[1]
|
吕国俭. 抗高温无固相甲酸盐钻井液研究与应用[J]. 中国石油和化工标准与质量, 2014, 34(1): 71.
|
[2]
|
吴飞, 陈礼仪, 周应华, 等. 甲酸盐无固相钻井液研究[J]. 成都理工大学学报(自然科学版), 2003, 30(3): 322-326.
|
[3]
|
李瑞丰, 李东进. 吉林油田甲酸盐无固相欠平衡钻井液技术[J]. 钻井液与完井液, 2012, 29(6): 24-27, 87.
|
[4]
|
唐文明. 甲酸盐钻井液在SH9-X13井的现场应用[J]. 中国石油和化工标准与质量, 2012, 32(7): 177-178.
|
[5]
|
赵向阳, 张小平, 陈磊, 等. 甲酸盐钻井液在长北区块的应用[J]. 石油钻探技术, 2013, 41(1): 40-44.
|
[6]
|
孙睿. 新型甲酸盐钻井液体系配方的研究[J]. 硅谷, 2013, 3(9): 127.
|
[7]
|
齐海鹰, 宋博宇. 一种可替代甲酸盐钻井液的改型甲酸盐钻井液的应用研究[J]. 中外能源, 2014, 19(3): 60-64.
|
[8]
|
张举政, 杨远光, 孙勤亮, 等. pH值和稀释剂对固井前甲酸盐钻井液性能的影响[J]. 油田化学, 2019, 36(1): 7-11.
|
[9]
|
Carnegie, A.W., Omar, M., Colman, G. and Supriyono, H. (2013) Experience with Formate Fluids for Managed Pressure Drilling and Completion of Subsea Carbonate Gas Development Wells. SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, 22-24 October 2013, SPE-165761-MS. https://doi.org/10.2118/165761-ms
|
[10]
|
Ryabtsev, P.L., Khomutov, A.Y., et al. (2018) The First Experience of Formate Based Drilling Fluids Application in Russia. SPE Russian Petroleum Technology Conference, Moscow, 15-17 October 2018, SPE-191503-18RPTC-MS.
|
[11]
|
Downs, J. and Fleming, N. (2018) Evaluating Formation Damage Predictions Drawn from HPHT Core Flooding Tests on Brent Group Sandstone Reservoir Cores with Heavy Formate Drill-In Fluids: A Case Study from the Huldra Field. SPE International Conference and Exhibition on Formation Damage Control, Lafayette, 7-9 February 2018, SPE-189530-MS. https://doi.org/10.2118/189530-ms
|
[12]
|
Arpini, F., Bussaglia, L., Cascone, A., et al. (2019) Viscoelastic Water-Based Drilling Fluid Minimizes Formation Losses While Drilling of Shallow Carbonate Sections in Southern Europe. Offshore Mediterranean Conference and Exhibition, Ravenna, 27-29 March 2019, OMC-2019-0995.
|
[13]
|
Jøntvedt, E., Fjeldheim, M., Løchen, J., Howard, S., Leon, S., Busengdal, C., et al. (2018) Deployment of Cesium Formate Drill-In and Openhole Completion Fluid in the Martin Linge High Pressure, High Permeability Gas Reservoir Enhances Total's Operational Efficiency and Radically Improves Well Performance. SPE International Conference and Exhibition on Formation Damage Control, Lafayette,7-9 February 2018, SPE-189550-MS. https://doi.org/10.2118/189550-ms
|
[14]
|
Downs, J.D. and Fleming, N. (2020) Profiling the Production Performance of Five HPHT Gas Condensate Wells Drilled and Completed with High-Density Cesium Formate Fluids in the Brent Group Formations of the Kvitebjørn Field. SPE International Conference and Exhibition on Formation Damage Control, 19-21 February 2020, SPE-199286-MS. https://doi.org/10.2118/199286-MS
|
[15]
|
许杰, 何瑞兵, 谢涛, 等. 抗高温无固相甲酸盐钻井液体系研究[J]. 石油化工应用, 2019, 38(6): 36-40.
