柚皮苷治疗股骨头坏死作用机制的网络药理学研究
Study on the Mechanism of Naringin in the Treatment of Femoral Head Necrosis by Network Pharmacology
DOI: 10.12677/bp.2025.152025, PDF, HTML, XML,   
作者: 金红珊:福建省武警总队医院药剂科,福建 福州;刘诗滦*:福建中医药大学附属第二人民医院运动医学科,福建 福州
关键词: 柚皮苷股骨头坏死网络药理学机制Naringin Osteonecrosis of Femoral Head Network Pharmacology Mechanism
摘要: 该研究以网络药理学为研究对象,探讨在股骨头坏死(ONFH)治疗中柚皮苷(NR)的潜在作用机理。方法:NR的简化分子式及其靶点预测信息是通过TCMSP和Switzerl and Target Prediction数据库获得的,然后将靶点信息通过Uniprot数据库转换成人类基因名。随后利用GeneCards、OMIM及PharmGkb数据库提取与ONFH有关的靶点,并借助R软件筛选药物与疾病之间的交集靶点(版本:4.3.1)。然后将目标靶点导入STRING数据库,获取蛋白–蛋白相互作用(PPI)信息,用Cytoscape软件(版本:3.8.0)选出核心目标超过所有条件平均值,最终通过R软件(版本:4.3.1)进行富集分析。结果:识别109个作用靶点的柚子苷、1632个与ONFH有关的基因、18个与NR-ONFH有关的靶点和7个核心靶点。GO功能富集分析得到了1107个结果(P < 0.05),KEGG通路富集分析得到38个通路(P < 0.05),这些信号通路涉及p53、IL-17、细胞凋亡、TNF及坏死性凋亡等。结论:柚皮苷可能为ONFH的治疗提供了潜在的新策略。
Abstract: Objective: This study aims to explore the potential mechanism of naringin (NR) in the treatment of femoral head necrosis (ONFH) through online pharmacology. Methods: The simplified molecular formula and target prediction information of NR were obtained through TCMSP and Swiss Target Prediction databases, and the target information was converted into human gene names using Uniprot database. Next, targets related to ONFH were extracted using GeneCards, OMIM and PharmGkb databases, and the intersection targets of drugs and diseases were identified with the help of R software (version: 4.3.1). The intersection targets were input into the STRING database to obtain protein-protein interaction (PPI) information, and the core targets greater than the average of all conditions were screened using Cytoscape software (version: 3.8.0). Finally, enrichment analysis was conducted using R software (version: 4.3.1). Results: 109 targets of naringin, 1632 genes related to ONFH, 18 NR-ONFH-related targets and 7 core targets were selected. GO functional enrichment analysis obtained 1107 results (P < 0.05), and KEGG pathway enrichment analysis obtained 38 signaling pathways (P < 0.05), which involved p53, IL-17, cell apoptosis, TNF and necrotic apoptosis. Conclusion: Naringin may provide a potential new strategy for the treatment of ONFH.
文章引用:金红珊, 刘诗滦. 柚皮苷治疗股骨头坏死作用机制的网络药理学研究[J]. 生物过程, 2025, 15(2): 184-193. https://doi.org/10.12677/bp.2025.152025

1. 引言

股骨头坏死(osteonecrosis of the femoral head, ONFH)是影响髋关节退行性病变,主要表现为骨软骨下骨的微细骨折和随之而来的股骨头塌陷[1],使髋关节功能显著障碍。此病症在中青年男性群体中尤为普遍,且具有较高的致残率,对患者的健康及生活质量造成了严重影响。根据统计数据,美国的ONFH发病率持续上升,每年新增病例在15,000至20,000例之间。在中国,ONFH患者已突破800万,每年新增患者超过10万~20万例,给患者和社会带来了沉重的负担,成为全世界骨科领域的重大挑战[2] [3]

ONFH的成因复杂多样,涉及遗传因素、外伤、酗酒、长期或高剂量使用糖皮质激素、潜水、镰状细胞病及其他环境因素等[4]。不过,目前还没有明确ONFH的确切发病机制。目前,广泛认可的潜在机制包括血液供应不足、脂质代谢失调、成骨能力降低、细胞凋亡及基因多态性等因素[5]。在临床实践中,早期ONFH的治疗方案主要包括物理疗法、药物治疗、髓芯减压、钽棒植入、截骨术及血管化骨移植等[2]。尽管如此,这些保护髋关节的治疗方法效果并未达到预期。全髋关节置换仍是ONFH终末期病人缓解疼痛、恢复关节功能的唯一有效手段[6],但严重的并发症如感染和松动,以及假体的生存率仍是当务之急[7]。因此,迫切需要研发新的治疗方案,以延缓或逆转ONFH的进展。

