脑出血后脑积水机制及治疗的研究进展
Research Progress on the Mechanism and Treatment of Post-Hemorrhagic Hydrocephalus
DOI: 10.12677/acm.2025.1561797, PDF, HTML, XML,   
作者: 白伟杰:山东第一医科大学临床医学院,山东 济南;李 猛*:山东第一医科大学第一附属医院(山东省千佛山医院)神经外科,山东 济南
关键词: 脑出血后脑积水神经炎症脑脊液代谢治疗Post-Hemorrhagic Hydrocephalus Neuroinflammation Cerebrospinal Fluid Metabolism Therapy
摘要: 出血后脑积水(Post-Hemorrhagic Hydrocephalus, PHH)是脑出血后一种严重并发症,会增加脑出血的不良预后。目前主流的治疗方式是分流手术,但术后并发症与二次手术率较高,寻找另一种切实可行的治疗策略是我们迫切需要的。近些年来随着对脑出血后脑脊液动力学认识的加深,衍生出了一系列的治疗策略。进一步深入理解脑出血后的脑脊液(Cerebrospinal Fluid, CSF)代谢改变与PHH的形成机制对寻找PHH非手术治疗方面具有重要的指导意义。
Abstract: Post-hemorrhagic hydrocephalus (PHH) is a serious complication of intracerebral hemorrhage and increases the poor prognosis of intracerebral hemorrhage. At present, the mainstream treatment method is shunt surgery, but the rate of postoperative complications and secondary surgery is high, and it is urgent for us to find another practical treatment strategy. In recent years, with the deepening of the understanding of CSF dynamics after cerebral hemorrhage, a series of treatments have been derived. Further understanding of cerebrospinal fluid (CSF) metabolism changes and PHH formation mechanism after intracerebral hemorrhage is of great guiding significance for the search for non-surgical treatment of PHH.
文章引用:白伟杰, 李猛. 脑出血后脑积水机制及治疗的研究进展[J]. 临床医学进展, 2025, 15(6): 848-856. https://doi.org/10.12677/acm.2025.1561797

1. 引言

脑出血是一种严重的致死率、致残率很高的脑血管疾病。而出血后脑积水(PHH)则是继发于脑出血后的一种严重并发症。有相关临床试验表明PHH是脑出血不良结局的独立危险因素,脑出血伴脑积水形成的30天死亡率更是高达43%~68% [1]。脑出血后脑积水的发生率也很高,根据文献报道约40%的自发性脑出血患者发生脑室内出血(Intraventricular Hemorrhage, IVH),其中又有51~89%的患者会出现脑积水[2]

脑积水的发生本质上可以概括为脑脊液产生与吸收的不平衡,同理PHH的形成机制也可以认为是血液成分对脑脊液代谢各个环节影响的综合结果。在传统的脑脊液代谢理论中[3],70~80%的脑脊液由脉络丛产生,其他部分则被认为来自脑室的室管膜细胞,以及通过血脑屏障(Blood Brain Barrier, BBB)的液体转运。脑室内产生的CSF经第四脑室的正中孔和侧孔流入蛛网膜空间,并通过蛛网膜颗粒进以进入血液循环,其驱动力是血浆的胶体渗透压和蛛网膜下腔与静脉窦压力差。而随着硬脑膜淋巴管[4]、胶质淋巴系统[5]重新发现,以及后续的进一步研究,衍生出了一些治疗出血后脑积水的新策略如药物干预、光生物疗法、基因控制等方式。本文详细总结了近些年来根据出血后脑积水形成机制衍生出来的一些治疗策略。

2. 脑脊液代谢通路

脑脊液的代谢是十分复杂的,不单止脑脊液在脉络丛产生、经硬脑膜淋巴管重吸收,更重要的是脑脊液在这套系统中如何流动,又会受到什么因素的调控。明确脑脊液在各个部分的动力学变化对我们进一步理解PHH形成机制与寻找新的治疗策略至关重要。下文中作者简单介绍了脉络丛、胶质淋巴系统等脑脊液代谢节点的最新发现,希望可以为PHH治疗提供新的启发。

2.1. 脉络丛

脉络丛是一种分泌上皮,其表面转运蛋白的分布与其他分泌上皮不同,其他分泌性上皮的“基底外侧转运蛋白”如NKCC1 (Na +-K +-2Cl-协同转运体亚型1)、KCC (K + -Cl-协同转运蛋白)和NHE1 (Na+/H+交换蛋白)都在脉络丛的顶端膜中高度表达[6],这种脉络丛转运蛋白的不典型极化导致了其独特的离子转运机制。

在脉络丛中存在于顶端膜中Na+-K+-ATP酶、NKCC1、基底膜上的NBCn 2 (Na+-HCO 3协同转运蛋白)、NHE1介导Na+从血管内向CSF中分泌,而CSF中主要的阴离子Cl的分泌则主要由顶端膜上的NKCC1和KCC、基底膜上的AE 2 (阴离子交换蛋白2)介导,在此过程还伴随K+、HCO 3的转运。而对于水的转运,尽管在脉络丛上皮特异性表达的claudin-2具有较强的透水性,但目前普遍认为水的转运主要借助于离子转运的耦合通过APQ1 (水通道蛋白1型)来实现跨细胞转运[6]-[9]

