Q., Cheng, J., Shen, X., Li, J., Chen, M., et al. (2023) LncRNA SNHG1 Upregulates FANCD2 and G6PD to Suppress Ferroptosis by Sponging miR-199a-5p/3p in Hepatocellular Carcinoma. Drug Discoveries & Therapeutics, 17, 248-256. https://doi.org/10.5582/ddt.2023.01035
|
[26]
|
Ye, Y., Guo, J., Xiao, P., Ning, J., Zhang, R., Liu, P., et al. (2020) Macrophages-Induced Long Noncoding RNA H19 Up-Regulation Triggers and Activates the miR-193b/MAPK1 Axis and Promotes Cell Aggressiveness in Hepatocellular Carcinoma. Cancer Letters, 469, 310-322. https://doi.org/10.1016/j.canlet.2019.11.001
|
[27]
|
Shao, L., Ye, Q. and Jia, M. (2021) miR-130-3p Promotes MTX-Induced Immune Killing of Hepatocellular Carcinoma Cells by Targeting EPHB4. Journal of Healthcare Engineering, 2021, Article ID: 4650794. https://doi.org/10.1155/2021/4650794
|
[28]
|
Nakano, T., Chen, C., Chen, I., Tseng, H., Chiang, K., Lai, C., et al. (2023) Overexpression of miR-4669 Enhances Tumor Aggressiveness and Generates an Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma: Its Clinical Value as a Predictive Biomarker. International Journal of Molecular Sciences, 24, Article 7908. https://doi.org/10.3390/ijms24097908
|
[29]
|
Wei, Q., Zhao, L., Jiang, L., Bi, J., Yu, Z., Zhao, L., et al. (2018) Prognostic Relevance of miR‐137 and Its Liver Microenvironment Regulatory Target Gene AFM in Hepatocellular Carcinoma. Journal of Cellular Physiology, 234, 11888-11899. https://doi.org/10.1002/jcp.27855
|
[30]
|
Xu, Y., He, X., Deng, J., Xiong, L., Chen, B., Chen, J., et al. (2022) Ros-Related miRNAs Regulate Immune Response and Chemoradiotherapy Sensitivity in Hepatocellular Carcinoma by Comprehensive Analysis and Experiment. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 4713518. https://doi.org/10.1155/2022/4713518
|
[31]
|
Xu, M., Zhou, C., Weng, J., Chen, Z., Zhou, Q., Gao, J., et al. (2022) Tumor Associated Macrophages-Derived Exosomes Facilitate Hepatocellular Carcinoma Malignance by Transferring LncMMPA to Tumor Cells and Activating Glycolysis Pathway. Journal of Experimental & Clinical Cancer Research, 41, Article No. 253. https://doi.org/10.1186/s13046-022-02458-3
|
[32]
|
Pope, E.D., Kimbrough, E.O., Vemireddy, L.P., Surapaneni, P.K., Copland, J.A. and Mody, K. (2019) Aberrant Lipid Metabolism as a Therapeutic Target in Liver Cancer. Expert Opinion on Therapeutic Targets, 23, 473-483. https://doi.org/10.1080/14728222.2019.1615883
|
[33]
|
Hu, J.J., Liu, N.N., Song, D., et al. (2023) A Positive Feedback between Cholesterol Synthesis and the Pentose Phosphate Pathway Rather than Glycolysis Promotes Hepatocellular Carcinoma. Oncogene, 42, 2892-2904. https://doi.org/10.1038/s41388-023-02757-9
|
[34]
|
Wang, B., Zhang, H., Chen, Y.F., Hu, L.Q., Tian, Y.Y., Tong, H.W., et al. (2022) Acyl‐CoA Thioesterase 9 Promotes Tumour Growth and Metastasis through Reprogramming of Fatty Acid Metabolism in Hepatocellular Carcinoma. Liver International, 42, 2548-2561. https://doi.org/10.1111/liv.15409
|
[35]
|
Gouhar, S.A., Abo‐elfadl, M.T., Gamal‐Eldeen, A.M. and El‐Daly, S.M. (2021) Involvement of miRNAs in Response to Oxidative Stress Induced by the Steroidal Glycoalkaloid α‐Solanine in Hepatocellular Carcinoma Cells. Environmental Toxicology, 37, 212-223. https://doi.org/10.1002/tox.23390
|
[36]
|
Li, H., Chen, Z., Zhang, Y., Yuan, P., Liu, J., Ding, L., et al. (2021) miR-4310 Regulates Hepatocellular Carcinoma Growth and Metastasis through Lipid Synthesis. Cancer Letters, 519, 161-171. https://doi.org/10.1016/j.canlet.2021.07.029
|
[37]
|
Yu, X., Lin, Q., Wu, Z., Zhang, Y., Wang, T., Zhao, S., et al. (2020) ZHX2 Inhibits SREBP1c‐Mediated de novo Lipogenesis in Hepatocellular Carcinoma via miR‐24‐3p. The Journal of Pathology, 252, 358-370. https://doi.org/10.1002/path.5530
|
[38]
|
Wang, H., Yin, W., Jiang, M., Han, J., Kuai, X., Sun, R., et al. (2023) Function and Biomedical Implications of Exosomal MicroRNAs Delivered by Parenchymal and Nonparenchymal Cells in Hepatocellular Carcinoma. World Journal of Gastroenterology, 29, 5435-5451. https://doi.org/10.3748/wjg.v29.i39.5435
|
[39]
|
Gramantieri, L., Giovannini, C., Piscaglia, F. and Fornari, F. (2021) MicroRNAs as Modulators of Tumor Metabolism, Microenvironment, and Immune Response in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 8, 369-385. https://doi.org/10.2147/jhc.s268292
|
[40]
|
Han, Q., Wang, M., Dong, X., Wei, F., Luo, Y. and Sun, X. (2022) Non-Coding RNAs in Hepatocellular Carcinoma: Insights into Regulatory Mechanisms, Clinical Significance, and Therapeutic Potential. Frontiers in Immunology, 13, Article 985815. https://doi.org/10.3389/fimmu.2022.985815
|
[41]
|
Pascut, D., Pratama, M.Y., Vo, N.V.T., Masadah, R. and Tiribelli, C. (2020) The Crosstalk between Tumor Cells and the Microenvironment in Hepatocellular Carcinoma: The Role of Exosomal MicroRNAs and Their Clinical Implications. Cancers, 12, Article 823. https://doi.org/10.3390/cancers12040823
|