[1]
|
Stein, M., Luecke, M., Preuss, M., Boeker, D., Joedicke, A. and Oertel, M.F. (2010) Spontaneous Intracerebral Hemorrhage with Ventricular Extension and the Grading of Obstructive Hydrocephalus: The Prediction of Outcome of a Special Life-Threatening Entity. Neurosurgery, 67, 1243-1252. https://doi.org/10.1227/neu.0b013e3181ef25de
|
[2]
|
Qureshi, A.I., Mendelow, A.D. and Hanley, D.F. (2009) Intracerebral Haemorrhage. The Lancet, 373, 1632-1644. https://doi.org/10.1016/s0140-6736(09)60371-8
|
[3]
|
Chen, Q., Feng, Z., Tan, Q., Guo, J., Tang, J., Tan, L., et al. (2017) Post-Hemorrhagic Hydrocephalus: Recent Advances and New Therapeutic Insights. Journal of the Neurological Sciences, 375, 220-230. https://doi.org/10.1016/j.jns.2017.01.072
|
[4]
|
Aspelund, A., Antila, S., Proulx, S.T., Karlsen, T.V., Karaman, S., Detmar, M., et al. (2015) A Dural Lymphatic Vascular System That Drains Brain Interstitial Fluid and Macromolecules. Journal of Experimental Medicine, 212, 991-999. https://doi.org/10.1084/jem.20142290
|
[5]
|
Iliff, J.J., Wang, M., Liao, Y., Plogg, B.A., Peng, W., Gundersen, G.A., et al. (2012) A Paravascular Pathway Facilitates CSF Flow through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Science Translational Medicine, 4, 147ra111. https://doi.org/10.1126/scitranslmed.3003748
|
[6]
|
Damkier, H.H., Brown, P.D. and Praetorius, J. (2013) Cerebrospinal Fluid Secretion by the Choroid Plexus. Physiological Reviews, 93, 1847-1892. https://doi.org/10.1152/physrev.00004.2013
|
[7]
|
Rasmussen, M.K., Mestre, H. and Nedergaard, M. (2022) Fluid Transport in the Brain. Physiological Reviews, 102, 1025-1151. https://doi.org/10.1152/physrev.00031.2020
|
[8]
|
Hladky, S.B. and Barrand, M.A. (2016) Fluid and Ion Transfer across the Blood-Brain and Blood-Cerebrospinal Fluid Barriers; a Comparative Account of Mechanisms and Roles. Fluids and Barriers of the CNS, 13, Article No. 19. https://doi.org/10.1186/s12987-016-0040-3
|
[9]
|
Steffensen, A.B., Oernbo, E.K., Stoica, A., Gerkau, N.J., Barbuskaite, D., Tritsaris, K., et al. (2018) Cotransporter-Mediated Water Transport Underlying Cerebrospinal Fluid Formation. Nature Communications, 9, Article No. 2167. https://doi.org/10.1038/s41467-018-04677-9
|
[10]
|
Karimy, J.K., Zhang, J., Kurland, D.B., Theriault, B.C., Duran, D., Stokum, J.A., et al. (2017) Inflammation-Dependent Cerebrospinal Fluid Hypersecretion by the Choroid Plexus Epithelium in Posthemorrhagic Hydrocephalus. Nature Medicine, 23, 997-1003. https://doi.org/10.1038/nm.4361
|
[11]
|
Sadegh, C., Xu, H., Sutin, J., Fatou, B., Gupta, S., Pragana, A., et al. (2023) Choroid Plexus-Targeted NKCC1 Overexpression to Treat Post-Hemorrhagic Hydrocephalus. Neuron, 111, 1591-1608.e4. https://doi.org/10.1016/j.neuron.2023.02.020
|
[12]
|
Nedergaard, M. (2013) Garbage Truck of the Brain. Science, 340, 1529-1530. https://doi.org/10.1126/science.1240514
|
[13]
|
Mestre, H., Tithof, J., Du, T., Song, W., Peng, W., Sweeney, A.M., et al. (2018) Flow of Cerebrospinal Fluid Is Driven by Arterial Pulsations and Is Reduced in Hypertension. Nature Communications, 9, Article No. 4878. https://doi.org/10.1038/s41467-018-07318-3
|
[14]
|
Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., et al. (2013) Sleep Drives Metabolite Clearance from the Adult Brain. Science, 342, 373-377. https://doi.org/10.1126/science.1241224
|
[15]
|
Proulx, S.T. (2021) Cerebrospinal Fluid Outflow: A Review of the Historical and Contemporary Evidence for Arachnoid Villi, Perineural Routes, and Dural Lymphatics. Cellular and Molecular Life Sciences, 78, 2429-2457.