根据最近的实验证据,NKCC1在PHH形成过程中发挥重要且复杂的作用。Jason K Karimy [10]等人发现脑出血后NKCC1介导脉络丛CSF高分泌引起脑室扩张。Cameron Sadegh [11]团队则认为NKCC1一种双向转运蛋白,其方向受Na+、K+和Cl的联合梯度控制,在脑出血初期,裂解的红细胞引起CSF中钾离子浓度升高,此时NKCC1介导脑脊液的吸收,他们通过腺病毒靶向脉络丛使NKCCI表达增加,最终抑制了脑室扩张。

2.2. 胶质淋巴系统

过去人们普遍认为中枢系统缺乏淋巴系统。Jeffrey J. Iliff [4]与他的团队提出了一条脑内代谢废物清除的途径即胶质淋巴系统,它是由星形胶质细胞端足包绕血管形成的一种血管周围空间(Perivascular Space, PVS)。CSF在胶质淋巴系统中的运动包括CSF进入动脉周围空间、CSF于间质液的交换、CSF沿静脉周围空间流出[4] [12]

CSF与溶质在PVS内的流动是复杂而充满争议的。对于驱动CSF在PVS的作用力,目前认为主要是来自心脏搏动传导到脑内引起的血管收缩与舒张,此外也受到呼吸、颅内压、神经血管耦合等因素的影响[7] [13]。此外Xie [14]等人证明,在睡眠期间或使用诱导慢波睡眠的药物麻醉期间,胶质淋巴系统的清除能力显著增加,这被归因与细胞外空间的增加,更深层次的机制则是去甲肾上腺素能信号介导的神经活动调节了间质空间体积的变化。

2.3. 蛛网膜颗粒

在之前的观念里,蛛网膜颗粒被认为是脑脊液向静脉窦引流的主要部位。其支持的证据主要来源于Weed的相关实验,他们对上矢状窦和相关组织的冷冻切片证实了蛛网膜绒毛和硬脑膜窦中存在普鲁士蓝颗粒,但他们的研究存在局限性,离体组织可能已经发生了小分子量底物的死后扩散。此外另一项否定性证据是在低等脊椎动物与人类婴儿体内不存在蛛网膜颗粒[15]

Trishna等人通过使用高分辨率显微镜及免疫标记物,对蛛网膜颗粒的大小、形态、分布、内容物、膜屏障及衰老对蛛网膜颗粒的影响作了一系列研究。在他们的研究中,蛛网膜颗粒并不总是突入硬脑膜中,根据其与脑膜的关系,他们将蛛网膜颗粒分为了5型。蛛网膜颗粒的内部是由结缔组织和胶原纤维组成的不规则腔隙,内有脑脊液与免疫细胞浸润,Trishna的研究证明了包括蛛网膜颗粒在内的窦周组织参与处理CSF流出,并在脑表面形成免疫监视的关键界面这一假设[16] [17]

2.4. 硬脑膜淋巴管

Lena Koh [18]对过去关于淋巴系统证据做了重新审视,在早期的研究中,许多证据表明注入脑脊液或脑实质中的示踪剂进入颅骨外的淋巴系统中。这表明存在蛛网膜下腔与外周淋巴系统相沟通的淋巴网络。特别是近二十年来随着观测技术的进步,硬脑膜淋巴管的存在及在免疫[18]-[20]与神经系统疾病如阿尔茨海默病、脑积水、特发性颅内压增高[21]-[23]等疾病中的重要作用正越来越被人们认可。

Aleksanteri [4]通过LYVE1、PROX1等淋巴细胞特异性标志物标记淋巴内皮细胞,通过荧光染料区分血管,在小鼠硬脑膜描述了一种内衬淋巴内皮细胞的类血管样通道网络。在他们的描述中硬脑膜淋巴管沿着上矢状窦、横窦、乙状窦及大脑大静脉、脑膜中动脉等颅内动静脉系统的主要分支向颅底走行,在颅底的孔裂随着动静脉及神经离开中枢。Martina [24]更进一步使用T2加权液体衰减反转恢复(T2-FLAIR)脉冲序列评估了人类与普通绒猴中的淋巴网络,实现了脑膜淋巴管的无创成像。但这种MRI只能观测到大的慢流淋巴管,不能显影盲端和小毛细淋巴管,此外也无法观察其内CSF与免疫细胞的流动。