|
[16]
|
Zheng, W., Wu, X. and Huang, Y. (2019) Thermal Stability of Sodium Formate in Polymer Drilling Fluids. Chemistry and Technology of Fuels and Oils, 55, 174-182. https://doi.org/10.1007/s10553-019-01018-4
|
[17]
|
Morenov, V., Leusheva, E. and Liu, T. (2021) Development of a Weighted Barite-Free Formate Drilling Mud for Well Construction under Complicated Conditions. Polymers, 13, Article 4457. https://doi.org/10.3390/polym13244457
|
[18]
|
杨双春, 宋洪瑞, 郭奇, 等. 钻井液用流型调节剂的研究进展[J]. 精细化工, 2020, 37(9): 1744-1754.
|
[19]
|
Davoodi, S., Ramazani S.A, A., Soleimanian, A. and Fellah Jahromi, A. (2019) Application of a Novel Acrylamide Copolymer Containing Highly Hydrophobic Comonomer as Filtration Control and Rheology Modifier Additive in Water-Based Drilling Mud. Journal of Petroleum Science and Engineering, 180, 747-755. https://doi.org/10.1016/j.petrol.2019.04.069
|
[20]
|
舒义勇, 孙俊, 曾东, 等. 塔里木油田跃满西区块高温恒流变钻井液研究与现场试验[J]. 石油钻探技术, 2021, 49(5): 39-45.
|
[21]
|
Xie, B., Tchameni, A.P., Luo, M. and Wen, J. (2021) A Novel Thermo-Associating Polymer as Rheological Control Additive for Bentonite Drilling Fluid in Deep Offshore Drilling. Materials Letters, 284, Article ID: 128914. https://doi.org/10.1016/j.matlet.2020.128914
|
[22]
|
Kamali, F., Saboori, R. and Sabbaghi, S. (2021) Fe3O4-CMC Nanocomposite Performance Evaluation as Rheology Modifier and Fluid Loss Control Characteristic Additives in Water-Based Drilling Fluid. Journal of Petroleum Science and Engineering, 205, Article ID: 108912. https://doi.org/10.1016/j.petrol.2021.108912
|
[23]
|
崔迎春, 王贵和. 钻井液技术发展趋势浅析[J]. 钻井液与完井液, 2005, 22(1): 60-62, 70.
|
[24]
|
王辉, 王富华. 纳米技术在钻井液中的应用探讨[J]. 钻井液与完井液, 2005, 22(2): 50-53, 80-81.
|
[25]
|
吴飞鹏, 施盟泉, 张云龙, 等. 纳米水溶性微凝胶驱油材料及其制备方法[P]. 中国专利, CN1903974. 2007-01-31.
|
[26]
|
施盟泉, 吴飞鹏, 张云龙. 纳微米水溶性微凝胶驱油材料及其制备方法[P]. 中国专利, CN1927895. 2007-03-14.
|
[27]
|
吴飞鹏, 施盟泉, 张玉玺, 等. 核壳自交结丙烯酰胺共聚物深部调剖堵水剂及其制备方法[P]. 中国专利, CN1940008. 2007-04-04.
|
[28]
|
雷光伦. 亚微米聚合物活性微球调剖驱油剂[P]. 中国专利, CN1594493. 2005-03-16.
|
[29]
|
雷光伦. 一种阳离子聚丙烯酰胺凝胶微球及其制备方法[P]. 中国专利, CN101037493. 2007-09-19.
|
[30]
|
Lei, G., Li, L. and Nasr-El-Din, H.A. (2011) New Gel Aggregates to Improve Sweep Efficiency during Waterflooding. SPE Reservoir Evaluation & Engineering, 14, 120-128. https://doi.org/10.2118/129960-pa
|
[31]
|
王鸣川, 朱维耀, 王国锋, 等. 纳米聚合物微球在中渗高含水油田的模拟研究[J]. 西南石油大学学报(自然科学版), 2010, 32(5): 105-108, 191.
