生物运动情绪感知研究综述
A Review of Research on Emotion Perception in Biological Motion
DOI: 10.12677/ap.2025.156357, PDF, HTML, XML,    科研立项经费支持
作者: 杜依珂*:山东师范大学心理学院,山东 济南
关键词: 生物运动情绪整体构型局部运动Biological Motion Emotion Global Configuration Local Motion
摘要: 情绪性生物运动以行动为导向传递情感信息,具有显著的社会功能。本文旨在系统梳理生物运动情绪感知的内在机制、感知效应及其在自闭症谱系障碍(ASD)中的表现差异,为深入理解社交互动的神经基础及功能障碍提供理论依据。通过综述国内外相关研究,整合生物运动加工机制、快乐优势效应及ASD患者生物运动情绪感知缺陷的实验证据。研究发现,生物运动情绪感知依赖于颞上沟(STS)和杏仁核等脑区的协同作用,且整体构型与局部运动分别贡献高阶形状信息与低阶运动线索。快乐情绪在生物运动感知中表现出显著优势,表现为更高的识别准确性和注意力调节效应。ASD患者对生物运动的敏感性及情绪识别能力显著受损,且对快乐情绪的识别缺陷尤为突出。未来需进一步探索不同情绪的作用机制、跨文化普适性及ASD干预路径,以深化对社会认知障碍的理解。
Abstract: Emotional biological motion conveys emotional information in an action-oriented manner and plays a significant social role. This paper aims to systematically review the underlying mechanisms of biological motion emotion perception, its perceptual effects, and the differences in its manifestation in Autism Spectrum Disorder (ASD), providing a theoretical foundation for a deeper understanding of the neural basis of social interactions and functional impairments. By reviewing related studies both domestically and internationally, we integrate experimental evidence on the processing mechanisms of biological motion, the happiness advantage effect, and the deficits in biological motion emotion perception in individuals with ASD. The research findings show that biological motion emotion perception relies on the collaborative function of brain regions such as the superior temporal sulcus (STS) and the amygdala. Furthermore, the overall configuration and local motion contribute to high-level shape information and low-level motion cues, respectively. Happiness emotions exhibit a significant advantage in biological motion perception, reflected in higher recognition accuracy and attention regulation effects. Individuals with ASD show significant impairments in sensitivity to biological motion and emotion recognition abilities, with particularly notable deficits in recognizing happy emotions. Future research should further explore the mechanisms of different emotions, cross-cultural generalizability, and intervention pathways for ASD to deepen our understanding of social cognitive impairments.
文章引用:杜依珂 (2025). 生物运动情绪感知研究综述. 心理学进展, 15(6), 120-126. https://doi.org/10.12677/ap.2025.156357

1. 引言

人类是高度社会化的生物,人际交往需要大量社会信息来满足多种生理和心理需求。能够迅速而准确地识别其他个体,并理解其行为与意图,是实现有效社会互动的前提。面部表情作为人类最显著的外部特征之一,传递着丰富的社会信息,如身份、性别、年龄、表情和种族等,这些信息有助于个体在复杂多变的社会情境中进行高效的信息加工与行为决策,从而促进社会交往与环境适应。然而,在日常生活中,当他人处于一定的距离之外或位于某一特定的身体方位时,由于视力范围的限制,面部信息的获取就会变得相当困难,此时肢体动作则成为获取社会信息的主要线索,提醒个体参与社交互动。

