视网膜标志物在血管性认知障碍中的研究进展
Advancements in Research on Retinal Biomarkers in Vascular Cognitive Impairment
DOI: 10.12677/jcpm.2025.43381, PDF, HTML, XML,   
作者: 张玲童:右江民族医学院研究生学院,广西 百色;崔 凌*:广西壮族自治区人民医院眼科,广西 南宁
关键词: 血管性认知障碍视网膜微血管光学相干断层扫描血管成像Vascular Cognitive Impairment Retinal Capillary Optical Coherence Tomography
摘要: 血管性认知障碍(Vascular Cognitive Impairment, VCI)是由脑血管病变及其危险因素引发的认知功能受损,其早期诊断主要由传统神经影像学及认知量表的侵入性、高成本和敏感性不足而受限。近年来,视觉器官作为中枢神经系统的“可视窗口”,因其与中枢神经系统的胚胎同源性及病理机制相似性,视网膜指标成为非侵入性生物标志物研究的热点。光学相干断层扫描血管成像(Optical Coherence Tomography Angiography, OCTA)技术的突破,结合人工智能算法,实现了视网膜微血管参数的精准量化,为VCI的早期筛查、亚型鉴别及疗效评估提供了新工具。研究显示,VCI患者的视网膜微血管特征与大脑病变密切相关:深层毛细血管丛(Deep Retinal Capillary Plexus, DCP)密度降低与脑白质病变体积负相关,静脉迂曲度可能与脑白质病变有关。在临床应用中,多模态模型可显著提升诊断效能,并支持亚型鉴别。此外,视网膜参数还可动态监测卒中后认知衰退及药物疗效。尽管视网膜标志物在高血压、糖尿病等高风险人群的VCI预测中展现出巨大潜力,但要解决技术标准化、多中心验证及多模态数据整合,仍具有挑战性。未来,需开发基于深度学习的社区筛查系统、解析视网膜-脑轴的分子机制,以及推动超分辨OCTA和靶向治疗策略的临床转化。视网膜成像技术为VCI的精准诊疗提供了重要窗口,有望纳入国际诊疗标准并助力于个体化干预。
Abstract: Vascular Cognitive Impairment (VCI), caused by cerebrovascular pathologies and their risk factors, leads to cognitive decline. Early diagnosis remains challenging due to the invasiveness, high cost, and limited sensitivity of traditional neuroimaging and cognitive assessments. Recent advances highlight the retina—a “visible window” of the central nervous system owing to shared embryonic origins and pathological mechanisms—as a promising source of non-invasive biomarkers. Optical Coherence Tomography Angiography (OCTA), combined with AI algorithms, enables precise quantification of retinal microvascular parameters, offering novel tools for early VCI screening, subtype classification, and treatment monitoring. Key findings include reduced deep capillary plexus (DCP) density correlating with white matter lesion volume, and venous tortuosity predicting annual lesion progression. Multimodal models integrating retinal vascular metrics and demographic data enhance diagnostic accuracy and subtype differentiation. Retinal parameters also track post-stroke cognitive decline and drug responses (e.g., cholinesterase inhibitor efficacy). While retinal biomarkers show potential in high-risk populations (hypertension, diabetes), challenges persist in standardization, multicenter validation, and multimodal data integration. Future priorities include AI-driven community screening systems, molecular exploration of the retina-brain axis, and clinical translation of super-resolution OCTA and targeted therapies. Retinal imaging holds promise for refining VCI diagnostics and personalized interventions, potentially reshaping global clinical standards.
文章引用:张玲童, 崔凌. 视网膜标志物在血管性认知障碍中的研究进展[J]. 临床个性化医学, 2025, 4(3): 560-567. https://doi.org/10.12677/jcpm.2025.43381

1. 引言

随着全球老龄化进程加速,血管性认知障碍(VCI)因其高发病率与致残性成为重大公共卫生挑战。VCI是由脑血管病变及其危险因素(如高血压、糖尿病)引发的认知功能进行性衰退综合征,涵盖从轻度认知障碍到血管性痴呆的全病程,且常与阿尔茨海默病(Alzheimer’s disease, AD)病理共存,导致混合型痴呆诊断与治疗困境。传统诊断依赖神经影像学与认知量表,其侵入性、高成本及敏感性不足限制了早期筛查与监测。视网膜作为中枢神经系统的“可视窗口”,其与脑微血管在胚胎起源、解剖及分子调控上具有高度同源性。光学相干断层扫描血管成像(OCTA)与人工智能技术的突破,使视网膜微血管参数(如毛细血管密度、静脉迂曲度)的精准量化成为可能,为VCI的早期预警、亚型鉴别及疗效评估提供了新的可能。本文系统综述近五年国内外研究进展,聚焦视网膜微血管标志物在VCI中的理论机制、临床应用及转化挑战,以期为多模态精准诊疗体系的构建提供依据。