|
[32]
|
Pritchett, J., Frampton, H., Brinkman, J., Cheung, S., Morgan, J., Chang, K.T., et al. (2003) Field Application of a New In-Depth Waterflood Conformance Improvement Tool. SPE International Improved Oil Recovery Conference in Asia Pacific, Kuala Lumpur, 20-21 October 2003, SPE-84897-MS. https://doi.org/10.2118/84897-ms
|
[33]
|
Kutty, S.M., Kuliyev, M., Hussein, M.A., Chitre, S., Mustafa, H., Penny, G., et al. (2015) Well Performance Improvement Using Complex Nano Fluids. Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 9-12 November 2015, SPE-177831-MS. https://doi.org/10.2118/177831-ms
|
[34]
|
郭永峰. 加拿大Calgary钻井液公司宣布纳米钻井液投入工业化应用[J]. 石油钻采工艺, 2016, 38(6): 795.
|
[35]
|
Li, H., Lv, K., Huang, X., Lu, Z. and Dong, X. (2020) The Synthesis of Polymeric Nanospheres and the Application as High-Temperature Nano-Plugging Agent in Water Based Drilling Fluid. Frontiers in Chemistry, 8, Article 247. https://doi.org/10.3389/fchem.2020.00247
|
[36]
|
Mirzaasadi, M., Zarei, V., Elveny, M., Alizadeh, S.M., Alizadeh, V. and Khan, A. (2021) Improving the Rheological Properties and Thermal Stability of Water-Based Drilling Fluid Using Biogenic Silica Nanoparticles. Energy Reports, 7, 6162-6171. https://doi.org/10.1016/j.egyr.2021.08.130
|
[37]
|
Kalhor, M.M., Taraghikhah, S., Karimi, R.M.S., et al. (2021) Developing New Generation of Environmentally Friendly Nano Based Low Saline Water-Based Drilling Fluid. SPE/IADC Middle East Drilling Technology Conference and Exhibition, Abu Dhabi, 25-27 May 2021, SPE-202111-MS.
|
[38]
|
鄢捷年. 钻井液工艺学[M]. 东营: 中国石油大学出版社, 2012.
|
[39]
|
华桂友, 舒福昌, 向兴金, 等. 适用于钻水平井的可逆转油包水钻井液研究[J]. 国外油田工程, 2010, 26(8): 53-55.
|
[40]
|
梁勇. 油包水钻井液技术在古龙1井的应用[J]. 钻井液与完井液, 2010, 27(5): 15-17, 88.
|
[41]
|
余可芝, 李自立, 耿铁, 等. 油基钻井液在番禺30-1气田大位移井中的应用[J]. 钻井液与完井液, 2011, 28(2): 5-9, 95.
|
[42]
|
牛晓, 方静, 王海波. 塔中定向井油基钻井液技术[J]. 西部探矿工程, 2014, 26(7): 77-80.
|
[43]
|
Fimreite, G., Asko, A., Massam, J., Taugbol, K., Omland, T.H., Svanes, K., et al. (2004) Invert Emulsion Fluids for Drilling through Narrow Hydraulic Windows. IADC/SPE Drilling Conference, Dallas, 2-4 March 2004, SPE-87128-MS. https://doi.org/10.2118/87128-ms
|
[44]
|
Fossum, P., Moum, T., Sletfjerding, E., Taugbol, K., Brechan, B., Hogstol, H., et al. (2007) Design and Utilization of Low Solids OBM for Aasgard Reservoir Drilling and Completion. Proceedings of European Formation Damage Conference, Scheveningen, 30 May-1 June 2007, SPE-107754-MS. https://doi.org/10.2523/107754-ms
|
[45]
|
Khvoshchin, P., Lyadova, N., Iliasov, S., Nekrasova, I., Garshina, O. and Kuznetsov, A. (2014) The Results of Horizontal Well Drilling Using Invert-Emulsion Fluid at Kharyaginskoe Field. SPE Russian Oil and Gas Exploration & Production Technical Conference and Exhibition, Moscow, 14-16 October 2014, SPE-171283-MS. https://doi.org/10.2118/171283-ms
|
[46]
|
Zhong, H., Shen, G., Qiu, Z., et al. (2019) Minimizing the HTHP Filtration Loss of Oil-Based Drilling Fluid with Swellable Polymer Microspheres. Journal of Petroleum Science and Engineering, 172, 411-424.