近年来,随着中医药的不断进步,越来越多的中医药疗法[8] [9]被应用于ONFH的治疗中。中药在减轻病人外科创伤、明显减轻社会及病人经济负担、促进病人生活质量的同时,表现出创伤小、疗效显著、副作用低、费用合理等诸多优势,对患者手术康复有很好的促进作用。其中,骨碎补是中医治疗ONFH的常用草药,而其主要活性成分柚皮苷(naringin, NR)则具备温肾阳、补肾强骨等多重功效[10],临床应用前景广阔。已有研究指出柚皮苷可以有效地减少股骨头坏死的发生[11]。由于涉及多个信号通路及生物靶点,ONFH的治疗机制复杂,因此,传统药理学难以对其进行系统分析。由此,本文就柚皮苷在治疗ONFH过程中的潜在作用机理进行了网络药理学的探讨,为其提供了科学的理论基础。

2. 材料和方法

2.1. NR结构及靶点信息的获取

从TCMSP数据库(https://www.tcmsp-e.com/tcmsp.php, TCMSP)获得NR的靶点信息。同时,从Pubchem数据库(https://pubchem.ncbi.nlm.nih.gov/)获得NR的简化分子式。随后,分子式被上传至Swiss Target Prediction数据库(http://new.swissTargetPrediction.ch/),以预测NR的靶标。最后整合分析TCMSP和Swarm Target Prediction数据库的靶点信息,进行去重,从而确定了NR的最终靶点。最终从UniProt数据库(https://www.uniprot.org/)获得人类基因注释文件,将NR的靶标信息转换成人类基因名称(见表1)。

2.2. 获取OFHN靶集,预测潜在的OFHN靶点NR治疗方法

检索GeneCards (https://www.genecards.org/)、OMIM (https://omim.org/)和PharmGkb数据库(https://www.pharmgkb.org/)与OFHN相关的靶点。整合这三个数据库的靶点后,使用R软件(版本:4.3.1)将OFHN靶点与上述1.1节中的药物靶点进行映射,识别Drug-Disease的交集靶点。

2.3. NR治疗构建OFHN靶点蛋白互作网络

在STRING数据库(https://cn.string-db.org/)输入Drug-Disease的交集靶点,隐藏孤立蛋白,获取蛋白互作(PPI)信息。随后,利用Cytoscape软件(版本:3.8.0)构建PPI网络,进行网络拓扑分析,筛选出核心靶点蛋白(所有条件下均高于平均值的蛋白)。

2.4. GO功能富集分析

采用R软件(版本:4.3.1),相关包对交集靶点进行GO功能富集分析,P值和Q值均设置为0.05,并以气泡图的形式将每类显著性结果中的前20个项目展示出来。

2.5. KEGG通路富集分析

同样,利用R软件(版本:4.3.1)和相关包对交叉靶点进行KEGG通路富集分析,将P值和Q值设为0.05,并按显著性排序,以气泡图显示显著(P < 0.05)的信号通路。