2. 血管性认知障碍(VCI)的定义与分类

2.1. 定义与流行病学特征

脑血管病变及其相关危险因素所导致轻度认知障碍到痴呆的功能损害被定义为血管性认知障碍(Vascular Cognitive Impairment, VCI) [1],该疾病以血管源性脑损伤与认知功能减退之间的因果关联为主要特征。我国流行病学调查显示,我国60岁及以上人群中痴呆患病率为6.0%,其中血管性痴呆(vascular dementia, VaD)占1.6%,是仅次于AD的常见痴呆类型[2] [3]。在65岁及以上人群中,轻度认知障碍(mild cognitive impairment, MCI)患病率为20.8%,其中与脑血管病及血管危险因素相关的MCI占8.7%,约占MCI总体的42% [4]。我国脑卒中负担沉重,2020年脑卒中患病率和发病率分别为2.6%和505.2/10万[5],其中约1/3的患者发展为卒中后认知障碍(post-stroke cognitive impairment, PSCI) [6]。此外,老年人群通常同时存在VCI和AD,两者相互影响、相互促进,对认知老化进程产生叠加效应[7]。目前VCI已经对老年人生活质量产生影响,因此,重视并推动VCI临床早期筛查,对于降低VCI发病风险及早期干预具有重要意义。

2.2. 临床分型与诊断标准

VCI根据临床严重程度分为两种亚型:血管性轻度认知障碍(Vascular Mild Cognitive Impairment, VMCI) (亦称血管性认知障碍非痴呆,Vascular Cognitive Impairment No Dementia, VCIND)和血管性痴呆(Vascular Dementia, VaD) [8]-[10]。VMCI的特征是一个或多个认知领域受损,但未显著影响工具性日常生活能力(Instrumental Activities of Daily Living, IADL)或基本日常生活能力(Activities of Daily Living, ADL);而VaD则定义为一个或多个认知领域的严重损害,且导致IADL和/或ADL相关的功能障碍。

根据2018年由全球27国专家制定的《血管性认知障碍分类共识》(Vascular Impairment of Cognition Classification Consensus Study, VICCCS) [9],本指南将血管性认知障碍(VCI)的临床分型更新为四类:1) 卒中后认知障碍(PSCI):需以卒中事件为前提,认知损害在卒中后6个月内出现且持续≥3个月;2) 皮质下缺血性VCI(SIVCI):特征为脑小血管病相关的白质高信号和腔隙灶;3) 多发梗死性VCI(MICI):多发性梗死灶的体积和范围与认知恶化及痴呆风险正相关;4) 混合型VCI(MixCI):合并其他神经退行病理,需通过临床-影像-生物标志物综合评估主导病理并规范命名,如VCI-AD或AD-VCI。此外,病因分型仍沿用2011年指南提出的五大类别(危险因素性、缺血性、出血性、其他脑血管病性及混合性VCI) [11],以反映血管损伤的异质性机制。

2.3. 神经心理学特征及影像学评估

除此之外,在神经心理特征方面则以执行功能、信息处理速度及复杂注意力受损为核心,可伴语言、视空间或记忆功能受累,其认知损害模式与血管病变类型密切相关。临床评估需分层推进:核心诊断首选蒙特利尔认知评估量表(MoCA,根据教育水平选择北京版/基础版) [12] [13],其对血管性轻度认知障碍(VMCI)的敏感性显著优于简明智能状态检查(MMSE)。对于疑似病例,需进行全面神经心理评估,涵盖执行功能、信息处理速度、语言流畅性及视空间任务,同时结合照料者问卷和日常生活能力分析,以规避卒中相关局灶症状,如失语、偏瘫等对评估结果的干扰。动态随访建议每6~12个月复查核心认知域,伴精神行为异常者缩短至3~6个月,并至少每年完成一次全维度评估,以精准监测疾病进展及干预效果。