|
[47]
|
Li, W., Jiang, G., Ni, X., Li, Y., Wang, X. and Luo, X. (2020) Styrene Butadiene Resin/Nano-SiO2 Composite as a Water-And-Oil-Dispersible Plugging Agent for Oil-Based Drilling Fluid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 606, Article ID: 125245. https://doi.org/10.1016/j.colsurfa.2020.125245
|
[48]
|
Jiang, G., Shi, H. and He, Y. (2022) The Biodiesel-Based Flat-Rheology Drilling Fluid System. Petroleum Exploration and Development, 49, 200-210. https://doi.org/10.1016/s1876-3804(22)60016-8
|
[49]
|
Friedheim, J.E. and Conn, H.L. (1996) Second Generation Synthetic Fluids in the North Sea: Are They Better? IADC/SPE Drilling Conference, New Orleans, 12-15 March 1996, SPE-35061-MS. https://doi.org/10.2118/35061-ms
|
[50]
|
杨贤友. 保护油气层钻井完井液现状与发展趋势[J]. 钻井液与完井液, 2000, 17(1): 29-34.
|
[51]
|
Terry Prater, Bill E Henn, 唐代绪, 等. 成功的钻井液体系[J]. 国外油田工程, 2000(4): 22-25.
|
[52]
|
Burrows, K., Evans, J., Hall, J. and Kirsner, J. (2001) New Low Viscosity Ester Is Suitable for Drilling Fluids in Deepwater Applications. SPE/EPA/DOE Exploration and Production Environmental Conference, San Antonio, 26-28 February 2001, SPE-66553-MS. https://doi.org/10.2118/66553-ms
|
[53]
|
Trotter, N. and Rojas, J.C. (2007) Synthetic-Based Fluid with Constant Rheology Reduces Downhole Losses in Deepwater Operations. Drilling Contractor, 63, No. 3.
|
[54]
|
罗健生, 莫成孝, 刘自明, 等. 气制油合成基钻井液研究与应用[J]. 钻井液与完井液, 2009, 26(2): 7-11, 129.
|
[55]
|
蒋卓, 舒福昌, 向兴金, 等. 全油合成基钻井液的室内研究[J]. 钻井液与完井液, 2009, 26(2): 19-20, 130.
|
[56]
|
Paul, A.A.L. and Adewale, F.J. (2018) Novel Synthetic-Based Drilling Fluid through Enzymatic Interesterification of Canola Oil. International Journal of Chemical Engineering, 2018, Article ID: 6418090. https://doi.org/10.1155/2018/6418090
|
[57]
|
Kania, D., Yunus, R., Omar, R., Abdul Rashid, S., Mohamed Jan, B. and Arsanjani, N. (2018) Nonionic Polyol Esters as Thinner and Lubricity Enhancer for Synthetic-Based Drilling Fluids. Journal of Molecular Liquids, 266, 846-855. https://doi.org/10.1016/j.molliq.2018.07.014
|
[58]
|
Kania, D., Yunus, R., Omar, R., Abdul Rashid, S. and Mohamed Jan, B. (2021) Rheological Investigation of Synthetic-Based Drilling Fluid Containing Non-Ionic Surfactant Pentaerythritol Ester Using Full Factorial Design. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 625, Article ID: 126700. https://doi.org/10.1016/j.colsurfa.2021.126700
|
[59]
|
马光长, 杜良民. 空气钻井技术及其应用[J]. 钻采工艺, 2004, 27(3): 4-8.