3. 脑出血后脑积水的形成机制及治疗进展

3.1. 脑出血后血液成分的毒性作用

3.1.1. 红细胞及降解产物

大量溢出的血液除了初期阻塞流出通道引起急性脑积水外,后续的血液成分及代谢产物也参与了脑积水的形成。这点已经被许多研究者证实,如Gao等人在大鼠脑室内注射浓缩或裂解的红细胞或铁剂可导致明显的脑室扩张和脑室壁损伤[25],因而很早之前就有一些研究者设计了临床前研究来检查溶解、冲洗血凝块在预防PHH中的功效,在他们的实验中纤溶药物的应用可以明显促进血凝块溶解并限制了脑室的扩张,但也有研究表明,单独使用重组组织型纤溶酶原激活剂(rt-PA)进行血凝块溶解对IVH患者的PHH预防没有影响[3]

从血管内游离出的红细胞,一部分在膜攻击复合物的作用下被裂解,另一部分则被驻留的小胶质细胞和招募的巨噬细胞吞噬降解[26]。在这一过程中红细胞的代谢产物会引起炎症反应与周围组织的氧化损伤。因而就有一些研究者提出通过增强红细胞的内源性清除来减轻甚至预防PHH [27] [28]。在胶质细胞中存在一种亚型:M2型小胶质细胞,其在发挥吞噬细胞作用的同时可以分泌抗炎细胞因子,起到抗炎效应[29]。因而通过选择性激活小胶质细胞来增强前期红细胞的吞噬降解可能是脑出血后脑积水的一种潜在治疗靶点。

3.1.2. 凝血酶

凝血酶是一种丝氨酸蛋白酶,除了本身作为通过白细胞募集而激活的炎症激活因子外[30],在IVH大鼠模型中,还可以下调脉络丛内的血管内皮钙粘蛋白(VE-Cadherin),进而导致血管通透性增加,这可能有助于脑积水的发展[31]。此外Li等人在之前的研究中发现凝血酶可诱导(转化生长因子β1) TGF-β1表达上调,导致严重的蛛网膜下腔脑膜纤维化,进而影响CSF流动[32]。除了对CSF流动的影响,在血肿周围缺血的组织中凝血酶还可以通过促进花生四烯酸动员和随后的亚铁死亡基因酰基辅酶A合成酶长链家族成员4 (ACSL4)的酯化来刺激铁死亡信号传导引起神经元的损伤[33]

3.1.3. 铁

铁在出血后脑积水的形成过程中发挥重要作用,总的来说铁参与出血后脑积水的机制涉及以下几个方面:铁会通过氧化损伤破坏室管膜细胞,引起血–脑脊液屏障损伤与运动纤毛功能障碍[34];铁本身作为一种促炎物质,可以引起广泛的炎症反应,进而引起脉络丛脑脊液分泌增加[10];铁可能通过诱导AQP4的表达上调导致脑积水[35];铁可能通过Wnt信号传导,引起蛛网膜下腔纤维化,进而导致脑积水[36]。已经有许多小鼠或大鼠实验证明了去铁胺可以减轻脑积水,这提示脑内螯合铁是治疗脑出血后脑积水的一个切实有效的治疗策略。

3.1.4. 转化生长因子(TGF-β)

TGF-β是一种多功能的细胞因子,可刺激包括胚胎发育、伤口愈合、组织内稳态等多种细胞反应,同时其在多种纤维化疾病的发病过程中起到至关重要的作用[37]。在脑出血后,破裂的血小板释放大量的TGF-β1,随后在ROS的直接和间接激活下引起蛛网膜下腔的纤维化进而导致导致脑积水[38] [39]。Yan [40]等人的实验使用decorin (TGF-β1拮抗剂)有效降低了大鼠交通性脑积水模型的慢性脑积水风险,证明了TGF-β1在出血后脑积水形成中的重要作用,也表明了TGF-β靶向治疗可能作为出血后脑积水的潜在治疗靶点。

3.2. 两条炎症通路介导脉络CSF过度分泌

3.2.1. TLR4-NF-κB-SPAK通路

Toll样受体(TLRs)是一组免疫相关的识别受体,至今在人类中已发现10种TLR。其中TLR4 (Toll样受体4)是研究最多的,其有两种识别模式:病原体相关分子模式(PAMP)与自身衍生的损伤相关分子模式(DAMP) [41]。在脑出血后红细胞及其代谢物以DAMP模式激活TLR4信号传导[42]。TLR4的下游分子是MyD 88,其C-末端部分具有TIR结构域,可以与TLR的TIR结构域结合。在TLR4激活后,MyD 88被募集到TLR,IRAK通过磷酸化被激活,然后与TRAF6结合。它们共同形成了Myddosome,进而导致转化因子-β-激活激酶1 (TAK 1)的下游激活,后者激活IκB激酶(IKK)和丝裂原激活蛋白激酶(MAPK)信号传导。IKKα、IKKβ和IKKγ复合物通过IκB的磷酸化,导致活化B细胞(NF-κB)的核因子κ轻链增强子的核转位,促进促炎细胞因子的转录[43]-[45]。SPAK是环境和细胞应激信号的信号转导子,其在脉络丛细胞高度表达,在炎症期间以NF-κB依赖性方式被激活而磷酸化,磷酸化的SPAK与NKCC1结合并促进其磷酸化,进而介导脉络丛CSF的高分泌[46]

