|
[1]
|
Tanahashi, T., Kuroishi, M., Kuwahara, A., Nagakura, N. and Hamada, N. (1997) Four Phenolics from the Cultured Lichen Mycobiont of Graphis Scripta Var. Pulverulenta. Chemical and Pharmaceutical Bulletin, 45, 1183-1185. [Google Scholar] [CrossRef]
|
|
[2]
|
Tanahashi, T., Takenaka, Y., Nagakura, N. and Hamada, N. (2003) 6H-Dibenzo[b,d]Pyran-6-One Derivatives from the Cultured Lichen Mycobionts of Graphis Spp. and Their Biosynthetic Origin. Phytochemistry, 62, 71-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Liang, D., Luo, H., Liu, Y., Hao, Z., Wang, Y., Zhang, C., et al. (2013) Lysilactones A-C, Three 6H-Dibenzo[b,d]Pyran-6-One Glycosides from Lysimachia clethroides, Total Synthesis of Lysilactone A. Tetrahedron, 69, 2093-2097. [Google Scholar] [CrossRef]
|
|
[4]
|
Lou, J., Fu, L., Peng, Y. and Zhou, L. (2013) Metabolites from Alternaria Fungi and Their Bioactivities. Molecules, 18, 5891-5935. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Coghlan, M.J., Kym, P.R., Elmore, S.W., Wang, A.X., Luly, J.R., Wilcox, D., et al. (2001) Synthesis and Characterization of Non-Steroidal Ligands for the Glucocorticoid Receptor: Selective Quinoline Derivatives with Prednisolone-Equivalent Functional Activity. Journal of Medicinal Chemistry, 44, 2879-2885. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Murakami-Nakai, C., Maeda, N., Yonezawa, Y., Kuriyama, I., Kamisuki, S., Takahashi, S., et al. (2004) The Effects of Dehydroaltenusin, a Novel Mammalian DNA Polymerase Α Inhibitor, on Cell Proliferation and Cell Cycle Progression. Biochimica et Biophysica Acta (BBA)-General Subjects, 1674, 193-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhang, H., Huang, W., Song, Y., Chen, J. and Tan, R. (2005) Four 6H‐Dibenzo[b,d]Pyran-6-One Derivatives Produced by the Endophyte Cephalosporium acremonium IFB-E007. Helvetica Chimica Acta, 88, 2861-2864. [Google Scholar] [CrossRef]
|
|
[8]
|
Mao, Z., Sun, W., Fu, L., Luo, H., Lai, D. and Zhou, L. (2014) Natural Dibenzo-α-Pyrones and Their Bioactivities. Molecules, 19, 5088-5108. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Seeram, N.P., Aronson, W.J., Zhang, Y., Henning, S.M., Moro, A., Lee, R., et al. (2007) Pomegranate Ellagitannin-Derived Metabolites Inhibit Prostate Cancer Growth and Localize to the Mouse Prostate Gland. Journal of Agricultural and Food Chemistry, 55, 7732-7737. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wu, S., Wen, Y., Li, X., Zhao, Y., Zhao, Z. and Hu, J. (2009) Chemical Constituents from the Fruits of Sonneratia caseolaris and Sonneratia ovata (Sonneratiaceae). Biochemical Systematics and Ecology, 37, 1-5. [Google Scholar] [CrossRef]
|
|
[11]
|
Adams, L.S., Zhang, Y., Seeram, N.P., Heber, D. and Chen, S. (2010) Pomegranate Ellagitannin-Derived Compounds Exhibit Antiproliferative and Antiaromatase Activity in Breast Cancer Cells in Vitro. Cancer Prevention Research, 3, 108-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bialonska, D., Kasimsetty, S.G., Khan, S.I. and Ferreira, D. (2009) Urolithins, Intestinal Microbial Metabolites of Pomegranate Ellagitannins, Exhibit Potent Antioxidant Activity in a Cell-Based Assay. Journal of Agricultural and Food Chemistry, 57, 10181-10186. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
González-Barrio, R., Truchado, P., Ito, H., Espín, J.C. and Tomás-Barberán, F.A. (2011) UV and MS Identification of Urolithins and Nasutins, the Bioavailable Metabolites of Ellagitannins and Ellagic Acid in Different Mammals. Journal of Agricultural and Food Chemistry, 59, 1152-1162. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Babich, O.O., Skrypnik, L.N. and Pungin, A.V. (2021) In Vitro Study of the Antioxidant Activity of Extracts from Dried Biomass of Callus, Cell Suspension, and Root Cultures. IOP Conference Series: Earth and Environmental Science, 689, Article 012029. [Google Scholar] [CrossRef]