VCI的影像学评估以3.0 T头颅MRI为核心工具,其通过识别脑血管损伤类型与病理特征支持风险预测、病因诊断及预后评估,临床中CT仅作为MRI禁忌或不可及时的替代方案[14]。影像评估分为两大维度:① 卒中相关型VCI:脑梗死:重点关注左侧皮质/皮质下大面积或关键区病灶,DWI序列对急性梗死敏感,需记录病灶体积、定位及数量[15];脑出血:多发出血或出血性梗死与认知损害相关,需量化出血负荷。② 皮质下缺血性VCI [16]:核心影像标志包括:1) 近期皮质下小梗死(穿支动脉供血区,直径 ≤ 20 mm);2) 腔隙灶即直径3~15 mm的液体填充腔隙;3) 脑白质高信号(WMH):半定量评估(Fazekas/ARWMC/Scheltens量表)或定量分析(SPM/FreeSurfer自动体积测量) [17];4) 脑叶微出血(SWI低信号,直径2~5 mm)与VCI关联显著[18];5) 微梗死(皮质区 ≤ 4 mm病灶,需7.0 T MRI识别);6) 皮质铁沉积(SWI线性低信号,提示CAA病理);7) 脑萎缩:半定量量表(GCA/MTA)或自动化容积测量(敏感检测早期萎缩) [19]

2.4. 鉴别诊断与生物标志物进展

VCI与AD的鉴别需结合病史、神经影像学检查、生物标志物及认知功能评定结果。在认知功能损害中,VCI以执行功能、信息处理速度下降为特征,AD以情景记忆损害为主。在生物标志物层面,将从血液、尿液、脑脊液进行鉴别分析,血液标志物包括:① 早期AD患者体内糖原合成酶激酶3 (Glycogen Synthase Kinase-3, GSK-3)显著升高[20];② 血小板相关蛋白APP 130:110比值可用于评估AD的重程度,其敏感度/特异度80%~95% [21];③ 部分AD患者血浆淀粉样蛋白-β42 (Aβ42)早期升高,随病程进展下降[22];④ 炎症/脂质代谢标志物(C反应蛋白、神经酰胺/鞘磷脂比值等)具有潜在诊断价值[23]。AD患者尿液中AD7C神经丝蛋白(NTP)敏感度/特异度较高[24]。最后,脑脊液方面的检测核心标志物包括① Aβ42 /Aβ42:40比值联合检测可提升AD预测准确性至80%以上[25];② 总tau蛋白(T-tau)/磷酸化tau蛋白181位点(P-tau181):T-tau反映轴索损伤(AD升高300%,特异度50%~60%),P-tau181特异性提示神经原纤维缠结(可用于鉴别AD与FTD/DLB/VaD),若Aβ42降低 + Tau正常提示AD病理早期阶段[26] [27]

3. 视网膜微血管作为VCI标志物的可能性

3.1. 传统诊断的局限性

当前VCI的诊断高度依赖神经影像学(如MRI脑白质高信号体积评估)和神经心理学量表,如蒙特利尔认知评估量表(Montreal Cognitive Assessment MoCA)。这些检查存在以下局限性:① 侵入性:脑脊液穿刺检测Aβ/tau蛋白是一种侵入性检查方法,存在感染风险,且患者依从性低。这种检查通常不适用于大规模筛查或常规诊断。② 检查时间长及费用高:MRI单次检查时间长和费用较高,这使得其难以用于社区大规模筛查。尽管MRI在检测脑白质高信号(WMH)和其他脑血管病变方面具有较高的敏感性和特异性,也限制了其广泛应用[28];③ 敏感性不足:MoCA量表在检测轻度认知障碍(MCI)和早期阿尔茨海默病(AD)方面具有较高的灵敏度(90%)和特异性(87%),但在VCI的早期诊断中,其敏感性可能受到限制。MoCA量表的评分在早期VCI患者中波动较大,这可能影响其作为早期诊断工具的可靠性[29]