Karimy [41]等人总结了一些已经发现的可以靶向抑制TLR4通路相关组分的小分子物质和抗生素。如灭活TLR4和下游效应物如细胞外受体激酶(ERK)和蛋白激酶B (AKT)的达沙替尼[45]、干扰TLR4寡聚化的姜黄素[46]、抗生素如环丙沙星和左氧氟沙星[47]等,尽管尚未用于评估对脑出血后脑积水的疗效,但鉴于靶向TLR4的抗炎特性,这是一条潜在有效的靶向治疗策略。

3.2.2. NLRP3-SPAK-NKCC1通路

NLRP3是一种响应微生物入侵和损伤信号介导免疫反应的多蛋白复合物,NLRP3的激活涉及启动和装配两个方面,且在这个过程中受到蛋白质间相互作用、翻译后修饰和时空调控等多种复杂调控机制[48]。NLRP3特殊的一点是通过感受细胞应激和细胞膜损伤的扰动如:细胞内其他炎症通路转导、活性氧产生,离子流动等信息而受到激活[49]。而在脑出血后,Zhan [50]等人通过脉络丛的转录组和蛋白质组学分析发现脑室内出血后NLRP3炎性体被激活,并通过体内外实验证明了激活后的NLRP3小体通过影响脉络丛NKCC1磷酸化导致脑积水。此外NLRP3还可以影响出血后的脂质代谢,进而通过基质金属蛋白酶9 (MMP9)影响血–脑脊液屏障的通透性[51]。这些证据提示NLRP3也可能是脑出血后脑积水预防的治疗靶点。

在NLRP3的靶向治疗方面,Ma [52]综述了NLRP3炎性体的一些小分子抑制剂及其作用方式:如MCC 950,它是目前研究最多且对NLRP3炎性小体抑制效果最好的;如CY-09,它可与NLRP3的ATP结合基序结合并抑制ATP酶活性,从而抑制NLRP3炎性体的组装和活化。但目前包括MCC 950在内的一些药物在临床试验中都显示出一定的毒性。未来需要更好地理解NLRP3及其炎性体的激活机制和结构,来设计更好、更安全的NLRP3抑制剂用于药物治疗。

3.3. 室管膜细胞受损及纤毛功能障碍

在前文中已经表述了在脑出血后红细胞降解产物和炎症因子会造成室管膜细胞的大片缺损,这也是脑出血后脑积水的致病机制之一。但近期有研究者对脑积水的“纤毛假说”提出了质疑,并提出:室管膜细胞表面不活动的初级纤毛同样可能通过调节神经发育以及其他细胞过程等流体动力学之外的因素来导致脑积水[53]。总之无论是作为动力来源还是从调节神经发育来说,室管膜细胞及其纤毛的正常存在,对维持脑脊液代谢平衡是必不可少的。

关于在脑出血后恢复室管膜细胞方面,有些研究者进行了干细胞移植治疗的研究,并且在先天性脑积水的动物模型中,通过移植了神经干细胞,已经成功观察到了这些干细胞细胞向神经细胞的分化[54]。但目前尚无使用干细胞的治疗有效恢复室管膜的报道,且移植后肿瘤、技术安全性、伦理问题这都是需要克服的挑战。

3.4. 其他治疗策略

在研究脑脊液代谢与其他神经退行性病变的过程中,也发现了一些药物或方法可以有效改善胶质淋巴系统、硬脑膜淋巴管的脑脊液转运效率,这些方法在未来也有可能被用来改善或治疗脑出血后脑积水。

在药物方面,Bachmann [55]等人发现右美托咪定与异氟烷联合使用可显著促进CSF示踪剂的淋巴内流。Wu [56]等人发现冰片通过增强硬脑膜淋巴管的收缩能力与促进硬脑膜淋巴管生成来减轻脑内β淀粉样蛋白的清除。Wang [57]等人发现多巴酚丁胺可以加强蛛网膜下腔出血后红细胞向颈部淋巴结的清除。

除了药物外,俄罗斯的一组研究人员进行了一系列关于光生物调节(PBM)疗法治疗对大脑淋巴引流功能可能有益的动物研究,证明了经颅PBM可能刺激动物AD模型中淋巴引流[58]。Murdock团队证明了40 Hz的γ刺激通过促进APQ4极化、促进动脉搏动等机制促进淀粉样蛋白的胶质淋巴清除[59]