3. 结果

3.1. NR结构及其靶点信息

通过检索TCMSP资料库及Switzerl and Target Prediction资料库,对109个靶点进行识别。具体的靶点信息如表1所示。

Table 1. Targets of Naringin

1. 柚皮苷靶点

序号

靶点基因

序号

靶点基因

序号

靶点基因

序号

靶点基因

1

ABCB1

29

CASP7

57

IGFBP3

85

PTPN1

2

ABCC1

30

CASP8

58

IMPDH1

86

PTPN2

3

ABCG2

31

CBR1

59

IRAK4

87

PYGL

4

ABL1

32

CDK1

60

KLK1

88

RAF1

5

ACE

33

CDKN1A

61

KLK2

89

RASGRF2

6

ADORA1

34

CES1

62

LARS

90

RXRA

7

ADORA2A

35

CES2

63

LCK

91

SERPINE1

8

ADORA2B

36

CHEK1

64

LGALS1

92

SHBG

9

ADORA3

37

CHIA

65

LGALS4

93

SLC10A2

10

AKR1B1

38

CYP19A1

66

LGALS7

94

SLC28A2

11

ALDH2

39

CYP1B1

67

MAOB

95

SLC28A3

12

AMY2A

40

DHFR

68

MAP3K9

96

SLC29A1

13

BTK

41

ECE1

69

MME

97

SLC5A1

14

CA1

42

EDNRA

70

MMP1

98

SLC5A2

15

CA12

43

EIF4A1

71

MMP12

99

SLC5A4

16

CA13

44

EPHA2

72

MMP13

100

SRD5A1

17

CA14

45

EPHX2

73

MMP2

101

TACR2

18

CA2

46

ESR1

74

MMP7

102

TAS2R31

19

CA3

47

ESR2

75

MMP8

103

TDP1

20

CA4

48

F7

76

NEU4

104

TNF

21

CA5A

49

FHIT

77

PARP1

105

TNFAIP6

22

CA5B

50

FOLH1

78

PCP4

106

TOP2A

23

CA6

51

GAA

79

PDE5A

107

TYMS

24

CA7

52

GRM2

80

PLA2G1B

108

TYR

25

CASP1

53

GRM5

81

POLB

109

VARS

26

CASP2

54

HCAR2

82

PPARG

27

CASP3

55

HRAS

83

PTGS1

28

CASP6

56

HSD17B1

84

PTGS2

3.2. NR疗法在OFHN中的潜在作用靶点预测

我们共识别了1632个与OFHN相关的疾病基因,并将其与表1中109个NR靶点进行比对,得出了18个交叉靶点,具体见图1。NR在OFHN治疗中的潜在作用靶点列于表2

Figure 1. Venn diagram of the intersection target of Naringi-ONFH

1. 柚皮苷–股骨头坏死交集靶点韦恩图

Table 2. Potential target genes of naringin in the treatment of ONFH

2. 柚皮苷治疗股骨头坏死潜在作用靶点基因

序号

基因

序号

基因

1

TNFAIP6

10

CASP3

2

TNF

11

ACE

3

CYP19A1

12

EDNRA

4

MMP8

13

PPARG

5

MMP13

14

IGFBP3

6

ABCB1

15

CASP8

7

ESR1

16

SERPINE1

8

PARP1

17

MMP2

9

ALDH2

18

TYMS

3.3. 蛋白–蛋白互动(PPI)网络

网络总共有17个节点和57条边,具体情况请参见图2。在该网络中,有7个靶点蛋白的Betweenness (1.05)、Closeness (0.615)、Degree (6)、Eigenvector (0.2228)、LAC (4.333)及Network (5.4)等指标均高于条件的平均值,因而被视为核心靶点。这表明,在NR治疗OFHN的过程中,这些靶点基因可能起到关键作用。核心靶点信息详见表3

Figure 2. PPI network diagram of potential targets

2. 潜在作用靶点的PPI网络图

Table 3. Core targets of naringin in the treatment of ONFH

3. 柚皮苷治疗股骨头坏死核心靶点

序号

基因

度值

1

TNF

15

2

CASP3

14

3

ESR1

10

4

MMP2

10

5

SERPINE1

9

6

PPARG

9

7

ACE

7

3.4. GO功能富集分析

利用R软件(版本:4.3.1)及其相关包进行GO生物过程(GOBP)富集分析,得到1107个结果,主要涉及节律过程、炎性反应调节、性别分化、缺氧反应、生殖结构发育、上皮细胞凋亡、排卵期及β淀粉样蛋白反应等多个方面;GO细胞组成(GOCC)富集分析得到8个结果,涉及膜筏、膜微区、细胞外基质等,其中含有胶原;通过对GO分子功能(GOMF)的富集分析得到92个结果,主要涉及内肽酶的活性,金属内肽酶的活性,丝氨酸型肽酶的活性等。结果如图3所示。