3.2. 视网膜与中枢神经系统的关联性

有研究表明,视网膜病变可能先于VCI发生,且进展更快,应用视网膜成像技术或可有助于探究VCI的发病机制,也有研究发现视网膜血管直径和形态学参数改变与VCI进展密切相关,如视网膜血管分形维数降低表明视网膜微血管网络稀疏和丢失[30]。基于光学相干断层扫描(OCT)及血管造影(OCTA)的研究显示,VCI患者的视网膜微血管特征与认知损伤程度显著相关:相较于轻度认知障碍(MCI)患者和认知正常对照组,AD患者的黄斑区浅层毛细血管丛(SCP)血管密度、灌注密度及神经节细胞–内丛状层(GC-IPL)厚度均显著降低,很显然,视网膜微血管病变可能作为VCI的生物标志物[31]

视网膜作为中枢神经系统的延伸,其微血管系统与脑微血管在解剖与胚胎发育上高度同源。结构上,血–视网膜屏障(Blood-Retina barrier, BRB)与血脑屏障(Blood-Brain Barrier, BBB)均依赖紧密连接蛋白(ZO-1、occludin)和黏附连接蛋白(VE-cadherin)维持功能,而视网膜与脑内的神经血管单元(NVU)在代谢耦联及神经调节机制上具有同构性[32] [33]。脑血管病变通过“脑–视网膜轴”引发视网膜微血管的病理形态学改变[34]。慢性脑低灌注(CCH)是VCI的关键特征,上调促凋亡基因(BAX、Caspase-3)并下调Bcl-2相关,导致氧化应激增加,进而引发认知功能下降。CCH还会破坏神经血管单元的完整性,导致脑内血管通透性增加和血–脑屏障功能障碍[35]。在跨器官分子调控机制方面,VEGF/MMP-9通路在BRB和BBB破坏中起着关键作用,VEGF通过激活MMP-9,破坏紧密连接蛋白(如occludin和claudin-5),导致BRB和BBB的通透性增加。这种破坏作用会导致脑水肿、神经炎症和神经损伤,是VCI和视网膜疾病的重要病理机制[36]

4. 视网膜标志物与血管性认知障碍

4.1. 视网膜标志物的优势

视网膜中央动脉等效直径(CRAE)是反映视网膜动脉狭窄程度的重要指标,其与多种心血管疾病风险因素相关[37],在AD患者中静脉迂曲度(Tortuosity Index)的增加可能反映了脑血管病理变化[38]。近年来,光学相干断层扫描成像(OCT)技术在全身性疾病诊疗领域的应用受到广泛关注,多项临床研究表明其在疾病诊断和疗效监测中具有重要价值。值得注意的是,部分中枢神经系统疾病可引发特征性视网膜改变,例如AD患者常出现视网膜神经纤维层(RNFL)厚度减少等形态学改变。基于光学干涉原理的OCT技术能够实现视网膜结构的无创性高分辨率成像,其三维重建功能可精确测量视网膜各分层厚度,这种高效精准的成像特性使其成为眼科临床和研究的重要工具。在血管成像方面,光学相干断层扫描血管成像(OCTA)技术通过检测血流信号变化实现微血管系统的三维可视化,该技术无需注射造影剂即可获得微米级分辨率的血管图像,不仅能清晰显示微动脉瘤和毛细血管缺血区等病变的形态特征,还能定量分析视网膜血流密度等血流动力学参数。与传统血管造影相比,OCTA具有检查时间短、无创安全等技术优势,在视网膜血管性疾病和系统性疾病的早期筛查中展现出良好的应用前景。此外,该技术对黄斑区无血管带的面积和形态等参数的定量评估具有高度可重复性,为临床诊疗决策提供了可靠的影像学依据。

4.2. 视网膜标志物与VCI相关性的研究进展

视网膜微血管标志物在VCI中的临床应用已成为跨学科研究的热点领域,其核心价值在于通过无创性视网膜成像技术揭示脑–眼微血管系统的病理耦合机制。OCTA作为该领域的核心技术,通过检测红细胞运动引起的去相关信号,可在5~8 μm分辨率下实现视网膜毛细血管网络的三维可视化,量化评估黄斑区浅层毛细血管丛(SCP)的血管密度、灌注密度及神经节细胞–内丛状层(GC-IPL)厚度等关键指标,这些已被证实与VCI的病理进程存在关联。例如,缺血性卒中和短暂性脑缺血发作的患者在首次卒中后14天内接受MoCA和MMSE评估,随后在3~6个月后对7个认知领域进行正式的神经心理学评估。结果发现轻度卒中患者急性入院时的简短筛查试验可预测卒中后3~6个月出现显著VCI [39]

