[1]
|
Mills, K.F., Yoshida, S., Stein, L.R., Grozio, A., Kubota, S., Sasaki, Y., et al. (2016) Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metabolism, 24, 795-806. https://doi.org/10.1016/j.cmet.2016.09.013
|
[2]
|
Yamaguchi, S., Franczyk, M.P., Chondronikola, M., Qi, N., Gunawardana, S.C., Stromsdorfer, K.L., et al. (2019) Adipose Tissue NAD+ Biosynthesis Is Required for Regulating Adaptive Thermogenesis and Whole-Body Energy Homeostasis in Mice. Proceedings of the National Academy of Sciences, 116, 23822-23828. https://doi.org/10.1073/pnas.1909917116
|
[3]
|
Abdellatif, M., Sedej, S. and Kroemer, G. (2021) NAD+ Metabolism in Cardiac Health, Aging, and Disease. Circulation, 144, 1795-1817. https://doi.org/10.1161/circulationaha.121.056589
|
[4]
|
Lautrup, S., Sinclair, D.A., Mattson, M.P. and Fang, E.F. (2019) NAD+ in Brain Aging and Neurodegenerative Disorders. Cell Metabolism, 30, 630-655. https://doi.org/10.1016/j.cmet.2019.09.001
|
[5]
|
Huang, Q., Sun, M., Li, M., Zhang, D., Han, F., Wu, J.C., et al. (2018) Combination of NAD+ and NADPH Offers Greater Neuroprotection in Ischemic Stroke Models by Relieving Metabolic Stress. Molecular Neurobiology, 55, 6063-6075. https://doi.org/10.1007/s12035-017-0809-7
|
[6]
|
Saville, K.M., Clark, J., Wilk, A., Rogers, G.D., Andrews, J.F., Koczor, C.A., et al. (2020) NAD+-Mediated Regulation of Mammalian Base Excision Repair. DNA Repair, 93, Article 102930. https://doi.org/10.1016/j.dnarep.2020.102930
|
[7]
|
Berger, F. (2004) The New Life of a Centenarian: Signalling Functions of NAD(P). Trends in Biochemical Sciences, 29, 111-118. https://doi.org/10.1016/j.tibs.2004.01.007
|
[8]
|
Xie, N., Zhang, L., Gao, W., Huang, C., Huber, P.E., Zhou, X., et al. (2020) NAD+ Metabolism: Pathophysiologic Mechanisms and Therapeutic Potential. Signal Transduction and Targeted Therapy, 5, Article No. 227. https://doi.org/10.1038/s41392-020-00311-7
|
[9]
|
Ummarino, S., Hausman, C., Gaggi, G., Rinaldi, L., Bassal, M.A., Zhang, Y., et al. (2021) NAD Modulates DNA Methylation and Cell Differentiation. Cells, 10, Article 2986. https://doi.org/10.3390/cells10112986
|
[10]
|
Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., et al. (2016) NAD+ Repletion Improves Mitochondrial and Stem Cell Function and Enhances Life Span in Mice. Science, 352, 1436-1443. https://doi.org/10.1126/science.aaf2693
|
[11]
|
Massudi, H., Grant, R., Braidy, N., Guest, J., Farnsworth, B. and Guillemin, G.J. (2012) Age-Associated Changes in Oxidative Stress and NAD+ Metabolism in Human Tissue. PLOS ONE, 7, e42357. https://doi.org/10.1371/journal.pone.0042357
|
[12]
|
Seyedsadjadi, N., Berg, J., Bilgin, A.A., Braidy, N., Salonikas, C. and Grant, R. (2018) High Protein Intake Is Associated with Low Plasma NAD+ Levels in a Healthy Human Cohort. PLOS ONE, 13, e0201968. https://doi.org/10.1371/journal.pone.0201968
|
[13]
|
Yoshino, J., Mills, K.F., Yoon, M.J. and Imai, S. (2011) Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Treats the Pathophysiology of Diet-and Age-Induced Diabetes in Mice. Cell Metabolism, 14, 528-536. https://doi.org/10.1016/j.cmet.2011.08.014
|
[14]
|
Johnson, S. and Imai, S. (2018) NAD+ Biosynthesis, Aging, and Disease. F1000Research, 7, Article 132. https://doi.org/10.12688/f1000research.12120.1
|
[15]
|
Imai, S. and Guarente, L. (2014) NAD+ and Sirtuins in Aging and Disease. Trends in Cell Biology, 24, 464-471. https://doi.org/10.1016/j.tcb.2014.04.002
|
[16]
|
Heer, C.D., Sanderson, D.J., Voth, L.S., Alhammad, Y.M.O., Schmidt, M.S., Trammell, S.A.J., et al. (2020) Coronavirus Infection and PARP Expression Dysregulate the NAD Metabolome: An Actionable Component of Innate Immunity. Journal of Biological Chemistry, 295, 17986-17996. https://doi.org/10.1074/jbc.ra120.015138
|
[17]
|
Huizenga, R. (2020) Dramatic Clinical Improvement in Nine Consecutive Acutely Ill Elderly COVID-19 Patients Treated with a Nicotinamide Mononucleotide Cocktail: A Case Series. SSRN Electronic Journal.