Figure 3. GO enrichment analysis results

3. GO富集分析结果

3.5. KEGG富集分析

使用R软件(版本:4.3.1)对18个靶点进行KEGG富集分析,获得38条相关信号通路,详见表4图4

Table 4. KEGG pathway enrichment results

4. KEGG通路富集结果

序号

信号通路

Description

P值

序号

信号通路

Description

P值

1

hsa04657

IL-17 signaling pathway

0.0000234

20

hsa05161

Hepatitis B

0.0032057

2

hsa04115

p53 signaling pathway

0.0000090

21

hsa04217

Necroptosis

0.0030404

3

hsa05417

Lipid and atherosclerosis

0.0005686

22

hsa05160

Hepatitis C

0.0029864

4

hsa05205

Proteoglycans in cancer

0.0004832

23

hsa04668

TNF signaling pathway

0.0011715

5

hsa04932

Non-alcoholic fatty liver disease

0.0001656

24

hsa05145

Toxoplasmosis

0.0010844

6

hsa04936

Alcoholic liver disease

0.0001180

25

hsa01522

Endocrine resistance

0.0143182

7

hsa04210

Apoptosis

0.0000998

26

hsa05410

Hypertrophic cardiomyopathy

0.0121714

8

hsa05142

Chagas disease

0.0000323

27

hsa05133

Pertussis

0.0087955

9

hsa04933

AGE-RAGE signaling pathway in diabetic complications

0.0000299

28

hsa04623

Cytosolic DNA-sensing pathway

0.0085735

10

hsa05134

Legionellosis

0.0001444

29

hsa01524

Platinum drug resistance

0.0081372

11

hsa05016

Huntington disease

0.0184528

30

hsa04622

RIG-I-like receptor signaling pathway

0.0077113

12

hsa05132

Salmonella infection

0.0105960

31

hsa04924

Renin secretion

0.0072960

13

hsa05163

Human cytomegalovirus infection

0.0080275

32

hsa05416

Viral myocarditis

0.0055594

14

hsa05170

Human immunodeficiency virus 1 infection

0.0068110

33

hsa04215

Apoptosis-multiple species

0.0016067

15

hsa05415

Diabetic cardiomyopathy

0.0060386

34

hsa01523

Antifolate resistance

0.0014122

16

hsa05169

Epstein-Barr virus infection

0.0059562

35

hsa04064

NF-kappa B signaling pathway

0.0160289

17

hsa05130

Pathogenic Escherichia coli infection

0.0056336

36

hsa04620

Toll-like receptor signaling pathway

0.0160289

18

hsa05152

Tuberculosis

0.0043150

37

hsa04625

C-type lectin receptor signaling pathway

0.0160289

19

hsa05164

Influenza A

0.0037349

38

hsa05146

Amoebiasis

0.0154492

Figure 4. KEGG enrichment results

4. KEGG富集结果

4. 讨论

柚皮苷作为传统中药骨碎补的主要活性成分,已被证实通过多种机制有效预防股骨头坏死(ONFH)。研究表明,柚皮苷不但可促进成骨细胞的增殖,而且能促进成骨分化的蛋白质-2 (BMP-2)的表达[12],通过诱导骨形态发生。另外,柚皮苷还显示出抑制破骨细胞对骨组织吸收[13]、修复软骨损伤[14]、修复骨缺损[15]以及加速骨折愈合的潜力。进一步研究显示,柚皮苷对兔血清中因类固醇作用而降低的骨钙蛋白水平有明显的预防作用;它通过提高PPARγ2,激活NOTCH信号通路[11],有效地减少了骨坏死的发生。同时,通过阻断内质网应激及线粒体介导,柚皮苷抑制血管内皮细胞的凋亡[16],使骨微血管的密度和数量明显增加,促进了骨代谢和骨矿密度的增长[17]。此外,柚皮苷还通过抑制血管内的炎症反应和抗氧化应激作用[18],降低了IL-β、同型半胱氨酸、TNF-α和超敏CRP等炎症因子的水平。

研究中共得到18个柚皮苷在股骨头坏死中的预测作用靶点,经过PPI网络筛选出TNF、CASP3、ESR1、MMP2等7个核心靶点。PPI网络拓扑学特征显示,该核心靶标与炎症反应、细胞周期调节、细胞凋亡及动脉粥样硬化相关蛋白关系密切,也验证了GO富集分析的结果。其中TNF的度值最高,TNF作为重要的炎性应答因子,可以通过激活NF-κB促进破骨细胞生成、加速骨吸收等作用,诱发巨细胞集落刺激因子的表达,促进破骨细胞的生成[19]。CASP3是度值第二高的靶点蛋白,它的提高可以激活P53信号途径,抑制成熟的成骨细胞和软骨细胞的分化[20]。CASP3还参与了ONFH相关的细胞凋亡[21]。度值排名第三的靶点蛋白是ESR1 (雌激素受体),其与骨形成代谢密切相关,对于维持软骨厚度及骨生长平衡具有促进作用[22]。排在第四位的是在组织降解和修复过程中扮演重要角色的MMP2,相关研究指出,MMP2可能通过在骨基质内降解特定底物来激活破裂的骨细胞,从而导致股骨头内骨吸收异常增加[23]