从病理机制层面,视网膜微血管稀疏(microvascular rarefaction)不仅反映局部缺血损伤,更被视为全身性微血管病变的“窗口”。脑–视网膜轴理论指出,视网膜与脑组织共享胚胎起源(均源自神经外胚层)和血管特性(无自主神经支配、内皮紧密连接),因此VCI相关的血脑屏障破坏、血管周围间隙扩大等病理改变可同步体现于视网膜微循环。有关文献发现颈动脉狭窄(Carotid artery stenosis, CAS)导致VCI发生的机制是多方面的,除了颈动脉粥样硬化病变导致的栓塞和血流量减少之外,脑循环中的微循环功能障碍也在CAS相关VCI中发挥关键作用。视网膜微血管系统为研究脑小血管病和VCI的发病机制提供了独特的机会,因为脑循环和视网膜循环具有相似的解剖学、生理学和胚胎学。相似的微血管病变可能出现在脑和视网膜中,因此眼部检查可以作为一种无创筛查工具来研究与CAS相关的中枢神经系统的病理变化[40]。推荐50岁以上高危人群(如高血压、糖尿病)每年接受OCTA检查,OCTA已被有效地用于预测痴呆、脱髓鞘、视盘神经病变和遗传性退行性疾病中的视网膜血管异常。最常见的发现是血管密度和流量下降以及无血管区增加[41]

近年来,人工智能(Artificial intelligence, AI)在光学相干断层扫描(OCT)中的应用近年来快速发展,尤其在医学影像分析和临床诊断中展现了巨大潜力。Hao J等在近期的研究中提出了一种新的深度学习框架 Eye-AD,以使用视网膜微血管系统和脉络膜毛细血管的OCTA图像来检测早发性阿尔茨海默病(Early-onset Alzheimer’s disease, EOAD)和轻度认知障碍(MCI)。该研究使用了1671名参与者的5751张OCTA图像,该研究的模型在EOAD (内部数据:AUC = 0.9355,外部数据:AUC = 0.9007)和MCI检测(内部数据:AUC = 0.8630,外部数据:AUC = 0.8037)方面表现出优异的性能。此外,该研究还探讨了OCTA图像中视网膜结构生物标志物与EOAD/MCI之间的关联,研究结果提供了进一步的证据,表明视网膜OCTA成像与人工智能相结合,将作为一种快速、无创且负担得起的痴呆检测[42]

5. 总结

血管性认知障碍(VCI)作为全球老龄化背景下的重大公共卫生问题,其早期诊断与精准管理,仍面临着传统神经影像学及认知量表的局限性。近年来,视网膜因其与中枢神经系统的胚胎同源性及微血管病理机制的相似性,成为非侵入性生物标志物研究的重要突破口。OCTA技术的革新,结合人工智能算法,实现了视网膜微血管参数(如深层毛细血管丛密度、静脉迂曲度)的精准量化,为VCI的早期筛查、亚型鉴别及疗效评估提供了新的可能。研究证实,视网膜微血管稀疏、黄斑区灌注密度降低等特征与脑白质病变、卒中后认知衰退显著相关,且多模态模型整合视网膜参数与临床数据可显著提升诊断效能。尽管视网膜标志物在高危人群的VCI预测中展现出巨大潜力,但在技术标准化、多中心验证及多模态数据整合上仍是亟待解决的挑战。未来研究还需聚焦基于深度学习的社区筛查系统开发、视网膜–脑轴分子机制的解析,以及超分辨OCTA技术的临床转化。视网膜影像技术有望重塑VCI的诊疗标准,推动个体化干预策略的制定,为血管性认知障碍的精准医学时代开启新篇章。