|
[18]
|
Trammell, S.A.J., Weidemann, B.J., Chadda, A., Yorek, M.S., Holmes, A., Coppey, L.J., et al. (2016) Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice. Scientific Reports, 6, Article No. 26933. https://doi.org/10.1038/srep26933
|
[19]
|
Hu, L., Guo, Y., Song, L., Wen, H., Sun, N., Wang, Y., et al. (2022) Nicotinamide Riboside Promotes Mfn2-Mediated Mitochondrial Fusion in Diabetic Hearts through the SIRT1-PGC1α-PPARα Pathway. Free Radical Biology and Medicine, 183, 75-88. https://doi.org/10.1016/j.freeradbiomed.2022.03.012
|
[20]
|
Caton, P.W., Kieswich, J., Yaqoob, M.M., Holness, M.J. and Sugden, M.C. (2011) Nicotinamide Mononucleotide Protects against Pro-Inflammatory Cytokine-Mediated Impairment of Mouse Islet Function. Diabetologia, 54, 3083-3092.
|
[21]
|
Gariani, K., Menzies, K.J., Ryu, D., Wegner, C.J., Wang, X., Ropelle, E.R., et al. (2016) Eliciting the Mitochondrial Unfolded Protein Response by Nicotinamide Adenine Dinucleotide Repletion Reverses Fatty Liver Disease in Mice. Hepatology, 63, 1190-1204.
|
[22]
|
Wang, X., Hu, X., Yang, Y., Takata, T. and Sakurai, T. (2016) Nicotinamide Mononucleotide Protects against β-Amyloid Oligomer-Induced Cognitive Impairment and Neuronal Death. Brain Research, 1643, 1-9. https://doi.org/10.1016/j.brainres.2016.04.060
|
[23]
|
Yao, Z., Yang, W., Gao, Z. and Jia, P. (2017) Nicotinamide Mononucleotide Inhibits JNK Activation to Reverse Alzheimer Disease. Neuroscience Letters, 647, 133-140. https://doi.org/10.1016/j.neulet.2017.03.027
|
[24]
|
Hou, Y., Lautrup, S., Cordonnier, S., Wang, Y., Croteau, D.L., Zavala, E., et al. (2018) NAD+ Supplementation Normalizes key Alzheimer’s Features and DNA Damage Responses in a New AD Mouse Model with Introduced DNA Repair Deficiency. Proceedings of the National Academy of Sciences of the United States of America, 115, E1876-E1885.