4. 讨论

脑积水是脑出血后的严重并发症,可独立增加死亡风险,目前临床上的治疗策略是在脑积水形成后进行外科手术干预,但术后感染、分流管堵塞、分流压力调节等问题频发,严重者甚至需要二次手术,这无疑给个人家庭甚至整个国家医疗系统都带来了巨大的负担。而且现在被应用于临床的乙酰唑胺尚达不到预期效果,寻找新的更有效的治疗策略来治疗甚至预防脑出血后脑积水是我们迫切需要的。我们在本文中综述了近些年来对脑脊液代谢通路的最新发现以及脑出血后脑积水形成机制和潜在治疗靶点的最新进展。尽管当前研究对脑出血后脑积水(PHH)的机制及治疗策略取得了重要进展,但仍存在诸多挑战与探索空间。本文作者认为未来研究可聚焦以下方向:分子机制的深度解析:进一步阐明PHH形成中未被完全揭示的关键信号通路及细胞特异性调控机制,尤其是不同病理阶段(急性期与慢性期)的分子动态变化。转化医学与个体化治疗:优化现有药物(如NLRP3抑制剂、铁螯合剂)的递送系统(如纳米载体或聚焦超声开放血脑屏障),提升靶向性与安全性;并建立基于生物标志物(如CSF炎症因子谱)的个体化治疗策略。