|
[16]
|
Shah, T., Leurgans, S.E., Mehta, R.I., Yang, J., Galloway, C.A., de Mesy Bentley, K.L., et al. (2022) Arachnoid Granulations Are Lymphatic Conduits That Communicate with Bone Marrow and Dura-Arachnoid Stroma. Journal of Experimental Medicine, 220, e20220618. https://doi.org/10.1084/jem.20220618
|
[17]
|
Rustenhoven, J., Drieu, A., Mamuladze, T., et al. (2021) Functional Characterization of the Dural Sinuses as a Neuroimmune Interface. Cell, 184, 1000-1016.e27.
|
[18]
|
Koh, L., Zakharov, A. and Johnston, M. (2005) Integration of the Subarachnoid Space and Lymphatics: Is It Time to Embrace a New Concept of Cerebrospinal Fluid Absorption? Cerebrospinal Fluid Research, 2, Article No. 6. https://doi.org/10.1186/1743-8454-2-6
|
[19]
|
Louveau, A., Smirnov, I., Keyes, T.J., Eccles, J.D., Rouhani, S.J., Peske, J.D., et al. (2015) Structural and Functional Features of Central Nervous System Lymphatic Vessels. Nature, 523, 337-341. https://doi.org/10.1038/nature14432
|
[20]
|
Fitzpatrick, Z., Ghabdan Zanluqui, N., Rosenblum, J.S., Tuong, Z.K., Lee, C.Y.C., Chandrashekhar, V., et al. (2024) Venous-plexus-associated Lymphoid Hubs Support Meningeal Humoral Immunity. Nature, 628, 612-619. https://doi.org/10.1038/s41586-024-07202-9
|
[21]
|
Mesquita, S.D., Louveau, A., Vaccari, A., et al. (2018) Functional Aspects of Meningeal Lymphatics in Ageing and Alzheimer’s Disease. Nature, 560, 185-191.
|
[22]
|
Reeves, B.C., Karimy, J.K., Kundishora, A.J., Mestre, H., Cerci, H.M., Matouk, C., et al. (2020) Glymphatic System Impairment in Alzheimer’s Disease and Idiopathic Normal Pressure Hydrocephalus. Trends in Molecular Medicine, 26, 285-295. https://doi.org/10.1016/j.molmed.2019.11.008
|
[23]
|
Xue, Y., Gursky, Z., Monte, B., Koundal, S., Liu, X., Lee, H., et al. (2022) Sustained Glymphatic Transport and Impaired Drainage to the Nasal Cavity Observed in Multiciliated Cell Ciliopathies with Hydrocephalus. Fluids and Barriers of the CNS, 19, Article No. 20. https://doi.org/10.1186/s12987-022-00319-x
|
[24]
|
Absinta, M., Ha, S., Nair, G., Sati, P., Luciano, N.J., Palisoc, M., et al. (2017) Human and Nonhuman Primate Meninges Harbor Lymphatic Vessels That Can Be Visualized Noninvasively by MRI. eLife, 6, e29738. https://doi.org/10.7554/elife.29738
|
[25]
|
Gao, C., Du, H., Hua, Y., Keep, R.F., Strahle, J. and Xi, G. (2014) Role of Red Blood Cell Lysis and Iron in Hydrocephalus after Intraventricular Hemorrhage. Journal of Cerebral Blood Flow & Metabolism, 34, 1070-1075. https://doi.org/10.1038/jcbfm.2014.56
|
[26]
|
Holste, K.G., Xia, F., Ye, F., Keep, R.F. and Xi, G. (2022) Mechanisms of Neuroinflammation in Hydrocephalus after Intraventricular Hemorrhage: A Review. Fluids and Barriers of the CNS, 19, Article No. 28. https://doi.org/10.1186/s12987-022-00324-0