|
|
[15]
|
Pozzo, L., Grande, T., Raffaelli, A., Longo, V., Weidner, S., Amarowicz, R., et al. (2023) Characterization of Antioxidant and Antimicrobial Activity and Phenolic Compound Profile of Extracts from Seeds of Different Vitis Species. Molecules, 28, Article 4924. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Doyle, B. and Griffiths, L.A. (1980) The Metabolism of Ellagic Acid in the Rat. Xenobiotica, 10, 247-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cerdá, B., Periago, P., Espín, J.C. and Tomás-Barberán, F.A. (2005) Identification of Urolithin a as a Metabolite Produced by Human Colon Microflora from Ellagic Acid and Related Compounds. Journal of Agricultural and Food Chemistry, 53, 5571-5576. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gu, W. (2009) Bioactive Metabolites from Alternaria brassicicola ML-P08, an Endophytic Fungus Residing in Malus Halliana. World Journal of Microbiology and Biotechnology, 25, 1677-1683. [Google Scholar] [CrossRef]
|
|
[19]
|
Mizushina, Y., Maeda, N., Kuriyama, I. and Yoshida, H. (2011) Dehydroaltenusin Is a Specific Inhibitor of Mammalian DNA Polymerase Α. Expert Opinion on Investigational Drugs, 20, 1523-1534. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ishimoto, H., Tai, A., Yoshimura, M., Amakura, Y., Yoshida, T., Hatano, T., et al. (2012) Antioxidative Properties of Functional Polyphenols and Their Metabolites Assessed by an ORAC Assay. Bioscience, Biotechnology, and Biochemistry, 76, 395-399. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Piwowarski, J., Granica, S. and Kiss, A. (2014) Influence of Gut Microbiota-Derived Ellagitanninsʼ Metabolites Urolithins on Pro-Inflammatory Activities of Human Neutrophils. Planta Medica, 80, 887-895. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bobowska, A., Granica, S., Filipek, A., Melzig, M.F., Moeslinger, T., Zentek, J., et al. (2021) Comparative Studies of Urolithins and Their Phase II Metabolites on Macrophage and Neutrophil Functions. European Journal of Nutrition, 60, 1957-1972. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhou, Q.J., Worm, K. and Dolle, R.E. (2004) 10-Hydroxy-10,9-Boroxarophenanthrenes: Versatile Synthetic Intermediates to 3,4-Benzocoumarins and Triaryls. The Journal of Organic Chemistry, 69, 5147-5149. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Vishnumurthy, K. and Makriyannis, A. (2010) Novel and Efficient One-Step Parallel Synthesis of Dibenzopyranones via Suzuki-Miyaura Cross Coupling. Journal of Combinatorial Chemistry, 12, 664-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Luo, J., Lu, Y., Liu, S., Liu, J. and Deng, G. (2011) Efficient One-Pot Synthesis of Dibenzopyranones via a Decarboxylative Cross-Coupling and Lactonization Sequence. Advanced Synthesis & Catalysis, 353, 2604-2608. [Google Scholar] [CrossRef]
|
|
[26]
|
Xiao, Q., Zhang, Y. and Wang, J. (2012) Diazo Compounds and N-Tosylhydrazones: Novel Cross-Coupling Partners in Transition-Metal-Catalyzed Reactions. Accounts of Chemical Research, 46, 236-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Singha, R., Roy, S., Nandi, S., Ray, P. and Ray, J.K. (2013) Palladium-Catalyzed One-Pot Suzuki-Miyaura Cross Coupling Followed by Oxidative Lactonization: A Novel and Efficient Route for the One-Pot Synthesis of Benzo[c]Chromene-6-Ones. Tetrahedron Letters, 54, 657-660. [Google Scholar] [CrossRef]
|
|
[28]
|
Singha, R., Dhara, S., Ghosh, M. and Ray, J.K. (2015) Copper Catalyzed Room Temperature Lactonization of Aromatic C-H Bond: A Novel and Efficient Approach for the Synthesis of Dibenzopyranones. RSC Advances, 5, 8801-8805. [Google Scholar] [CrossRef]