NOTES

*通讯作者。

参考文献

[1] Stein, M., Luecke, M., Preuss, M., Boeker, D., Joedicke, A. and Oertel, M.F. (2010) Spontaneous Intracerebral Hemorrhage with Ventricular Extension and the Grading of Obstructive Hydrocephalus: The Prediction of Outcome of a Special Life-Threatening Entity. Neurosurgery, 67, 1243-1252.
https://doi.org/10.1227/neu.0b013e3181ef25de
[2] Qureshi, A.I., Mendelow, A.D. and Hanley, D.F. (2009) Intracerebral Haemorrhage. The Lancet, 373, 1632-1644.
https://doi.org/10.1016/s0140-6736(09)60371-8
[3] Chen, Q., Feng, Z., Tan, Q., Guo, J., Tang, J., Tan, L., et al. (2017) Post-Hemorrhagic Hydrocephalus: Recent Advances and New Therapeutic Insights. Journal of the Neurological Sciences, 375, 220-230.
https://doi.org/10.1016/j.jns.2017.01.072
[4] Aspelund, A., Antila, S., Proulx, S.T., Karlsen, T.V., Karaman, S., Detmar, M., et al. (2015) A Dural Lymphatic Vascular System That Drains Brain Interstitial Fluid and Macromolecules. Journal of Experimental Medicine, 212, 991-999.
https://doi.org/10.1084/jem.20142290
[5] Iliff, J.J., Wang, M., Liao, Y., Plogg, B.A., Peng, W., Gundersen, G.A., et al. (2012) A Paravascular Pathway Facilitates CSF Flow through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Science Translational Medicine, 4, 147ra111.
https://doi.org/10.1126/scitranslmed.3003748
[6] Damkier, H.H., Brown, P.D. and Praetorius, J. (2013) Cerebrospinal Fluid Secretion by the Choroid Plexus. Physiological Reviews, 93, 1847-1892.
https://doi.org/10.1152/physrev.00004.2013
[7] Rasmussen, M.K., Mestre, H. and Nedergaard, M. (2022) Fluid Transport in the Brain. Physiological Reviews, 102, 1025-1151.
https://doi.org/10.1152/physrev.00031.2020
[8] Hladky, S.B. and Barrand, M.A. (2016) Fluid and Ion Transfer across the Blood-Brain and Blood-Cerebrospinal Fluid Barriers; a Comparative Account of Mechanisms and Roles. Fluids and Barriers of the CNS, 13, Article No. 19.
https://doi.org/10.1186/s12987-016-0040-3
[9] Steffensen, A.B., Oernbo, E.K., Stoica, A., Gerkau, N.J., Barbuskaite, D., Tritsaris, K., et al. (2018) Cotransporter-Mediated Water Transport Underlying Cerebrospinal Fluid Formation. Nature Communications, 9, Article No. 2167.
https://doi.org/10.1038/s41467-018-04677-9
[10] Karimy, J.K., Zhang, J., Kurland, D.B., Theriault, B.C., Duran, D., Stokum, J.A., et al. (2017) Inflammation-Dependent Cerebrospinal Fluid Hypersecretion by the Choroid Plexus Epithelium in Posthemorrhagic Hydrocephalus. Nature Medicine, 23, 997-1003.
https://doi.org/10.1038/nm.4361
[11] Sadegh, C., Xu, H., Sutin, J., Fatou, B., Gupta, S., Pragana, A., et al. (2023) Choroid Plexus-Targeted NKCC1 Overexpression to Treat Post-Hemorrhagic Hydrocephalus. Neuron, 111, 1591-1608.e4.
https://doi.org/10.1016/j.neuron.2023.02.020
[12] Nedergaard, M. (2013) Garbage Truck of the Brain. Science, 340, 1529-1530.
https://doi.org/10.1126/science.1240514
[13] Mestre, H., Tithof, J., Du, T., Song, W., Peng, W., Sweeney, A.M., et al. (2018) Flow of Cerebrospinal Fluid Is Driven by Arterial Pulsations and Is Reduced in Hypertension. Nature Communications, 9, Article No. 4878.
https://doi.org/10.1038/s41467-018-07318-3
[14] Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., et al. (2013) Sleep Drives Metabolite Clearance from the Adult Brain. Science, 342, 373-377.
https://doi.org/10.1126/science.1241224
[15] Proulx, S.T. (2021) Cerebrospinal Fluid Outflow: A Review of the Historical and Contemporary Evidence for Arachnoid Villi, Perineural Routes, and Dural Lymphatics. Cellular and Molecular Life Sciences, 78, 2429-2457.
[16] Shah, T., Leurgans, S.E., Mehta, R.I., Yang, J., Galloway, C.A., de Mesy Bentley, K.L., et al. (2022) Arachnoid Granulations Are Lymphatic Conduits That Communicate with Bone Marrow and Dura-Arachnoid Stroma. Journal of Experimental Medicine, 220, e20220618.
https://doi.org/10.1084/jem.20220618
[17] Rustenhoven, J., Drieu, A., Mamuladze, T., et al. (2021) Functional Characterization of the Dural Sinuses as a Neuroimmune Interface. Cell, 184, 1000-1016.e27.
[18] Koh, L., Zakharov, A. and Johnston, M. (2005) Integration of the Subarachnoid Space and Lymphatics: Is It Time to Embrace a New Concept of Cerebrospinal Fluid Absorption? Cerebrospinal Fluid Research, 2, Article No. 6.
https://doi.org/10.1186/1743-8454-2-6
[19] Louveau, A., Smirnov, I., Keyes, T.J., Eccles, J.D., Rouhani, S.J., Peske, J.D., et al. (2015) Structural and Functional Features of Central Nervous System Lymphatic Vessels. Nature, 523, 337-341.
https://doi.org/10.1038/nature14432
[20] Fitzpatrick, Z., Ghabdan Zanluqui, N., Rosenblum, J.S., Tuong, Z.K., Lee, C.Y.C., Chandrashekhar, V., et al. (2024) Venous-plexus-associated Lymphoid Hubs Support Meningeal Humoral Immunity. Nature, 628, 612-619.
https://doi.org/10.1038/s41586-024-07202-9