|
[25]
|
Ito, S., Gotow, T., Suetake, I. and Nagai, K. (2020) Protective Effects of Nicotinamide Mononucleotide against Oxidative Stress-Induced PC12 Cell Death via Mitochondrial Enhancement. PharmaNutrition, 11, Article 100175. https://doi.org/10.1016/j.phanu.2019.100175
|
[26]
|
Chandrasekaran, K., Choi, J., Arvas, M.I., Salimian, M., Singh, S., Xu, S., et al. (2020) Nicotinamide Mononucleotide Administration Prevents Experimental Diabetes-Induced Cognitive Impairment and Loss of Hippocampal Neurons. International Journal of Molecular Sciences, 21, Article 3756. https://doi.org/10.3390/ijms21113756
|
[27]
|
Gong, B., Pan, Y., Vempati, P., Zhao, W., Knable, L., Ho, L., et al. (2013) Nicotinamide Riboside Restores Cognition through an Upregulation of Proliferator-Activated Receptor-γ Coactivator 1α Regulated β-Secretase 1 Degradation and Mitochondrial Gene Expression in Alzheimer’s Mouse Models. Neurobiology of Aging, 34, 1581-1588. https://doi.org/10.1016/j.neurobiolaging.2012.12.005
|
[28]
|
Guan, Y., Wang, S.-R., Huang, X.-Z., Xie, Q, Xu, Y.-Y., Shang, D., et al. (2017) Nicotinamide Mononucleotide, an NAD+ Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1-Dependent Manner. Journal of the American Society of Nephrology, 28, 2337-2352.
|
[29]
|
Elhassan, Y.S., Kluckova, K., Fletcher, R.S., Schmidt, M.S., Garten, A., Doig, C.L., et al. (2019) Nicotinamide Riboside Augments the Aged Human Skeletal Muscle NAD+ Metabolome and Induces Transcriptomic and Anti-Inflammatory Signatures. Cell Reports, 28, 1717-1728.e6. https://doi.org/10.1016/j.celrep.2019.07.043
|
[30]
|
Traba, J., Kwarteng-Siaw, M., Okoli, T.C., Li, J., Huffstutler, R.D., Bray, A., et al. (2015) Fasting and Refeeding Differentially Regulate NLRP3 Inflammasome Activation in Human Subjects. Journal of Clinical Investigation, 125, 4592-4600. https://doi.org/10.1172/jci83260
|
[31]
|
Liu, J., Zong, Z., Zhang, W., Chen, Y., Wang, X., Shen, J., et al. (2021) Nicotinamide Mononucleotide Alleviates LPS-Induced Inflammation and Oxidative Stress via Decreasing COX-2 Expression in Macrophages. Frontiers in Molecular Biosciences, 8, Article 702107. https://doi.org/10.3389/fmolb.2021.702107
|
[32]
|
de Picciotto, N.E., Gano, L.B., Johnson, L.C., Martens, C.R., Sindler, A.L., Mills, K.F., et al. (2016) Nicotinamide Mononucleotide Supplementation Reverses Vascular Dysfunction and Oxidative Stress with Aging in Mice. Aging Cell, 15, 522-530.
|
[33]
|
Yamamoto, T., Byun, J., Zhai, P., Ikeda, Y., Oka, S. and Sadoshima, J. (2014) Nicotinamide Mononucleotide, an Intermediate of NAD+ Synthesis, Protects the Heart from Ischemia and Reperfusion. PLOS ONE, 9, e98972. https://doi.org/10.1371/journal.pone.0098972
|
[34]
|
Martens, C.R., Denman, B.A., Mazzo, M.R., Armstrong, M.L., Reisdorph, N., McQueen, M.B., et al. (2018) Chronic Nicotinamide Riboside Supplementation Is Well-Tolerated and Elevates NAD+ in Healthy Middle-Aged and Older Adults. Nature Communications, 9, Article No. 1286.
|
[35]
|
Diguet, N., Trammell, S.A.J., Tannous, C., Deloux, R., Piquereau, J., Mougenot, N., et al. (2018) Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy. Circulation, 137, 2256-2273.
|
[36]
|
Amano, H., Chaudhury, A., Rodriguez-Aguayo, C., Lu, L., Akhanov, V., Catic, A., et al. (2019) Telomere Dysfunction Induces Sirtuin Repression that Drives Telomere-Dependent Disease. Cell Metabolism, 29, 1274-1290.
|
[37]
|
Niu, K., Bao, T., Gao, L., Ru, M., Li, Y., Jiang, L., et al. (2021) The Impacts of Short-Term NMN Supplementation on Serum Metabolism, Fecal Microbiota, and Telomere Length in Pre-Aging Phase. Frontiers in Nutrition, 8, Article 756243. https://doi.org/10.3389/fnut.2021.756243
|
[38]
|
Yoshino, M., Yoshino, J., Kayser, B.D., Patti, G.J., Franczyk, M.P., Mills, K.F., et al. (2021) Nicotinamide Mononucleotide Increases Muscle Insulin Sensitivity in Prediabetic Women. Science, 372, 1224-1229. https://doi.org/10.1126/science.abe9985
|
[39]
|
Conze, D., Brenner, C. and Kruger, C.L. (2019) Safety and Metabolism of Long-Term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Healthy Overweight Adults. Scientific Reports, 9, Article No. 9772.