生物运动(biological motion, BM)指的是生物体(人类和动物)在空间上的整体性移动行为(蒋毅,王莉,2011)。人类对生物运动具有高度的敏感性,即使面对的仅仅是由十几个光点构成的生物运动刺激时,人们仍然能够展现出良好的识别能力(Johansson, 1973)。人们不仅可以很容易地探测出光点人形序列,还能从中提取和解释大量关于运动主体的信息(Dittrich, 1993),例如动作信息(Dittrich, 1993; Decety & Grèzes, 1999; Vanrie & Verfaillie, 2004)、性别(Kozlowski & Cutting, 1977)、身份(Jokisch et al., 2006; Loula et al., 2005)、情感(Clarke et al., 2005)和意图(Manera et al., 2010; Pavlova, 2012)等。已有研究证明,人类在出生仅两天时便已经具备加工生物运动的能力,可以识别出光点人形序列并对其表现出注视偏好(Bertenthal, 1993)。随着年龄的增长,人类对于光点运动序列的辨别能力不断提高,5岁时已经能够接近成人水平(Pavlova, 2012),并且在老年时期仍保持良好水平(Norman et al., 2004)。由此可见,人类对生物运动的加工有着不同于普通客体的优势,并且这种优势可以持续一生。此外,对生物运动的加工的异常可能与伴随自闭症的社交功能障碍有关(Klin & Jones, 2008; Alaerts et al., 2014)。

情绪感知是指个体能够从社会刺激(如面部表情、声音、身体动作等)中解读和识别情绪的能力,这种能力对于有效的人际互动和社会功能至关重要,情绪感知不仅包括识别情绪的类型,还涉及对情绪强度和情绪背后可能的意图的理解(Elfenbein & Ambady, 2002; Barrett et al., 2011)。在相距较远或处在特定身体方位时,由于视力范围的限制,面孔无法提供足够的社会信息,此时生物运动则成为获取社会信息的主要线索。情绪性的生物运动传达了直接的以行动为导向的情感信息,即使从很远的距离来看也仍然突出(de Gelder, 2006; Aviezer et al., 2012)。从神经生物学的角度来看,情绪感知涉及大脑中多个区域的活动,特别是扣带皮质、杏仁核和前额叶皮质等区域,这些区域在处理情绪信息、制定反应策略以及调节自身情绪时起着关键作用(Davidson et al., 2000)。

因此,基于生物运动情绪感知的研究具有重要意义,本文旨在梳理国内外有关于生物运动情绪感知的研究成果,探讨基于生物运动情绪感知的内在机制和感知效应,并总结自闭症谱系障碍对于生物运动情绪感知的影响。在此基础上,展望未来生物运动情绪感知领域的研究方向与潜力。

2. 生物运动情绪感知的机制

2.1. 神经生理机制

人类观察者非常擅长从生物运动中读取情绪,即使它们是由放置在生物主要关节上的几个点光源的运动来表达的(Alaerts et al., 2010; Troje, 2002, 2008)。此外,即使是8个月大的婴儿也可以成功识别生物运动刺激中表达的情绪(例如,悲伤、快乐) (Missana et al., 2015; Missana & Grossmann, 2015)。大量研究通过功能性磁共振成像(fMRI)技术记录被试在观看不同情绪性生物运动刺激时的大脑活动,发现人类对生物运动信息的加工主要依赖于颞顶交界区(TPJ),尤其是在颞上沟(STS),该区域在生物运动识别任务中起关键作用(Grossman et al., 2000; Grossman & Blake, 2002)。STS作为关键脑区,负责分析生物运动的整体结构(如行走方向、肢体协调),并通过与杏仁核的交互增强情绪相关信息的提取(Williams et al., 2004; Killgore & Yurgelun-Todd, 2004; Chouchourelou et al., 2006; Jiang & He, 2006; Jiang et al., 2009),STS与杏仁核通过双向交互投射实现协同加工,STS整合时空关系形成整体情绪表征,并向杏仁核传递情感意图,杏仁核则通过反馈调节STS的注意资源分配,优先增强相关特征情绪的加工(Adolphs, 1999)。