NOTES

*通讯作者。

参考文献

[1] Lee, N.K., Kim, H., Yang, J., Kim, J., Son, J.P., Jang, H., et al. (2020) Heterogeneous Disease Progression in a Mouse Model of Vascular Cognitive Impairment. International Journal of Molecular Sciences, 21, Article 2820.
https://doi.org/10.3390/ijms21082820
[2] van der Flier, W.M., Skoog, I., Schneider, J.A., Pantoni, L., Mok, V., Chen, C.L.H., et al. (2018) Vascular Cognitive Impairment. Nature Reviews Disease Primers, 4, Article No. 18003.
https://doi.org/10.1038/nrdp.2018.3
[3] Jia, L., Quan, M., Fu, Y., Zhao, T., Li, Y., Wei, C., et al. (2020) Dementia in China: Epidemiology, Clinical Management, and Research Advances. The Lancet Neurology, 19, 81-92.
https://doi.org/10.1016/s1474-4422(19)30290-x
[4] Jia, J., Zhou, A., Wei, C., Jia, X., Wang, F., Li, F., et al. (2014) The Prevalence of Mild Cognitive Impairment and Its Etiological Subtypes in Elderly Chinese. Alzheimers & Dementia, 10, 439-447.
https://doi.org/10.1016/j.jalz.2013.09.008
[5] Tu, W., Zhao, Z., Yin, P., Cao, L., Zeng, J., Chen, H., et al. (2023) Estimated Burden of Stroke in China in 2020. JAMA Network Open, 6, e231455.
https://doi.org/10.1001/jamanetworkopen.2023.1455
[6] El Husseini, N., Katzan, I.L., Rost, N.S., Blake, M.L., Byun, E., Pendlebury, S.T., et al. (2023) Cognitive Impairment after Ischemic and Hemorrhagic Stroke: A Scientific Statement from the American Heart Association/American Stroke Association. Stroke, 54, e272-e291.
https://doi.org/10.1161/str.0000000000000430
[7] Love, S. and Miners, J.S. (2016) Cerebrovascular Disease in Ageing and Alzheimer’s Disease. Acta Neuropathologica, 131, 645-658.
https://doi.org/10.1007/s00401-015-1522-0
[8] Sachdev, P., Kalaria, R., O’Brien, J., Skoog, I., Alladi, S., Black, S.E., et al. (2014) Diagnostic Criteria for Vascular Cognitive Disorders. Alzheimer Disease & Associated Disorders, 28, 206-218.
https://doi.org/10.1097/wad.0000000000000034
[9] Skrobot, O.A., Black, S.E., Chen, C., DeCarli, C., Erkinjuntti, T., Ford, G.A., et al. (2017) Progress toward Standardized Diagnosis of Vascular Cognitive Impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimers & Dementia, 14, 280-292.
https://doi.org/10.1016/j.jalz.2017.09.007
[10] 陈耀龙, 杨克虎, 王小钦, 等. 中国制订/修订临床诊疗指南的指导原则(2022版) [J]. 中华医学杂志, 2022, 102(10): 697-703.
[11] 中华医学会神经病学分会痴呆与认知障碍学组写作组. 血管性认知障碍诊治指南[J]. 中华神经科杂志, 2011, 44(2): 142-147.
[12] Wei, Q., Du, B., Liu, Y., Cao, S., Yin, S., Zhang, Y., et al. (2024) The Montreal Cognitive Assessment: Normative Data from a Large, Population-Based Sample of Chinese Healthy Adults and Validation for Detecting Vascular Cognitive Impairment. Frontiers in Neuroscience, 18, Article 1455129.
https://doi.org/10.3389/fnins.2024.1455129
[13] Chen, K., Xu, Y., Chu, A., Ding, D., Liang, X., Nasreddine, Z.S., et al. (2016) Validation of the Chinese Version of Montreal Cognitive Assessment Basic for Screening Mild Cognitive Impairment. Journal of the American Geriatrics Society, 64, e285-e290.
https://doi.org/10.1111/jgs.14530
[14] Lees, R.A., Hendry BA, K., Broomfield, N., Stott, D., Larner, A.J. and Quinn, T.J. (2016) Cognitive Assessment in Stroke: Feasibility and Test Properties Using Differing Approaches to Scoring of Incomplete Items. International Journal of Geriatric Psychiatry, 32, 1072-1078.
https://doi.org/10.1002/gps.4568
[15] Weaver, N.A., Kuijf, H.J., Aben, H.P., Abrigo, J., Bae, H., Barbay, M., et al. (2021) Strategic Infarct Locations for Post-Stroke Cognitive Impairment: A Pooled Analysis of Individual Patient Data from 12 Acute Ischaemic Stroke Cohorts. The Lancet Neurology, 20, 448-459.