|
[27]
|
Wang, M., Hua, Y., Keep, R.F., Wan, S., Novakovic, N. and Xi, G. (2019) Complement Inhibition Attenuates Early Erythrolysis in the Hematoma and Brain Injury in Aged Rats. Stroke, 50, 1859-1868. https://doi.org/10.1161/strokeaha.119.025170
|
[28]
|
Wilkinson, D.A., Keep, R.F., Hua, Y. and Xi, G. (2018) Hematoma Clearance as a Therapeutic Target in Intracerebral Hemorrhage: From Macro to Micro. Journal of Cerebral Blood Flow & Metabolism, 38, 741-745. https://doi.org/10.1177/0271678x17753590
|
[29]
|
Woo, M., Yang, J., Beltran, C. and Cho, S. (2016) Cell Surface CD36 Protein in Monocyte/Macrophage Contributes to Phagocytosis during the Resolution Phase of Ischemic Stroke in Mice. Journal of Biological Chemistry, 291, 23654-23661. https://doi.org/10.1074/jbc.m116.750018
|
[30]
|
Gao, F., Liu, F., Chen, Z., Hua, Y., Keep, R.F. and Xi, G. (2013) Hydrocephalus after Intraventricular Hemorrhage: The Role of Thrombin. Journal of Cerebral Blood Flow & Metabolism, 34, 489-494. https://doi.org/10.1038/jcbfm.2013.225
|
[31]
|
Hao, X.D., et al. (2019) Thrombin Disrupts Vascular Endothelial-Cadherin and Leads to Hydrocephalus via Protease-activated Receptors-1 Pathway. CNS Neuroscience & Therapeutics, 25, 1142-1150.
|
[32]
|
Zhang, P. (2013) Thrombin-Induced TGF-β1 Pathway: A Cause of Communicating Hydrocephalus Post Subarachnoid Hemorrhage. International Journal of Molecular Medicine, 31, 660-666.
|
[33]
|
Tuo, Q., Liu, Y., Xiang, Z., Yan, H., Zou, T., Shu, Y., et al. (2022) Thrombin Induces ACSL4-Dependent Ferroptosis during Cerebral Ischemia/Reperfusion. Signal Transduction and Targeted Therapy, 7, Article No. 59. https://doi.org/10.1038/s41392-022-00917-z
|
[34]
|
Banizs, B., Pike, M.M., Millican, C.L., Ferguson, W.B., Komlosi, P., Sheetz, J., et al. (2005) Dysfunctional Cilia Lead to Altered Ependyma and Choroid Plexus Function, and Result in the Formation of Hydrocephalus. Development, 132, 5329-5339. https://doi.org/10.1242/dev.02153
|
[35]
|
Qing, W.G., Dong, Y.Q., Ping, T.Q., Lai, L.G., Fang, L.D., Min, H.W., et al. (2009) Brain Edema after Intracerebral Hemorrhage in Rats: The Role of Iron Overload and Aquaporin 4. Journal of Neurosurgery, 110, 462-468. https://doi.org/10.3171/2008.4.jns17512
|
[36]
|
Meng, H., Li, F., Hu, R., Yuan, Y., Gong, G., Hu, S., et al. (2015) Deferoxamine Alleviates Chronic Hydrocephalus after Intraventricular Hemorrhage through Iron Chelation and Wnt1/Wnt3a Inhibition. Brain Research, 1602, 44-52. https://doi.org/10.1016/j.brainres.2014.08.039
|
[37]
|
Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., et al. (2024) TGF-β Signaling in Health, Disease and Therapeutics. Signal Transduction and Targeted Therapy, 9, Article No. 61. https://doi.org/10.1038/s41392-024-01764-w
|
[38]
|