|
[40]
|
Irie, J., Inagaki, E., Fujita, M., Nakaya, H., Mitsuishi, M., Yamaguchi, S., et al. (2020) Effect of Oral Administration of Nicotinamide Mononucleotide on Clinical Parameters and Nicotinamide Metabolite Levels in Healthy Japanese Men. Endocrine Journal, 67, 153-160. https://doi.org/10.1507/endocrj.ej19-0313
|
[41]
|
Trammell, S.A., Yu, L., Redpath, P., Migaud, M.E. and Brenner, C. (2016) Nicotinamide Riboside Is a Major NAD+ Precursor Vitamin in Cow Milk. The Journal of Nutrition, 146, 957-963. https://doi.org/10.3945/jn.116.230078
|
[42]
|
Ummarino, S., Mozzon, M., Zamporlini, F., Amici, A., Mazzola, F., Orsomando, G., et al. (2017) Simultaneous Quantitation of Nicotinamide Riboside, Nicotinamide Mononucleotide and Nicotinamide Adenine Dinucleotide in Milk by a Novel Enzyme-Coupled Assay. Food Chemistry, 221, 161-168. https://doi.org/10.1016/j.foodchem.2016.10.032
|
[43]
|
Kim, L.-J., Chalmers, T.J., Smith, G.C., Das, A., Poon, E.W.K., Wang, J., et al. (2022) Mononucleotide (NMN) Deamidation by Host-Microbiome Interactions. bioRxiv.
|
[44]
|
Yi, L., Maier, A.B., Tao, R., Lin, Z., Vaidya, A., Pendse, S., et al. (2023) The Efficacy and Safety of β-Nicotinamide Mononucleotide (NMN) Supplementation in Healthy Middle-Aged Adults: A Randomized, Multicenter, Double-Blind, Placebo-Controlled, Parallel-Group, Dose-Dependent Clinical Trial. GeroScience, 45, 29-43. https://doi.org/10.1007/s11357-022-00705-1
|
[45]
|
Shats, I., Williams, J.G., Liu, J., Makarov, M.V., Wu, X., Lih, F.B., et al. (2020) Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway. Cell Metabolism, 31, 564-579.E7. https://doi.org/10.1016/j.cmet.2020.02.001
|
[46]
|
Huang, P., Jiang, A., Wang, X., Zhou, Y., Tang, W., Ren, C., et al. (2021) NMN Maintains Intestinal Homeostasis by Regulating the Gut Microbiota. Frontiers in Nutrition, 8, Article 714604. https://doi.org/10.3389/fnut.2021.714604
|
[47]
|
Huang, P., Wang, X., Wang, S., Wu, Z., Zhou, Z., Shao, G., et al. (2022) Treatment of Inflammatory Bowel Disease: Potential Effect of NMN on Intestinal Barrier and Gut Microbiota. Current Research in Food Science, 5, 1403-1411. https://doi.org/10.1016/j.crfs.2022.08.011
|
[48]
|
Turroni, F., Ventura, M., Buttó, L.F., Duranti, S., O’Toole, P.W., Motherway, M.O., et al. (2014) Molecular Dialogue between the Human Gut Microbiota and the Host: A Lactobacillus and Bifidobacterium perspective. Cellular and Molecular Life Sciences, 71, 183-203. https://doi.org/10.1007/s00018-013-1318-0
|
[49]
|
Wellman, A.S., Metukuri, M.R., Kazgan, N., Xu, X., Xu, Q., Ren, N.S.X., et al. (2017) Intestinal Epithelial Sirtuin 1 Regulates Intestinal Inflammation during Aging in Mice by Altering the Intestinal Microbiota. Gastroenterology, 153, 772-786. https://doi.org/10.1053/j.gastro.2017.05.022
|