https://doi.org/10.1016/s1474-4422(21)00060-0
[16] van Straaten, E.C.W., Fazekas, F., Rostrup, E., Scheltens, P., Schmidt, R., Pantoni, L., et al. (2006) Impact of White Matter Hyperintensities Scoring Method on Correlations with Clinical Data: The LADIS Study. Stroke, 37, 836-840.
https://doi.org/10.1161/01.str.0000202585.26325.74
[17] Balakrishnan, R., del C. Valdés Hernández, M. and Farrall, A.J. (2021) Automatic Segmentation of White Matter Hyperintensities from Brain Magnetic Resonance Images in the Era of Deep Learning and Big Data—A Systematic Review. Computerized Medical Imaging and Graphics, 88, Article 101867.
https://doi.org/10.1016/j.compmedimag.2021.101867
[18] Gregg, N.M., Kim, A.E., Gurol, M.E., Lopez, O.L., Aizenstein, H.J., Price, J.C., et al. (2015) Incidental Cerebral Microbleeds and Cerebral Blood Flow in Elderly Individuals. JAMA Neurology, 72, 1021-1028.
https://doi.org/10.1001/jamaneurol.2015.1359
[19] Duering, M., Biessels, G.J., Brodtmann, A., Chen, C., Cordonnier, C., de Leeuw, F., et al. (2023) Neuroimaging Standards for Research into Small Vessel Disease—Advances since 2013. The Lancet Neurology, 22, 602-618.
https://doi.org/10.1016/s1474-4422(23)00131-x
[20] Hye, A., Kerr, F., Archer, N., Foy, C., Poppe, M., Brown, R., et al. (2004) Glycogen Synthase Kinase-3 Is Increased in White Cells Early in Alzheimer’s Disease. Neuroscience Letters, 373, 1-4.
https://doi.org/10.1016/j.neulet.2004.10.031
[21] van de Grind, W.A., van Hof, P., van der Smagt, M.J. and Verstraten, F.A.J. (2001) Slow and Fast Visual Motion Channels Have Independent Binocular-Rivalry Stages. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268, 437-443.
https://doi.org/10.1098/rspb.2000.1380
[22] Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al. (1996) Secreted Amyloid β-Protein Similar to That in the Senile Plaques of Alzheimer’s Disease Is Increased in Vivo by the Presenilin 1 and 2 and APP Mutations Linked to Familial Alzheimer’s Disease. Nature Medicine, 2, 864-870.
https://doi.org/10.1038/nm0896-864
[23] Praticò, D., Clark, C.M., Liun, F., Lee, V.Y. and Trojanowski, J.Q. (2002) Increase of Brain Oxidative Stress in Mild Cognitive Impairment. Archives of Neurology, 59, 972-976.
https://doi.org/10.1001/archneur.59.6.972
[24] de la Monte, S.M. and Wands, J.R. (2001) The AD7c-NTP Neuronal Thread Protein Biomarker for Detecting Alzheimer’s Disease. Journal of Alzheimers Disease, 3, 345-353.
https://doi.org/10.3233/jad-2001-3310
[25] Lewczuk, P., Lelental, N., Spitzer, P., Maler, J.M. and Kornhuber, J. (2014) Amyloid-β 42/40 Cerebrospinal Fluid Concentration Ratio in the Diagnostics of Alzheimer’s Disease: Validation of Two Novel Assays. Journal of Alzheimers Disease, 43, 183-191.
https://doi.org/10.3233/jad-140771
[26] Portelius, E., Westman-Brinkmalm, A., Zetterberg, H. and Blennow, K. (2006) Determination of β-Amyloid Peptide Signatures in Cerebrospinal Fluid Using Immunoprecipitation-Mass Spectrometry. Journal of Proteome Research, 5, 1010-1016.
https://doi.org/10.1021/pr050475v
[27] Grossman, M., Farmer, J., Leight, S., Work, M., Moore, P., Van Deerlin, V., et al. (2005) Cerebrospinal Fluid Profile in Frontotemporal Dementia and Alzheimer’s Disease. Annals of Neurology, 57, 721-729.
https://doi.org/10.1002/ana.20477
[28] You, T., Wang, Y., Chen, S., Dong, Q., Yu, J. and Cui, M. (2024) Vascular Cognitive Impairment: Advances in Clinical Research and Management. Chinese Medical Journal, 137, 2793-2807.
https://doi.org/10.1097/cm9.0000000000003220