Hayashi, H., Sakai, K., Baba, H. and Sakai, T. (2012) Thrombospondin-1 Is a Novel Negative Regulator of Liver Regeneration after Partial Hepatectomy through Transforming Growth Factor-β1 Activation in Mice. Hepatology, 55, 1562-1573. https://doi.org/10.1002/hep.24800
|
[39]
|
Yan, H., Chen, Y., Li, L., Jiang, J., Wu, G., Zuo, Y., et al. (2016) Decorin Alleviated Chronic Hydrocephalus via Inhibiting TGF-β1/Smad/CTGF Pathway after Subarachnoid Hemorrhage in Rats. Brain Research, 1630, 241-253. https://doi.org/10.1016/j.brainres.2015.11.004
|
[40]
|
Kawai, T., Ikegawa, M., Ori, D. and Akira, S. (2024) Decoding Toll-Like Receptors: Recent Insights and Perspectives in Innate Immunity. Immunity, 57, 649-673. https://doi.org/10.1016/j.immuni.2024.03.004
|
[41]
|
Karimy, J.K., Reeves, B.C. and Kahle, K.T. (2020) Targeting TLR4-Dependent Inflammation in Post-Hemorrhagic Brain Injury. Expert Opinion on Therapeutic Targets, 24, 525-533. https://doi.org/10.1080/14728222.2020.1752182
|
[42]
|
Takeda, K. and Akira, S. (2004) TLR Signaling Pathways. Seminars in Immunology, 16, 3-9. https://doi.org/10.1016/j.smim.2003.10.003
|
[43]
|
Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J. and Chen, Z.J. (2001) TAK1 Is a Ubiquitin-Dependent Kinase of MKK and IKK. Nature, 412, 346-351. https://doi.org/10.1038/35085597
|
[44]
|
Gagnon, K.B. and Delpire, E. (2012) Molecular Physiology of SPAK and OSR1: Two Ste20-Related Protein Kinases Regulating Ion Transport. Physiological Reviews, 92, 1577-1617. https://doi.org/10.1152/physrev.00009.2012
|
[45]
|
Ryu, K., Lee, H., Kang, R., Han, K., Nam, Y., Lee, J., et al. (2019) Dasatinib Regulates LPS-Induced Microglial and Astrocytic Neuroinflammatory Responses by Inhibiting AKT/STAT3 Signaling. IBRO Reports, 6, S114. https://doi.org/10.1016/j.ibror.2019.07.364
|
[46]
|
Sun, J., Zhang, M., Chen, K., Chen, B., Zhao, Y., Gong, H., et al. (2018) Suppression of TLR4 Activation by Resveratrol Is Associated with STAT3 and Akt Inhibition in Oxidized Low-Density Lipoprotein-Activated Platelets. European Journal of Pharmacology, 836, 1-10. https://doi.org/10.1016/j.ejphar.2018.08.014
|
[47]
|
Zusso, M., Lunardi, V., Franceschini, D., Pagetta, A., Lo, R., Stifani, S., et al. (2019) Ciprofloxacin and Levofloxacin Attenuate Microglia Inflammatory Response via TLR4/NF-κB Pathway. Journal of Neuroinflammation, 16, Article No. 148. https://doi.org/10.1186/s12974-019-1538-9
|
[48]
|
Paik, S., Kim, J.K., Silwal, P., Sasakawa, C. and Jo, E. (2021) An Update on the Regulatory Mechanisms of NLRP3 Inflammasome Activation. Cellular & Molecular Immunology, 18, 1141-1160. https://doi.org/10.1038/s41423-021-00670-3
|
[49]
|
Fu, J. and Wu, H. (2023) Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annual Review of Immunology, 41, 301-316. https://doi.org/10.1146/annurev-immunol-081022-021207