2.2. 整体构型和局部运动的作用

对于光点生物运动序列来讲,整体构型与局部运动是来自两种层次的重要信息表征。局部运动是指各光点的运动所提供的轨迹和速度信息;整体构型指的是光点人形序列中各光点提供的位置信息整合起来形成的身体形状信息(蒋毅,王莉,2011),与局部运动所提供的速度、轨迹等低阶物理层面的信息相比,它是更高阶的信息。以往研究表明,生物运动的整体构型和局部运动会对生物运动的探测、辨别以及情绪感知过程产生作用(Wang et al., 2010; Sun et al., 2022; Cheng et al., 2023)。研究发现,通过空间位置随机化破坏光点序列的整体构型后,与原始的光点运动序列相比,被试的生物性感知、方向辨别(Chang & Troje, 2008)以及愤怒情绪感知(Chouchourelou et al, 2006)等方面的能力均下降。Chouchourelou等人(2006)发现,被试对于完整光点序列的愤怒情绪识别准确率显著高于随机化条件,表明整体构型对情绪感知的重要性,这是由于整体构型是情绪感知的基础,依赖于颞上沟对整体运动模式的整合(Grossman et al., 2000; Chouchourelou et al., 2006)。尽管整体构型被破坏,局部运动仍可独立传递情绪信息。Chouchourelou等人(2006)的研究显示,仅保留局部运动的生物运动愤怒情绪识别准确率仍然较高,表明局部速度特征可作为情绪线索被快速提取,这一现象可能与杏仁核对威胁性局部特征的优先加工密切相关(Whalen et al., 2004)。此外,Chang和Troje (2008)将随机化光点序列倒置后,被试的生物性评级显著降低,说明局部运动轨迹的破坏直接影响运动生物性感知,而非依赖整体构型,进一步验证了局部运动的独特作用。近期研究通过瞳孔反应实验为局部运动的情绪编码机制提供了直接证据。Cheng等(2023)人在保留局部运动轨迹但破坏整体构型的条件下,实验中,向被试呈现不同情绪效价的生物运动刺激,同时使用眼动仪监测瞳孔变化,结果发现被试瞳孔扩张程度与情绪效价显著相关,该结果证实仅凭局部运动信息即可触发情绪相关的自主神经反应,提示局部运动可能通过皮层下通路(如杏仁核–STS环路)实现快速情绪评估。

3. 生物运动情绪感知的快乐优势效应

快乐情绪优势效应指的是在生物运动情绪感知相关任务中,快乐情绪所表现出的优于其他情绪(如愤怒和悲伤等)的一系列效应。已有的研究发现,个体能够感知到生物运动所表达出的情绪,并且表现出更高的快乐情绪感知倾向。一些研究发现,在视觉搜索任务中,生物运动情绪感知表现出快乐优势效应(Becker et al., 2011; Lee & Kim, 2017)。Lee和Kim (2017)要求被试在噪音干扰下,分别观看表达愤怒、快乐和中性情绪的生物运动刺激,报告是否感知到生物运动刺激,被试对传达快乐情绪的生物运动更容易做出识别,表现出更高的准确性和较低的检测阈值,这表明快乐的情绪能够促进生物运动信息的处理(Lee & Kim, 2017)。当用显式情绪识别任务时,去掉噪音并要求被试识别不同情绪的生物运动刺激时,被试能够比愤怒情绪更容易识别出快乐情绪。上述结果可能是因为快乐是一种普遍且常见的情绪,人类在社交互动中对快乐的感知和反应更为熟练,此外,情绪的正向影响可能通过促进整体感知而提高生物运动的感知准确性。研究发现,处于积极情绪状态的人更倾向于采用全局处理的方式来看待视觉信息,这种倾向可能帮助他们更容易识别快乐的生物运动(Chouchourelou et al., 2006)。Yuan等(2023)人通过将情绪性(快乐和悲伤)的生物运动刺激引入改进的中枢线索范式,将情绪性步行者的行走方向(向左走或向右走)与目标探测物体的位置(屏幕左侧或右侧)相结合,要求被试快速准确地判断目标的位置,用标准化提示效应(Standardized Cuing Effect, CE:将生物运动刺激行走方向和目标探测物方向是否一致条件下的反应时差异标准化为总反应时的比例)指数检测注意定向效应,结果发现快乐情绪的CE值显著高于其他情绪,表明相对于中性步态,快乐但不悲伤的情绪步态可以显著提高注意力定向效应。这种快乐优势效应可以扩展到凝视诱导的社会关注,突出了情绪信息在调节社交信号处理中的作用,并进一步表明存在由不同类型的社交信号触发的对社会注意力的一般情绪调节。采用快乐而非悲伤的情绪能够与指示方向产生交互,特异性地调节社会性注意效应。

