[1]
|
Lee, N.K., Kim, H., Yang, J., Kim, J., Son, J.P., Jang, H., et al. (2020) Heterogeneous Disease Progression in a Mouse Model of Vascular Cognitive Impairment. International Journal of Molecular Sciences, 21, Article 2820. https://doi.org/10.3390/ijms21082820
|
[2]
|
van der Flier, W.M., Skoog, I., Schneider, J.A., Pantoni, L., Mok, V., Chen, C.L.H., et al. (2018) Vascular Cognitive Impairment. Nature Reviews Disease Primers, 4, Article No. 18003. https://doi.org/10.1038/nrdp.2018.3
|
[3]
|
Jia, L., Quan, M., Fu, Y., Zhao, T., Li, Y., Wei, C., et al. (2020) Dementia in China: Epidemiology, Clinical Management, and Research Advances. The Lancet Neurology, 19, 81-92. https://doi.org/10.1016/s1474-4422(19)30290-x
|
[4]
|
Jia, J., Zhou, A., Wei, C., Jia, X., Wang, F., Li, F., et al. (2014) The Prevalence of Mild Cognitive Impairment and Its Etiological Subtypes in Elderly Chinese. Alzheimer’s & Dementia, 10, 439-447. https://doi.org/10.1016/j.jalz.2013.09.008
|
[5]
|
Tu, W., Zhao, Z., Yin, P., Cao, L., Zeng, J., Chen, H., et al. (2023) Estimated Burden of Stroke in China in 2020. JAMA Network Open, 6, e231455. https://doi.org/10.1001/jamanetworkopen.2023.1455
|
[6]
|
El Husseini, N., Katzan, I.L., Rost, N.S., Blake, M.L., Byun, E., Pendlebury, S.T., et al. (2023) Cognitive Impairment after Ischemic and Hemorrhagic Stroke: A Scientific Statement from the American Heart Association/American Stroke Association. Stroke, 54, e272-e291. https://doi.org/10.1161/str.0000000000000430
|
[7]
|
Love, S. and Miners, J.S. (2016) Cerebrovascular Disease in Ageing and Alzheimer’s Disease. Acta Neuropathologica, 131, 645-658. https://doi.org/10.1007/s00401-015-1522-0
|
[8]
|
Sachdev, P., Kalaria, R., O’Brien, J., Skoog, I., Alladi, S., Black, S.E., et al. (2014) Diagnostic Criteria for Vascular Cognitive Disorders. Alzheimer Disease & Associated Disorders, 28, 206-218. https://doi.org/10.1097/wad.0000000000000034
|
[9]
|
Skrobot, O.A., Black, S.E., Chen, C., DeCarli, C., Erkinjuntti, T., Ford, G.A., et al. (2017) Progress toward Standardized Diagnosis of Vascular Cognitive Impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimer’s & Dementia, 14, 280-292. https://doi.org/10.1016/j.jalz.2017.09.007
|
[10]
|
陈耀龙, 杨克虎, 王小钦, 等. 中国制订/修订临床诊疗指南的指导原则(2022版) [J]. 中华医学杂志, 2022, 102(10): 697-703.
|
[11]
|
中华医学会神经病学分会痴呆与认知障碍学组写作组. 血管性认知障碍诊治指南[J]. 中华神经科杂志, 2011, 44(2): 142-147.