|
[50]
|
Zhang, Z., Tan, Q., Guo, P., Huang, S., Jia, Z., Liu, X., et al. (2022) NLRP3 Inflammasome-Mediated Choroid Plexus Hypersecretion Contributes to Hydrocephalus after Intraventricular Hemorrhage via Phosphorylated NKCC1 Channels. Journal of Neuroinflammation, 19, Article No. 163. https://doi.org/10.1186/s12974-022-02530-x
|
[51]
|
Zhang, Z., Guo, P., Liang, L., Jila, S., Ru, X., Zhang, Q., et al. (2023) NLRP3-Dependent Lipid Droplet Formation Contributes to Posthemorrhagic Hydrocephalus by Increasing the Permeability of the Blood-Cerebrospinal Fluid Barrier in the Choroid Plexus. Experimental & Molecular Medicine, 55, 574-586. https://doi.org/10.1038/s12276-023-00955-9
|
[52]
|
Ma, Q. (2023) Pharmacological Inhibition of the NLRP3 Inflammasome: Structure, Molecular Activation, and Inhibitor-NLRP3 Interaction. Pharmacological Reviews, 75, 487-520. https://doi.org/10.1124/pharmrev.122.000629
|
[53]
|
Duy, P.Q., Greenberg, A.B.W., Butler, W.E. and Kahle, K.T. (2022) Rethinking the Cilia Hypothesis of Hydrocephalus. Neurobiology of Disease, 175, Article ID: 105913. https://doi.org/10.1016/j.nbd.2022.105913
|
[54]
|
Henzi, R., Vío, K., Jara, C., Johanson, C.E., McAllister, J.P., Rodríguez, E.M., et al. (2020) Neural Stem Cell Therapy of Foetal Onset Hydrocephalus Using the HTx Rat as Experimental Model. Cell and Tissue Research, 381, 141-161. https://doi.org/10.1007/s00441-020-03182-0
|
[55]
|
Liu, C., Zhu, A. and Huang, Y. (2020) Differential Effects of Anaesthesia on the Contractility of Lymphatic Vessels in Vivo. The Journal of Physiology, 598, 2035-2035. https://doi.org/10.1113/jp279647
|
[56]
|
Wu, Y., Zhang, T., Li, X., Wei, Y., Li, X., Wang, S., et al. (2023) Borneol-Driven Meningeal Lymphatic Drainage Clears Amyloid-β Peptide to Attenuate Alzheimer-Like Phenotype in Mice. Theranostics, 13, 106-124. https://doi.org/10.7150/thno.76133
|
[57]
|
Wang, X., Deng, H., Gao, S., Li, T., Gao, C., Han, Y., et al. (2023) Dobutamine Promotes the Clearance of Erythrocytes from the Brain to Cervical Lymph Nodes after Subarachnoid Hemorrhage in Mice. Frontiers in Pharmacology, 13, Article 1061457. https://doi.org/10.3389/fphar.2022.1061457
|
[58]
|
Zinchenko, E., Navolokin, N., Shirokov, A., Khlebtsov, B., Dubrovsky, A., Saranceva, E., et al. (2019) Pilot Study of Transcranial Photobiomodulation of Lymphatic Clearance of β-Amyloid from the Mouse Brain: Breakthrough Strategies for Non-Pharmacologic Therapy of Alzheimer’s Disease. Biomedical Optics Express, 10, 4003-4017. https://doi.org/10.1364/boe.10.004003
|
[59]
|
Murdock, M.H., Yang, C., Sun, N., Pao, P., Blanco-Duque, C., Kahn, M.C., et al. (2024) Multisensory γ Stimulation Promotes Glymphatic Clearance of Amyloid. Nature, 627, 149-156. https://doi.org/10.1038/s41586-024-07132-6
|