4. 自闭症谱系障碍对生物运动情绪感知的影响

对自闭症谱系障碍(Autism spectrum disorder, ASD)患者的研究发现,ASD患者在生命早期就表现出对生物运动敏感性较差(Klin & Jones, 2008),更多关注无生命物体的运动,而不是生命体的运动(Kaiser et al., 2010; Pavlova, 2012),这是由于ASD患者负责生物运动加工的脑区活动明显较弱(Freitag et al., 2008; Koldewyn et al., 2011; Ahmed & Vander Wyk, 2013; Alaerts et al., 2014)。

此外,ASD患者在识别含有情绪信息或社会交往互动信息等更复杂的光点生物运动时表现更差(Nackaerts et al., 2012; Swettenham et al., 2013),存在缺陷(Atkinson, 2009; Nackaerts et al., 2012; Alaerts et al., 2014)。Alaerts等(2014)要求被试判断情绪性(中性,快乐,悲伤和愤怒)生物运动刺激呈现的情绪与中性生物运动刺激呈现的情绪是否相同,结果发现ASD患者的辨别正确率显著低于健康控制组,进一步深入发现ASD患者的双侧STS、顶下小叶和枕中回等脑区活动显著较弱。Mazzoni (2017)考察了高功能自闭症、低功能自闭症和健康控制组儿童和成人辨别整体生物运动的情绪效价,发现高低功能自闭症儿童和成人在评定中性和情绪性生物运动光点的表现均差于在年龄和非言语智力相匹配的控制组,进一步分析对快乐效价的生物运动光点的评定绩效均差于中性和恐惧效价的生物运动光点。尽管上述研究对ASD患者生物运动情绪感知缺陷进行了较为深入地探索,但仍存在诸多未解之谜。例如,不同亚型的ASD患者在生物运动情绪感知上是否存在差异也有待考证。同时,如何将这些研究成果转化为有效的干预手段,帮助ASD患者改善社交功能,同样缺乏系统性的研究。

5. 总结与展望

生物运动情绪感知研究展示了其在社交互动中的重要作用,尽管已有研究取得了显著进展,但仍存在一些局限性。例如,关于不同情绪在生物运动识别中的作用机制尚不明确,情绪类型对生物运动情绪感知的影响仍需进一步探索。同时,生物运动情绪感知与其他感知领域的相互关系以及其在不同文化背景中的普遍性,都是未来研究的重要方向。在研究方法上,多数实验采用实验室控制条件下的点光源刺激,极少数实验运用虚拟现实技术,与现实生活中的复杂生物运动情境存在差异,未来需要进一步结合虚拟现实等技术,模拟更真实的社交场景进行研究。此外,对于发育障碍(如孤独症谱系障碍)对生物运动情绪感知的影响仍需深入探讨,以帮助我们更好地理解社交功能障碍的神经机制。

致 谢

本文的完成得益于多方支持与帮助。衷心感谢山东师范大学心理学院提供的科研平台与资源支持,为研究开展创造了良好条件,感谢课题组导师在选题及论文撰写过程中的悉心指导与宝贵建议。对山东省级大学生创新训练项目的经费资助致以诚挚谢意。