|
[60]
|
许爱. 气体钻井技术及现场应用[J]. 石油钻探技术, 2006, 34(4): 16-19.
|
[61]
|
王洪英, 赵德云. 气体钻井在大庆徐家围子地区应用探讨[J]. 西部探矿工程, 2006, 18(1): 179-181.
|
[62]
|
李志刚, 窦金永, 董玉辉, 等. 大庆油田气体钻井技术现状[J]. 西部探矿工程, 2011, 23(7): 43-44, 47.
|
[63]
|
肖洲, 颜小兵, 周长虹, 等. 气体钻井作业面临的风险及控制措施探讨[J]. 钻采工艺, 2015, 38(3): 112-114.
|
[64]
|
李飞, 徐恩信. 实用欠平衡钻井技术[M]. 北京: 中国石化出版社, 2000.
|
[65]
|
晁文学, 林勇. 国外空气钻井钻头的研究与应用[J]. 石油钻探技术, 2001, 29(1): 39-40.
|
[66]
|
Cao, P., Chen, Z., Liu, M., Cao, H. and Chen, B. (2019) Numerical and Experimental Study of a Novel Aerodynamic Foam Breaker for Foam Drilling Fluid. Energy Science & Engineering, 7, 2410-2420. https://doi.org/10.1002/ese3.428
|
[67]
|
李强, 李志勇, 张浩东, 等. 响应面法优化纳米材料稳定的泡沫钻井液[J]. 钻井液与完井液, 2020, 37(1): 23-30.
|
[68]
|
Vaziri, E., Simjoo, M. and Chahardowli, M. (2020) Application of Foam as Drilling Fluid for Cuttings Transport in Horizontal and Inclined Wells: A Numerical Study Using Computational Fluid Dynamics. Journal of Petroleum Science and Engineering, 194, Article ID: 107325. https://doi.org/10.1016/j.petrol.2020.107325
|
[69]
|
Junistia, L., Sugih, A., Manurung, R., et al. (2008) Synthesis of Higher Fatty Acid Starch Esters using Vinyl Laurate and Stearate as Reactants. Starch—Stärke, 60, 667-675. https://doi.org/10.1002/star.200800025
|
[70]
|
Junistia, L., Sugih, A.K., Manurung, R., Picchioni, F., Janssen, L.P.B.M. and Heeres, H.J. (2009) Experimental and Modeling Studies on the Synthesis and Properties of Higher Fatty Esters of Corn Starch. Starch—Stärke, 61, 69-80. https://doi.org/10.1002/star.200800076
|
[71]
|
Dias, F., de Souza, R. and Lucas, E. (2013) Starch Fatty Esters for Potential Use in Petroleum Industry. Chemistry & Chemical Technology, 7, 451-456. https://doi.org/10.23939/chcht07.04.451
|
[72]
|
Dias, F.T.G., Souza, R.R. and Lucas, E.F. (2015) Influence of Modified Starches Composition on Their Performance as Fluid Loss Additives in Invert-Emulsion Drilling Fluids. Fuel, 140, 711-716. https://doi.org/10.1016/j.fuel.2014.09.074
|
[73]
|
Onuh, C.Y., Igwilo, K.C., Anawe, P.A.L., Daramola, O. and Ogunwomoju, O. (2017) Environmentally Friendly Fluid Loss Control Agent in Water-Based Mud for Oil and Gas Drilling Operations. International Journal of Applied Engineering Research, 12, 1520-1523.