|
[12]
|
Wei, Q., Du, B., Liu, Y., Cao, S., Yin, S., Zhang, Y., et al. (2024) The Montreal Cognitive Assessment: Normative Data from a Large, Population-Based Sample of Chinese Healthy Adults and Validation for Detecting Vascular Cognitive Impairment. Frontiers in Neuroscience, 18, Article 1455129. https://doi.org/10.3389/fnins.2024.1455129
|
[13]
|
Chen, K., Xu, Y., Chu, A., Ding, D., Liang, X., Nasreddine, Z.S., et al. (2016) Validation of the Chinese Version of Montreal Cognitive Assessment Basic for Screening Mild Cognitive Impairment. Journal of the American Geriatrics Society, 64, e285-e290. https://doi.org/10.1111/jgs.14530
|
[14]
|
Lees, R.A., Hendry BA, K., Broomfield, N., Stott, D., Larner, A.J. and Quinn, T.J. (2016) Cognitive Assessment in Stroke: Feasibility and Test Properties Using Differing Approaches to Scoring of Incomplete Items. International Journal of Geriatric Psychiatry, 32, 1072-1078. https://doi.org/10.1002/gps.4568
|
[15]
|
Weaver, N.A., Kuijf, H.J., Aben, H.P., Abrigo, J., Bae, H., Barbay, M., et al. (2021) Strategic Infarct Locations for Post-Stroke Cognitive Impairment: A Pooled Analysis of Individual Patient Data from 12 Acute Ischaemic Stroke Cohorts. The Lancet Neurology, 20, 448-459. https://doi.org/10.1016/s1474-4422(21)00060-0
|
[16]
|
van Straaten, E.C.W., Fazekas, F., Rostrup, E., Scheltens, P., Schmidt, R., Pantoni, L., et al. (2006) Impact of White Matter Hyperintensities Scoring Method on Correlations with Clinical Data: The LADIS Study. Stroke, 37, 836-840. https://doi.org/10.1161/01.str.0000202585.26325.74
|
[17]
|
Balakrishnan, R., del C. Valdés Hernández, M. and Farrall, A.J. (2021) Automatic Segmentation of White Matter Hyperintensities from Brain Magnetic Resonance Images in the Era of Deep Learning and Big Data—A Systematic Review. Computerized Medical Imaging and Graphics, 88, Article 101867. https://doi.org/10.1016/j.compmedimag.2021.101867
|
[18]
|
Gregg, N.M., Kim, A.E., Gurol, M.E., Lopez, O.L., Aizenstein, H.J., Price, J.C., et al. (2015) Incidental Cerebral Microbleeds and Cerebral Blood Flow in Elderly Individuals. JAMA Neurology, 72, 1021-1028. https://doi.org/10.1001/jamaneurol.2015.1359
|
[19]
|
Duering, M., Biessels, G.J., Brodtmann, A., Chen, C., Cordonnier, C., de Leeuw, F., et al. (2023) Neuroimaging Standards for Research into Small Vessel Disease—Advances since 2013. The Lancet Neurology, 22, 602-618. https://doi.org/10.1016/s1474-4422(23)00131-x
|
[20]
|
Hye, A., Kerr, F., Archer, N., Foy, C., Poppe, M., Brown, R., et al. (2004) Glycogen Synthase Kinase-3 Is Increased in White Cells Early in Alzheimer’s Disease. Neuroscience Letters, 373, 1-4. https://doi.org/10.1016/j.neulet.2004.10.031
|
[21]
|
van de Grind, W.A., van Hof, P., van der Smagt, M.J. and Verstraten, F.A.J. (2001) Slow and Fast Visual Motion Channels Have Independent Binocular-Rivalry Stages. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268, 437-443. https://doi.org/10.1098/rspb.2000.1380
|
[22]
|
Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al. (1996) Secreted Amyloid β-Protein Similar to That in the Senile Plaques of Alzheimer’s Disease Is Increased in Vivo by the Presenilin 1 and 2 and APP Mutations Linked to Familial Alzheimer’s Disease. Nature Medicine, 2, 864-870. https://doi.org/10.1038/nm0896-864
|
[23]
|
Praticò, D., Clark, C.M., Liun, F., Lee, V.Y. and Trojanowski, J.Q. (2002) Increase of Brain Oxidative Stress in Mild Cognitive Impairment. Archives of Neurology, 59, 972-976. https://doi.org/10.1001/archneur.59.6.972
|
[24]
|
de la Monte, S.M. and Wands, J.R. (2001) The AD7c-NTP Neuronal Thread Protein Biomarker for Detecting Alzheimer’s Disease. Journal of Alzheimer’s Disease, 3, 345-353. https://doi.org/10.3233/jad-2001-3310
|
[25]
|
Lewczuk, P., Lelental, N., Spitzer, P., Maler, J.M. and Kornhuber, J. (2014) Amyloid-β 42/40 Cerebrospinal Fluid Concentration Ratio in the Diagnostics of Alzheimer’s Disease: Validation of Two Novel Assays. Journal of Alzheimer’s Disease, 43, 183-191. https://doi.org/10.3233/jad-140771
|
[26]
|
Portelius, E., Westman-Brinkmalm, A., Zetterberg, H. and Blennow, K. (2006) Determination of β-Amyloid Peptide Signatures in Cerebrospinal Fluid Using Immunoprecipitation-Mass Spectrometry. Journal of Proteome Research, 5, 1010-1016. https://doi.org/10.1021/pr050475v