基金项目

本项目受到山东省级大学生创新训练项目(项目编号:S202410445224)的资助。

NOTES

*通讯作者。

参考文献

[1] 蒋毅, 王莉(2011). 生物运动加工特异性: 整体结构和局部运动的作用. 心理科学进展, 19(3), 301-311.
[2] Adolphs, R. (1999). Social Cognition and the Human Brain. Trends in Cognitive Sciences, 3, 469-479.
https://doi.org/10.1016/s1364-6613(99)01399-6
[3] Ahmed, A. A., & Vander Wyk, B. C. (2013). Neural Processing of Intentional Biological Motion in Unaffected Siblings of Children with Autism Spectrum Disorder: An fMRI Study. Brain and Cognition, 83, 297-306.
https://doi.org/10.1016/j.bandc.2013.09.007
[4] Alaerts, K., Nackaerts, E., Van Gemert, T., Durnez, M., Mestdagh, A., Meyns, P. et al. (2010). Action and Emotion Recognition from Point Light Displays: An Investigation of Gender Differences in Functions Mediated by the Human Mirror system. Society for Neuroscience.
[5] Alaerts, K., Woolley, D. G., Steyaert, J., Di Martino, A., Swinnen, S. P., & Wenderoth, N. (2014). Underconnectivity of the Superior Temporal Sulcus Predicts Emotion Recognition Deficits in Autism. Social Cognitive and Affective Neuroscience, 9, 1589-1600.
https://doi.org/10.1093/scan/nst156
[6] Atkinson, A. P. (2009). Impaired Recognition of Emotions from Body Movements Is Associated with Elevated Motion Coherence Thresholds in Autism Spectrum Disorders. Neuropsychologia, 47, 3023-3029.
https://doi.org/10.1016/j.neuropsychologia.2009.05.019
[7] Aviezer, H., Trope, Y., & Todorov, A. (2012). Body Cues, Not Facial Expressions, Discriminate between Intense Positive and Negative Emotions. Science, 338, 1225-1229.
https://doi.org/10.1126/science.1224313
[8] Barrett, L. F., Mesquita, B., & Gendron, M. (2011). Context in Emotion Perception. Current Directions in Psychological Science, 20, 286-290.
https://doi.org/10.1177/0963721411422522
[9] Becker, D. V., Anderson, U. S., Mortensen, C. R., Neufeld, S. L., & Neel, R. (2011). The Face in the Crowd Effect Unconfounded: Happy Faces, Not Angry Faces, Are More Efficiently Detected in Single-and Multiple-Target Visual Search Tasks. Journal of Experimental Psychology: General, 140, 637-659.
https://doi.org/10.1037/a0024060
[10] Bertenthal, B. I. (1993). Infants’ Perception of Biomechanical Motions: Intrinsic Image and Knowledge-Based Constraints. Visual Perception and Cognition in Infancy, 21, 175-214.
[11] Chang, D. H. F., & Troje, N. F. (2008). Perception of Animacy and Direction from Local Biological Motion Signals. Journal of Vision, 8, 3.
https://doi.org/10.1167/8.5.3
[12] Cheng, Y., Yuan, X., & Jiang, Y. (2023). Eye Pupil Signals Life Motion Perception. Attention, Perception, & Psychophysics, 86, 579-586.
https://doi.org/10.3758/s13414-023-02729-x
[13] Chouchourelou, A., Matsuka, T., Harber, K., & Shiffrar, M. (2006). The Visual Analysis of Emotional Actions. Social Neuroscience, 1, 63-74.
https://doi.org/10.1080/17470910600630599
[14] Clarke, T. J., Bradshaw, M. F., Field, D. T., Hampson, S. E., & Rose, D. (2005). The Perception of Emotion from Body Movement in Point-Light Displays of Interpersonal Dialogue. Perception, 34, 1171-1180.
https://doi.org/10.1068/p5203
[15] Davidson, R. J., Jackson, D. C., & Kalin, N. H. (2000). Emotion, Plasticity, Context, and Regulation: Perspectives from Affective Neuroscience. Psychological Bulletin, 126, 890-909.
https://doi.org/10.1037/0033-2909.126.6.890
[16] De Gelder, B. (2006). Towards the Neurobiology of Emotional Body Language. Nature Reviews Neuroscience, 7, 242-249.
https://doi.org/10.1038/nrn1872
[17] Decety, J., & Grèzes, J. (1999). Neural Mechanisms Subserving the Perception of Human Actions. Trends in Cognitive Sciences, 3, 172-178.