[21] Mesquita, S.D., Louveau, A., Vaccari, A., et al. (2018) Functional Aspects of Meningeal Lymphatics in Ageing and Alzheimer’s Disease. Nature, 560, 185-191.
[22] Reeves, B.C., Karimy, J.K., Kundishora, A.J., Mestre, H., Cerci, H.M., Matouk, C., et al. (2020) Glymphatic System Impairment in Alzheimer’s Disease and Idiopathic Normal Pressure Hydrocephalus. Trends in Molecular Medicine, 26, 285-295.
https://doi.org/10.1016/j.molmed.2019.11.008
[23] Xue, Y., Gursky, Z., Monte, B., Koundal, S., Liu, X., Lee, H., et al. (2022) Sustained Glymphatic Transport and Impaired Drainage to the Nasal Cavity Observed in Multiciliated Cell Ciliopathies with Hydrocephalus. Fluids and Barriers of the CNS, 19, Article No. 20.
https://doi.org/10.1186/s12987-022-00319-x
[24] Absinta, M., Ha, S., Nair, G., Sati, P., Luciano, N.J., Palisoc, M., et al. (2017) Human and Nonhuman Primate Meninges Harbor Lymphatic Vessels That Can Be Visualized Noninvasively by MRI. eLife, 6, e29738.
https://doi.org/10.7554/elife.29738
[25] Gao, C., Du, H., Hua, Y., Keep, R.F., Strahle, J. and Xi, G. (2014) Role of Red Blood Cell Lysis and Iron in Hydrocephalus after Intraventricular Hemorrhage. Journal of Cerebral Blood Flow & Metabolism, 34, 1070-1075.
https://doi.org/10.1038/jcbfm.2014.56
[26] Holste, K.G., Xia, F., Ye, F., Keep, R.F. and Xi, G. (2022) Mechanisms of Neuroinflammation in Hydrocephalus after Intraventricular Hemorrhage: A Review. Fluids and Barriers of the CNS, 19, Article No. 28.
https://doi.org/10.1186/s12987-022-00324-0
[27] Wang, M., Hua, Y., Keep, R.F., Wan, S., Novakovic, N. and Xi, G. (2019) Complement Inhibition Attenuates Early Erythrolysis in the Hematoma and Brain Injury in Aged Rats. Stroke, 50, 1859-1868.
https://doi.org/10.1161/strokeaha.119.025170
[28] Wilkinson, D.A., Keep, R.F., Hua, Y. and Xi, G. (2018) Hematoma Clearance as a Therapeutic Target in Intracerebral Hemorrhage: From Macro to Micro. Journal of Cerebral Blood Flow & Metabolism, 38, 741-745.
https://doi.org/10.1177/0271678x17753590
[29] Woo, M., Yang, J., Beltran, C. and Cho, S. (2016) Cell Surface CD36 Protein in Monocyte/Macrophage Contributes to Phagocytosis during the Resolution Phase of Ischemic Stroke in Mice. Journal of Biological Chemistry, 291, 23654-23661.
https://doi.org/10.1074/jbc.m116.750018
[30] Gao, F., Liu, F., Chen, Z., Hua, Y., Keep, R.F. and Xi, G. (2013) Hydrocephalus after Intraventricular Hemorrhage: The Role of Thrombin. Journal of Cerebral Blood Flow & Metabolism, 34, 489-494.
https://doi.org/10.1038/jcbfm.2013.225
[31] Hao, X.D., et al. (2019) Thrombin Disrupts Vascular Endothelial-Cadherin and Leads to Hydrocephalus via Protease-activated Receptors-1 Pathway. CNS Neuroscience & Therapeutics, 25, 1142-1150.
[32] Zhang, P. (2013) Thrombin-Induced TGF-β1 Pathway: A Cause of Communicating Hydrocephalus Post Subarachnoid Hemorrhage. International Journal of Molecular Medicine, 31, 660-666.
[33] Tuo, Q., Liu, Y., Xiang, Z., Yan, H., Zou, T., Shu, Y., et al. (2022) Thrombin Induces ACSL4-Dependent Ferroptosis during Cerebral Ischemia/Reperfusion. Signal Transduction and Targeted Therapy, 7, Article No. 59.
https://doi.org/10.1038/s41392-022-00917-z
[34] Banizs, B., Pike, M.M., Millican, C.L., Ferguson, W.B., Komlosi, P., Sheetz, J., et al. (2005) Dysfunctional Cilia Lead to Altered Ependyma and Choroid Plexus Function, and Result in the Formation of Hydrocephalus. Development, 132, 5329-5339.
https://doi.org/10.1242/dev.02153
[35] Qing, W.G., Dong, Y.Q., Ping, T.Q., Lai, L.G., Fang, L.D., Min, H.W., et al. (2009) Brain Edema after Intracerebral Hemorrhage in Rats: The Role of Iron Overload and Aquaporin 4. Journal of Neurosurgery, 110, 462-468.
https://doi.org/10.3171/2008.4.jns17512
[36] Meng, H., Li, F., Hu, R., Yuan, Y., Gong, G., Hu, S., et al. (2015) Deferoxamine Alleviates Chronic Hydrocephalus after Intraventricular Hemorrhage through Iron Chelation and Wnt1/Wnt3a Inhibition. Brain Research, 1602, 44-52.
https://doi.org/10.1016/j.brainres.2014.08.039
[37] Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., et al. (2024) TGF-β Signaling in Health, Disease and Therapeutics. Signal Transduction and Targeted Therapy, 9, Article No. 61.
https://doi.org/10.1038/s41392-024-01764-w
[38] Hayashi, H., Sakai, K., Baba, H. and Sakai, T. (2012) Thrombospondin-1 Is a Novel Negative Regulator of Liver Regeneration after Partial Hepatectomy through Transforming Growth Factor-β1 Activation in Mice. Hepatology, 55, 1562-1573.
https://doi.org/10.1002/hep.24800
[39] Yan, H., Chen, Y., Li, L., Jiang, J., Wu, G., Zuo, Y., et al. (2016) Decorin Alleviated Chronic Hydrocephalus via Inhibiting TGF-β1/Smad/CTGF Pathway after Subarachnoid Hemorrhage in Rats. Brain Research, 1630, 241-253.
https://doi.org/10.1016/j.brainres.2015.11.004
[40] Kawai, T., Ikegawa, M., Ori, D. and Akira, S. (2024) Decoding Toll-Like Receptors: Recent Insights and Perspectives in Innate Immunity. Immunity, 57, 649-673.