|
[27]
|
Grossman, M., Farmer, J., Leight, S., Work, M., Moore, P., Van Deerlin, V., et al. (2005) Cerebrospinal Fluid Profile in Frontotemporal Dementia and Alzheimer’s Disease. Annals of Neurology, 57, 721-729. https://doi.org/10.1002/ana.20477
|
[28]
|
You, T., Wang, Y., Chen, S., Dong, Q., Yu, J. and Cui, M. (2024) Vascular Cognitive Impairment: Advances in Clinical Research and Management. Chinese Medical Journal, 137, 2793-2807. https://doi.org/10.1097/cm9.0000000000003220
|
[29]
|
Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., et al. (2005) The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53, 695-699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
|
[30]
|
Chew, E.Y., Burns, S.A., Abraham, A.G., Bakhoum, M.F., Beckman, J.A., Chui, T.Y.P., et al. (2025) Standardization and Clinical Applications of Retinal Imaging Biomarkers for Cardiovascular Disease: A Roadmap from an NHLBI Workshop. Nature Reviews Cardiology, 22, 47-63. https://doi.org/10.1038/s41569-024-01060-8
|
[31]
|
Yoon, S.P., Grewal, D.S., Thompson, A.C., Polascik, B.W., Dunn, C., Burke, J.R., et al. (2019) Retinal Microvascular and Neurodegenerative Changes in Alzheimer’s Disease and Mild Cognitive Impairment Compared with Control Participants. Ophthalmology Retina, 3, 489-499. https://doi.org/10.1016/j.oret.2019.02.002
|
[32]
|
Wu, H., Rodriguez, A.R., Spur, B.W. and Venkataraman, V. (2016) An Acute Retinal Model for Evaluating Blood Retinal Barrier Breach and Potential Drugs for Treatment. Journal of Visualized Experiments, No. 115, e54619. https://doi.org/10.3791/54619
|
[33]
|
O’Leary, F. and Campbell, M. (2021) The Blood-Retina Barrier in Health and Disease. The FEBS Journal, 290, 878-891. https://doi.org/10.1111/febs.16330
|
[34]
|
王晶晶, 吕佩源. 视网膜病变与脑小血管病相关性研究进展[J]. 中国脑血管病杂志, 2024, 21(4): 280-287.
|
[35]
|
Rajeev, V., Chai, Y.L., Poh, L., Selvaraji, S., Fann, D.Y., Jo, D., et al. (2023) Chronic Cerebral Hypoperfusion: A Critical Feature in Unravelling the Etiology of Vascular Cognitive Impairment. Acta Neuropathologica Communications, 11, Article No. 93. https://doi.org/10.1186/s40478-023-01590-1
|
[36]
|
Manukjan, N., Fulton, D., Ahmed, Z., Blankesteijn, W.M. and Foulquier, S. (2024) Vascular Endothelial Growth Factor: A Double-Edged Sword in the Development of White Matter Lesions. Neural Regeneration Research, 20, 191-192. https://doi.org/10.4103/nrr.nrr-d-23-01843
|
[37]
|
Cheung, C.Y., Xu, D., Cheng, C., Sabanayagam, C., Tham, Y., Yu, M., et al. (2020) A Deep-Learning System for the Assessment of Cardiovascular Disease Risk via the Measurement of Retinal-Vessel Calibre. Nature Biomedical Engineering, 5, 498-508. https://doi.org/10.1038/s41551-020-00626-4
|
[38]
|
Solis, E., Hascup, K.N. and Hascup, E.R. (2020) Alzheimer’s Disease: The Link between Amyloid-β and Neurovascular Dysfunction. Journal of Alzheimer’s Disease, 76, 1179-1198. https://doi.org/10.3233/jad-200473
|
[39]
|
Dong, Y., Venketasubramanian, N., Chan, B.P., Sharma, V.K., Slavin, M.J., Collinson, S.L., et al. (2012) Brief Screening Tests during Acute Admission in Patients with Mild Stroke Are Predictive of Vascular Cognitive Impairment 3-6 Months after Stroke. Journal of Neurology, Neurosurgery & Psychiatry, 83, 580-585. https://doi.org/10.1136/jnnp-2011-302070
|
[40]
|
István, L., Czakó, C., Élő, Á., Mihály, Z., Sótonyi, P., Varga, A., et al. (2021) Imaging Retinal Microvascular Manifestations of Carotid Artery Disease in Older Adults: From Diagnosis of Ocular Complications to Understanding Microvascular Contributions to Cognitive Impairment. GeroScience, 43, 1703-1723. https://doi.org/10.1007/s11357-021-00392-4
|
[41]
|
Li, Y.K., Fung, N.S., Chan, J.C.H., Choy, B.N.K., Chow, L.L.W., Shih, K.C., et al. (2023) OCTA Biomarkers in Adults Aged 50 and above: A Prospective and Cross-Sectional Community-Based Study. BMC Ophthalmology, 23, Article No. 71. https://doi.org/10.1186/s12886-023-02815-6
|
[42]
|
Hao, J., Kwapong, W.R., Shen, T., Fu, H., Xu, Y., Lu, Q., et al. (2024) Early Detection of Dementia through Retinal Imaging and Trustworthy AI. npj Digital Medicine, 7, Article No. 294. https://doi.org/10.1038/s41746-024-01292-5
|