https://doi.org/10.1016/s1364-6613(99)01312-1
[18] Dittrich, W. H. (1993). Action Categories and the Perception of Biological Motion. Perception, 22, 15-22.
https://doi.org/10.1068/p220015
[19] Elfenbein, H. A., & Ambady, N. (2002). On the Universality and Cultural Specificity of Emotion Recognition: A Meta-Analysis. Psychological Bulletin, 128, 203-235.
https://doi.org/10.1037/0033-2909.128.2.203
[20] Freitag, C. M., Konrad, C., Häberlen, M., Kleser, C., von Gontard, A., Reith, W. et al. (2008). Perception of Biological Motion in Autism Spectrum Disorders. Neuropsychologia, 46, 1480-1494.
https://doi.org/10.1016/j.neuropsychologia.2007.12.025
[21] Grossman, E. D., & Blake, R. (2002). Brain Areas Active during Visual Perception of Biological Motion. Neuron, 35, 1167-1175.
https://doi.org/10.1016/s0896-6273(02)00897-8
[22] Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G. et al. (2000). Brain Areas Involved in Perception of Biological Motion. Journal of Cognitive Neuroscience, 12, 711-720.
https://doi.org/10.1162/089892900562417
[23] Jiang, Y., & He, S. (2006). Cortical Responses to Invisible Faces: Dissociating Subsystems for Facial-Information Processing. Current Biology, 16, 2023-2029.
https://doi.org/10.1016/j.cub.2006.08.084
[24] Jiang, Y., Shannon, R. W., Vizueta, N., Bernat, E. M., Patrick, C. J., & He, S. (2009). Dynamics of Processing Invisible Faces in the Brain: Automatic Neural Encoding of Facial Expression Information. NeuroImage, 44, 1171-1177.
https://doi.org/10.1016/j.neuroimage.2008.09.038
[25] Johansson, G. (1973). Visual Perception of Biological Motion and a Model for Its Analysis. Perception & Psychophysics, 14, 201-211.
https://doi.org/10.3758/bf03212378
[26] Jokisch, D., Daum, I., & Troje, N. F. (2006). Self Recognition versus Recognition of Others by Biological Motion: Viewpoint-Dependent Effects. Perception, 35, 911-920.
https://doi.org/10.1068/p5540
[27] Kaiser, M. D., Delmolino, L., Tanaka, J. W., & Shiffrar, M. (2010). Comparison of Visual Sensitivity to Human and Object Motion in Autism Spectrum Disorder. Autism Research, 3, 191-195.
https://doi.org/10.1002/aur.137
[28] Killgore, W. D. S., & Yurgelun-Todd, D. A. (2004). Activation of the Amygdala and Anterior Cingulate during Nonconscious Processing of Sad versus Happy Faces. NeuroImage, 21, 1215-1223.
https://doi.org/10.1016/j.neuroimage.2003.12.033
[29] Klin, A., & Jones, W. (2008). Altered Face Scanning and Impaired Recognition of Biological Motion in a 15‐Month‐Old Infant with Autism. Developmental Science, 11, 40-46.
https://doi.org/10.1111/j.1467-7687.2007.00608.x
[30] Koldewyn, K., Whitney, D., & Rivera, S. M. (2011). Neural Correlates of Coherent and Biological Motion Perception in Autism. Developmental Science, 14, 1075-1088.
https://doi.org/10.1111/j.1467-7687.2011.01058.x
[31] Kozlowski, L. T., & Cutting, J. E. (1977). Recognizing the Sex of a Walker from a Dynamic Point-Light Display. Perception & Psychophysics, 21, 575-580.
https://doi.org/10.3758/bf03198740
[32] Lee, H., & Kim, J. (2017). Facilitating Effects of Emotion on the Perception of Biological Motion: Evidence for a Happiness Superiority Effect. Perception, 46, 679-697.
https://doi.org/10.1177/0301006616681809
[33] Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing People from Their Movement. Journal of Experimental Psychology: Human Perception and Performance, 31, 210-220.
https://doi.org/10.1037/0096-1523.31.1.210