|
|
[29]
|
Zhang, Z., Gao, Y., Liu, Y., Li, J., Xie, H., Li, H., et al. (2015) Organocatalytic Aerobic Oxidation of Benzylic Sp3 C-H Bonds of Ethers and Alkylarenes Promoted by a Recyclable TEMPO Catalyst. Organic Letters, 17, 5492-5495. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Suárez-Meneses, J.V., Oukhrib, A., Gouygou, M., Urrutigoïty, M., Daran, J.-C., Cordero-Vargas, A., et al. (2016) [N,P]-pyrrole PdCl2 Complexes Catalyzed the Formation of Dibenzo-α-Pyrone and Lactam Analogues. Dalton Transactions, 45, 9621-9630. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, J., Shi, D., Zhang, H., Xu, Z., Bao, H., Jin, H., et al. (2017) Synthesis of Dibenzopyranones and Pyrazolobenzopyranones through Copper(0)/Selectfluor System-Catalyzed Double CH Activation/Oxygen Insertion of 2-Arylbenzaldehydes and 5-Arylpyrazole-4-Carbaldehydes. Tetrahedron, 73, 154-163. [Google Scholar] [CrossRef]
|
|
[32]
|
Ortiz Villamizar, M.C., Zubkov, F.I., Puerto Galvis, C.E., Vargas Méndez, L.Y. and Kouznetsov, V.V. (2017) The Study of Metal-Free and Palladium-Catalysed Synthesis of Benzochromenes via Direct C-H Arylation Using Unactivated Aryl Benzyl Ethers Derived from Essential Oils as Raw Materials. Organic Chemistry Frontiers, 4, 1736-1744. [Google Scholar] [CrossRef]
|
|
[33]
|
Fu, L., Li, S., Cai, Z., Ding, Y., Guo, X., Zhou, L., et al. (2018) Ligand-Enabled Site-Selectivity in a Versatile Rhodium(II)-Catalysed Aryl C-H Carboxylation with CO2. Nature Catalysis, 1, 469-478. [Google Scholar] [CrossRef]
|
|
[34]
|
Luo, S., Li, L., Yang, Q. and Jia, Z. (2018) Organocatalytic Electrochemical C-H Lactonization of Aromatic Carboxylic Acids. Synthesis, 50, 2924-2929. [Google Scholar] [CrossRef]
|
|
[35]
|
Khosravi, K. and Naserifar, S. (2019) Urea-2,2-Dihydroperoxypropane as a Novel and High Oxygen Content Alternative to Dihydroperoxypropane in Several Oxidation Reactions. ChemistrySelect, 4, 1576-1585. [Google Scholar] [CrossRef]
|
|
[36]
|
Luo, Z., Gao, Z., Song, Z., Han, Y. and Ye, S. (2019) Visible Light Mediated Oxidative Lactonization of 2-Methyl-1,1′-Biaryls for the Synthesis of Benzocoumarins. Organic & Biomolecular Chemistry, 17, 4212-4215. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Shirase, S., Tamaki, S., Shinohara, K., Hirosawa, K., Tsurugi, H., Satoh, T., et al. (2020) Cerium(IV) Carboxylate Photocatalyst for Catalytic Radical Formation from Carboxylic Acids: Decarboxylative Oxygenation of Aliphatic Carboxylic Acids and Lactonization of Aromatic Carboxylic Acids. Journal of the American Chemical Society, 142, 5668-5675. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chao, M., Wang, H., Zhang, H., Zhong, F., Luo, Z., Wu, F., et al. (2022) Cobalt (II)-Catalyzed Oxidation of 2-Aryl Benzoic Acids to Access Biaryl Lactones. Applied Organometallic Chemistry, 36, e6809. [Google Scholar] [CrossRef]
|
|
[39]
|
Natarajan, P., Pooja and Meena (2023) 2-Arylbenzyl Methyl Ethers as Precursors for the Tandem Synthesis of Benzo[c]Coumarins over Heterogeneous Visible-Light Photoredox Catalysis with Graphitic Carbon Nitride (g-C3N4). Asian Journal of Organic Chemistry, 12, e202200643. [Google Scholar] [CrossRef]
|
|
[40]
|
Shi, G., Wang, Y., He, M., Yu, X. and Bao, M. (2023) 2,7-Dinitrophenanthrene-9,10-Dione as a Photosensitizer for the Dehydrogenative Lactonization of 2-Arylbenzoic Acids. Organic Chemistry Frontiers, 10, 2429-2433. [Google Scholar] [CrossRef]
|
|
[41]
|
Fang, M., Shang, P., Huang, H., Sun, J. and Han, Z. (2024) Synthesis of Lactones via Electrochemical Sequential Oxidative Process. European Journal of Organic Chemistry, 27, e202400557. [Google Scholar] [CrossRef]
|