|
[74]
|
Ma, J., Xia, B., Yu, P. and An, Y. (2020) Comparison of an Emulsion-and Solution-Prepared Acrylamide/Amps Copolymer for a Fluid Loss Agent in Drilling Fluid. ACS Omega, 5, 12892-12904. https://doi.org/10.1021/acsomega.0c00665
|
[75]
|
Liu, M., Hu, M., Li, P., Zhang, H., Zhao, J. and Guo, J. (2022) A New Application of Fluid Loss Agent in Enhancing Autogenous Healing Ability and Improving Mechanical Properties of Oil Well Cement. Cement and Concrete Composites, 128, Article ID: 104419. https://doi.org/10.1016/j.cemconcomp.2022.104419
|
[76]
|
Bai, X., Zhang, X., Koutsos, V., Fu, Z., Ning, T., Luo, Y., et al. (2018) Preparation and Evaluation of Amine Terminated Polyether Shale Inhibitor for Water-Based Drilling Fluid. SN Applied Sciences, 1, Article No. 94. https://doi.org/10.1007/s42452-018-0112-x
|
[77]
|
Chu, Q., Lin, L. and Zhao, Y. (2019) Hyperbranched Polyethylenimine Modified with Silane Coupling Agent as Shale Inhibitor for Water-Based Drilling Fluids. Journal of Petroleum Science and Engineering, 182, Article ID: 106333. https://doi.org/10.1016/j.petrol.2019.106333
|
[78]
|
Saleh, T.A. and Rana, A. (2021) Surface-Modified Biopolymer as an Environment-Friendly Shale Inhibitor and Swelling Control Agent. Journal of Molecular Liquids, 342, Article ID: 117275. https://doi.org/10.1016/j.molliq.2021.117275
|
[79]
|
Bazyar, H. and Monfared, M.S. (2021) Defining the Optimum Sequence in Addition of Shale Inhibitor Agents in WBDF Considering Inhibition of Swelling of Cuttings. Upstream Oil and Gas Technology, 7, Article ID: 100051. https://doi.org/10.1016/j.upstre.2021.100051
|
[80]
|
An, Y., Jiang, G., Qi, Y., et al. (2015) Synthesis of Nano-Plugging Agent Based on AM/AMPS/NVP Terpolymer. Journal of Petroleum Science and Engineering, 135, 505-514.
|
[81]
|
An, Y.X., Jiang, G.C., Qi, Y.R., Huang, X.B. and Shi, H. (2016) High-Performance Shale Plugging Agent Based on Chemically Modified Graphene. Journal of Natural Gas Science and Engineering, 32, 347-355. https://doi.org/10.1016/j.jngse.2016.04.048
|
[82]
|
Yang, E., Fang, Y., Liu, Y., Li, Z. and Wu, J. (2020) Research and Application of Microfoam Selective Water Plugging Agent in Shallow Low-Temperature Reservoirs. Journal of Petroleum Science and Engineering, 193, Article ID: 107354. https://doi.org/10.1016/j.petrol.2020.107354
|
[83]
|
Elzenary, M., Elkatatny, S., Abdelgawad, K.Z., Abdulraheem, A., Mahmoud, M. and Al-Shehri, D. (2018) New Technology to Evaluate Equivalent Circulating Density While Drilling Using Artificial Intelligence. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, 23-26 April 2018, SPE-192282-MS. https://doi.org/10.2118/192282-ms
|
[84]
|
Al-AbdulJabbar, A., Elkatatny, S., Mahmoud, M. and Abdulraheem, A. (2018) Predicting Formation Tops While Drilling Using Artificial Intelligence. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, 23-26 April 2018, SPE-192345-MS. https://doi.org/10.2118/192345-ms
|
[85]
|
Elkatatny, S. (2021) Real-Time Prediction of Rate of Penetration While Drilling Complex Lithologies Using Artificial Intelligence Techniques. Ain Shams Engineering Journal, 12, 917-926. https://doi.org/10.1016/j.asej.2020.05.014
|
[86]
|
Kuang, L., Liu, H., Ren, Y., Luo, K., Shi, M., Su, J., et al. (2021) Application and Development Trend of Artificial Intelligence in Petroleum Exploration and Development. Petroleum Exploration and Development, 48, 1-14. https://doi.org/10.1016/s1876-3804(21)60001-0
|