[34] Manera, V., Schouten, B., Becchio, C., Bara, B. G., & Verfaillie, K. (2010). Inferring Intentions from Biological Motion: A Stimulus Set of Point-Light Communicative Interactions. Behavior Research Methods, 42, 168-178.
https://doi.org/10.3758/brm.42.1.168
[35] Mazzoni, N. (2017). The Recognition of Emotional Biological Movement in Individuals with Typical Development and Autism Spectrum Disorder (ASD). Doctoral Dissertation, University of Trento.
[36] Missana, M., & Grossmann, T. (2015). Infants’ Emerging Sensitivity to Emotional Body Expressions: Insights from Asymmetrical Frontal Brain Activity. Developmental Psychology, 51, 151-160.
https://doi.org/10.1037/a0038469
[37] Missana, M., Atkinson, A. P., & Grossmann, T. (2015). Tuning the Developing Brain to Emotional Body Expressions. Developmental Science, 18, 243-253.
https://doi.org/10.1111/desc.12209
[38] Nackaerts, E., Wagemans, J., Helsen, W., Swinnen, S. P., Wenderoth, N., & Alaerts, K. (2012). Recognizing Biological Motion and Emotions from Point-Light Displays in Autism Spectrum Disorders. PLOS ONE, 7, e44473.
https://doi.org/10.1371/journal.pone.0044473
[39] Norman, J. F., Payton, S. M., Long, J. R., & Hawkes, L. M. (2004). Aging and the Perception of Biological Motion. Psychology and Aging, 19, 219-225.
https://doi.org/10.1037/0882-7974.19.1.219
[40] Pavlova, M. A. (2012). Biological Motion Processing as a Hallmark of Social Cognition. Cerebral Cortex, 22, 981-995.
https://doi.org/10.1093/cercor/bhr156
[41] Sun, Y., Wang, X., Huang, Y., Ji, H., & Ding, X. (2022). Biological Motion Gains Preferential Access to Awareness during Continuous Flash Suppression: Local Biological Motion Matters. Journal of Experimental Psychology: General, 151, 309-320.
https://doi.org/10.1037/xge0001078
[42] Swettenham, J., Remington, A., Laing, K., Fletcher, R., Coleman, M., & Gomez, J. (2013). Perception of Pointing from Biological Motion Point-Light Displays in Typically Developing Children and Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 43, 1437-1446.
https://doi.org/10.1007/s10803-012-1699-1
[43] Troje, N. F. (2002). Decomposing Biological Motion: A Framework for Analysis and Synthesis of Human Gait Patterns. Journal of Vision, 2, 2.
https://doi.org/10.1167/2.5.2
[44] Troje, N. F. (2008). Retrieving Information from Human Movement Patterns. In T. F. Shipley, & J. M. Zacks (Eds.), Understanding Events: From Perception to Action (pp. 308-334). Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780195188370.003.0014
[45] Vanrie, J., & Verfaillie, K. (2004). Perception of Biological Motion: A Stimulus Set of Human Point-Light Actions. Behavior Research Methods, Instruments, & Computers, 36, 625-629.
https://doi.org/10.3758/bf03206542
[46] Wang, L., Zhang, K., He, S., & Jiang, Y. (2010). Searching for Life Motion Signals. Psychological Science, 21, 1083-1089.
https://doi.org/10.1177/0956797610376072
[47] Whalen, P.J., Kagan, J., Cook, R.G., Davis, F.C., Kim, H., Polis, S., et al. (2004) Human Amygdala Responsivity to Masked Fearful Eye Whites. Science, 306, 2061-2061.
https://doi.org/10.1126/science.1103617
[48] Williams, M. A., Morris, A. P., McGlone, F., Abbott, D. F., & Mattingley, J. B. (2004). Amygdala Responses to Fearful and Happy Facial Expressions under Conditions of Binocular Suppression. The Journal of Neuroscience, 24, 2898-2904.
https://doi.org/10.1523/jneurosci.4977-03.2004
[49] Yuan, T., Ji, H., Wang, L., & Jiang, Y. (2023). Happy Is Stronger than Sad: Emotional Information Modulates Social Attention. Emotion, 23, 1061-1074.
https://doi.org/10.1037/emo0001145