https://doi.org/10.1016/j.immuni.2024.03.004
[41] Karimy, J.K., Reeves, B.C. and Kahle, K.T. (2020) Targeting TLR4-Dependent Inflammation in Post-Hemorrhagic Brain Injury. Expert Opinion on Therapeutic Targets, 24, 525-533.
https://doi.org/10.1080/14728222.2020.1752182
[42] Takeda, K. and Akira, S. (2004) TLR Signaling Pathways. Seminars in Immunology, 16, 3-9.
https://doi.org/10.1016/j.smim.2003.10.003
[43] Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J. and Chen, Z.J. (2001) TAK1 Is a Ubiquitin-Dependent Kinase of MKK and IKK. Nature, 412, 346-351.
https://doi.org/10.1038/35085597
[44] Gagnon, K.B. and Delpire, E. (2012) Molecular Physiology of SPAK and OSR1: Two Ste20-Related Protein Kinases Regulating Ion Transport. Physiological Reviews, 92, 1577-1617.
https://doi.org/10.1152/physrev.00009.2012
[45] Ryu, K., Lee, H., Kang, R., Han, K., Nam, Y., Lee, J., et al. (2019) Dasatinib Regulates LPS-Induced Microglial and Astrocytic Neuroinflammatory Responses by Inhibiting AKT/STAT3 Signaling. IBRO Reports, 6, S114.
https://doi.org/10.1016/j.ibror.2019.07.364
[46] Sun, J., Zhang, M., Chen, K., Chen, B., Zhao, Y., Gong, H., et al. (2018) Suppression of TLR4 Activation by Resveratrol Is Associated with STAT3 and Akt Inhibition in Oxidized Low-Density Lipoprotein-Activated Platelets. European Journal of Pharmacology, 836, 1-10.
https://doi.org/10.1016/j.ejphar.2018.08.014
[47] Zusso, M., Lunardi, V., Franceschini, D., Pagetta, A., Lo, R., Stifani, S., et al. (2019) Ciprofloxacin and Levofloxacin Attenuate Microglia Inflammatory Response via TLR4/NF-κB Pathway. Journal of Neuroinflammation, 16, Article No. 148.
https://doi.org/10.1186/s12974-019-1538-9
[48] Paik, S., Kim, J.K., Silwal, P., Sasakawa, C. and Jo, E. (2021) An Update on the Regulatory Mechanisms of NLRP3 Inflammasome Activation. Cellular & Molecular Immunology, 18, 1141-1160.
https://doi.org/10.1038/s41423-021-00670-3
[49] Fu, J. and Wu, H. (2023) Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annual Review of Immunology, 41, 301-316.
https://doi.org/10.1146/annurev-immunol-081022-021207
[50] Zhang, Z., Tan, Q., Guo, P., Huang, S., Jia, Z., Liu, X., et al. (2022) NLRP3 Inflammasome-Mediated Choroid Plexus Hypersecretion Contributes to Hydrocephalus after Intraventricular Hemorrhage via Phosphorylated NKCC1 Channels. Journal of Neuroinflammation, 19, Article No. 163.
https://doi.org/10.1186/s12974-022-02530-x
[51] Zhang, Z., Guo, P., Liang, L., Jila, S., Ru, X., Zhang, Q., et al. (2023) NLRP3-Dependent Lipid Droplet Formation Contributes to Posthemorrhagic Hydrocephalus by Increasing the Permeability of the Blood-Cerebrospinal Fluid Barrier in the Choroid Plexus. Experimental & Molecular Medicine, 55, 574-586.
https://doi.org/10.1038/s12276-023-00955-9
[52] Ma, Q. (2023) Pharmacological Inhibition of the NLRP3 Inflammasome: Structure, Molecular Activation, and Inhibitor-NLRP3 Interaction. Pharmacological Reviews, 75, 487-520.
https://doi.org/10.1124/pharmrev.122.000629
[53] Duy, P.Q., Greenberg, A.B.W., Butler, W.E. and Kahle, K.T. (2022) Rethinking the Cilia Hypothesis of Hydrocephalus. Neurobiology of Disease, 175, Article ID: 105913.
https://doi.org/10.1016/j.nbd.2022.105913
[54] Henzi, R., Vío, K., Jara, C., Johanson, C.E., McAllister, J.P., Rodríguez, E.M., et al. (2020) Neural Stem Cell Therapy of Foetal Onset Hydrocephalus Using the HTx Rat as Experimental Model. Cell and Tissue Research, 381, 141-161.
https://doi.org/10.1007/s00441-020-03182-0
[55] Liu, C., Zhu, A. and Huang, Y. (2020) Differential Effects of Anaesthesia on the Contractility of Lymphatic Vessels in Vivo. The Journal of Physiology, 598, 2035-2035.
https://doi.org/10.1113/jp279647
[56] Wu, Y., Zhang, T., Li, X., Wei, Y., Li, X., Wang, S., et al. (2023) Borneol-Driven Meningeal Lymphatic Drainage Clears Amyloid-β Peptide to Attenuate Alzheimer-Like Phenotype in Mice. Theranostics, 13, 106-124.
https://doi.org/10.7150/thno.76133
[57] Wang, X., Deng, H., Gao, S., Li, T., Gao, C., Han, Y., et al. (2023) Dobutamine Promotes the Clearance of Erythrocytes from the Brain to Cervical Lymph Nodes after Subarachnoid Hemorrhage in Mice. Frontiers in Pharmacology, 13, Article 1061457.
https://doi.org/10.3389/fphar.2022.1061457
[58] Zinchenko, E., Navolokin, N., Shirokov, A., Khlebtsov, B., Dubrovsky, A., Saranceva, E., et al. (2019) Pilot Study of Transcranial Photobiomodulation of Lymphatic Clearance of β-Amyloid from the Mouse Brain: Breakthrough Strategies for Non-Pharmacologic Therapy of Alzheimer’s Disease. Biomedical Optics Express, 10, 4003-4017.
https://doi.org/10.1364/boe.10.004003
[59] Murdock, M.H., Yang, C., Sun, N., Pao, P., Blanco-Duque, C., Kahn, M.C., et al. (2024) Multisensory γ Stimulation Promotes Glymphatic Clearance of Amyloid. Nature, 627, 149-156.
https://doi.org/10.1038/s41586-024-07132-6