[29] Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., et al. (2005) The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53, 695-699.
https://doi.org/10.1111/j.1532-5415.2005.53221.x
[30] Chew, E.Y., Burns, S.A., Abraham, A.G., Bakhoum, M.F., Beckman, J.A., Chui, T.Y.P., et al. (2025) Standardization and Clinical Applications of Retinal Imaging Biomarkers for Cardiovascular Disease: A Roadmap from an NHLBI Workshop. Nature Reviews Cardiology, 22, 47-63.
https://doi.org/10.1038/s41569-024-01060-8
[31] Yoon, S.P., Grewal, D.S., Thompson, A.C., Polascik, B.W., Dunn, C., Burke, J.R., et al. (2019) Retinal Microvascular and Neurodegenerative Changes in Alzheimer’s Disease and Mild Cognitive Impairment Compared with Control Participants. Ophthalmology Retina, 3, 489-499.
https://doi.org/10.1016/j.oret.2019.02.002
[32] Wu, H., Rodriguez, A.R., Spur, B.W. and Venkataraman, V. (2016) An Acute Retinal Model for Evaluating Blood Retinal Barrier Breach and Potential Drugs for Treatment. Journal of Visualized Experiments, No. 115, e54619.
https://doi.org/10.3791/54619
[33] O’Leary, F. and Campbell, M. (2021) The Blood-Retina Barrier in Health and Disease. The FEBS Journal, 290, 878-891.
https://doi.org/10.1111/febs.16330
[34] 王晶晶, 吕佩源. 视网膜病变与脑小血管病相关性研究进展[J]. 中国脑血管病杂志, 2024, 21(4): 280-287.
[35] Rajeev, V., Chai, Y.L., Poh, L., Selvaraji, S., Fann, D.Y., Jo, D., et al. (2023) Chronic Cerebral Hypoperfusion: A Critical Feature in Unravelling the Etiology of Vascular Cognitive Impairment. Acta Neuropathologica Communications, 11, Article No. 93.
https://doi.org/10.1186/s40478-023-01590-1
[36] Manukjan, N., Fulton, D., Ahmed, Z., Blankesteijn, W.M. and Foulquier, S. (2024) Vascular Endothelial Growth Factor: A Double-Edged Sword in the Development of White Matter Lesions. Neural Regeneration Research, 20, 191-192.
https://doi.org/10.4103/nrr.nrr-d-23-01843
[37] Cheung, C.Y., Xu, D., Cheng, C., Sabanayagam, C., Tham, Y., Yu, M., et al. (2020) A Deep-Learning System for the Assessment of Cardiovascular Disease Risk via the Measurement of Retinal-Vessel Calibre. Nature Biomedical Engineering, 5, 498-508.
https://doi.org/10.1038/s41551-020-00626-4
[38] Solis, E., Hascup, K.N. and Hascup, E.R. (2020) Alzheimer’s Disease: The Link between Amyloid-β and Neurovascular Dysfunction. Journal of Alzheimers Disease, 76, 1179-1198.
https://doi.org/10.3233/jad-200473
[39] Dong, Y., Venketasubramanian, N., Chan, B.P., Sharma, V.K., Slavin, M.J., Collinson, S.L., et al. (2012) Brief Screening Tests during Acute Admission in Patients with Mild Stroke Are Predictive of Vascular Cognitive Impairment 3-6 Months after Stroke. Journal of Neurology, Neurosurgery & Psychiatry, 83, 580-585.
https://doi.org/10.1136/jnnp-2011-302070
[40] István, L., Czakó, C., Élő, Á., Mihály, Z., Sótonyi, P., Varga, A., et al. (2021) Imaging Retinal Microvascular Manifestations of Carotid Artery Disease in Older Adults: From Diagnosis of Ocular Complications to Understanding Microvascular Contributions to Cognitive Impairment. GeroScience, 43, 1703-1723.
https://doi.org/10.1007/s11357-021-00392-4
[41] Li, Y.K., Fung, N.S., Chan, J.C.H., Choy, B.N.K., Chow, L.L.W., Shih, K.C., et al. (2023) OCTA Biomarkers in Adults Aged 50 and above: A Prospective and Cross-Sectional Community-Based Study. BMC Ophthalmology, 23, Article No. 71.
https://doi.org/10.1186/s12886-023-02815-6
[42] Hao, J., Kwapong, W.R., Shen, T., Fu, H., Xu, Y., Lu, Q., et al. (2024) Early Detection of Dementia through Retinal Imaging and Trustworthy AI. npj Digital Medicine, 7, Article No. 294.
https://doi.org/10.1038/s41746-024-01292-5