GO富集分析的结果与PPI网络趋势一致,显示其与炎症反应密切相关,与细胞周期调控密切相关,与荷尔蒙代谢也有很大的关系。同时,KEGG路径富集分析表明,相关靶向基因主要集中在可能构成NR治疗股骨头坏死核心机制的P53、IL-17、细胞凋亡、TNF和坏死性凋亡等路径上。已有研究指出,P53信号通路的激活会对成骨细胞的成熟产生不利影响[20]。促进由RANKL诱导的破骨细胞生成[24]。Akt/Bad/Bcl-2与细胞凋亡有关的通路活化可以抑制由糖皮质激素在ONFH大鼠中诱发的内质网应激作用所导致的细胞凋亡[25]。Ichiseki等人[26]的研究表明,坏死性凋亡在骨坏死的发展阶段起着关键作用。同时,众多证据表明TNF在坏死性凋亡过程中起着关键调节作用,并突显了它在哺乳动物炎症反应和细胞稳定性中的重要性[27]

综上,研究结果表明,柚皮苷治疗股骨头坏死,可能通过多靶点、多途径,对股骨头坏死的炎症反应和细胞周期进行调节。对后续葡萄糖苷的药理机理分析、实验设计等方面的研究提供了重要的科学理论支撑。

NOTES

*通讯作者。

参考文献

[1] Liu, B., Yang, F., Wei, X., Zhang, X., Zhang, Y., Wang, B., et al. (2019) An Exploratory Study of Articular Cartilage and Subchondral Bone Reconstruction with Bone Marrow Mesenchymal Stem Cells Combined with Porous Tantalum/Bio-Gide Collagen Membrane in Osteonecrosis of the Femoral Head. Materials Science and Engineering: C, 99, 1123-1132.
https://doi.org/10.1016/j.msec.2019.02.072
[2] Zhao, D., Zhang, F., Wang, B., Liu, B., Li, L., Kim, S., et al. (2020) Guidelines for Clinical Diagnosis and Treatment of Osteonecrosis of the Femoral Head in Adults (2019 Version). Journal of Orthopaedic Translation, 21, 100-110.
https://doi.org/10.1016/j.jot.2019.12.004
[3] Seamon, J., Keller, T., Saleh, J. and Cui, Q. (2012) The Pathogenesis of Nontraumatic Osteonecrosis. Arthritis, 2012, Article ID: 601763.
https://doi.org/10.1155/2012/601763
[4] Wei, Q., Hong, G., Yuan, Y., Chen, Z., Zhang, Q. and He, W. (2019) Huo Xue Tong Luo Capsule, a Vasoactive Herbal Formula Prevents Progression of Asymptomatic Osteonecrosis of Femoral Head: A Prospective Study. Journal of Orthopaedic Translation, 18, 65-73.
https://doi.org/10.1016/j.jot.2018.11.002
[5] Wang, A., Ren, M. and Wang, J. (2018) The Pathogenesis of Steroid-Induced Osteonecrosis of the Femoral Head: A Systematic Review of the Literature. Gene, 671, 103-109.
https://doi.org/10.1016/j.gene.2018.05.091
[6] Migliorini, F., Maffulli, N., Baroncini, A., Eschweiler, J., Tingart, M. and Betsch, M. (2021) Failure and Progression to Total Hip Arthroplasty among the Treatments for Femoral Head Osteonecrosis: A Bayesian Network Meta-Analysis. British Medical Bulletin, 138, 112-125.
https://doi.org/10.1093/bmb/ldab006
[7] Swarup, I., Lee, Y., Chiu, Y., Sutherland, R., Shields, M. and Figgie, M.P. (2018) Implant Survival and Patient-Reported Outcomes after Total Hip Arthroplasty in Young Patients. The Journal of Arthroplasty, 33, 2893-2898.
https://doi.org/10.1016/j.arth.2018.04.016
[8] 邓攀, 王星, 纪海, 杨乐. 桃红四物汤加减对股骨头坏死临床疗效及部分机制探讨[J]. 世界中医药, 2019, 14(9): 2339-2343.
[9] 李凯杰, 李慧英, 孟东方. 健步虎潜丸加减对气滞血瘀型股骨头坏死患者的临床疗效[J]. 时珍国医国药, 2020, 31(10): 2419-2422.
[10] Wang, H., Li, C., Li, J., Zhu, Y., Jia, Y., Zhang, Y., Zhang, X., Li, W., Cui, L., Li, W., et al. (2017) Naringin Enhances Osteogenic Differentiation through the Activation of ERK Signaling in Human Bone Marrow Mesenchymal Stem Cells. Iranian Journal of Basic Medical Sciences, 20, 408-414.
[11] Huang, D., Li, Z., Chen, B., Fang, G., Sun, X., Li, F., et al. (2017) Naringin Protects against Steroid-Induced Avascular Necrosis of the Femoral Head through Upregulation of PPARγ and Activation of the Notch Signaling Pathway. Molecular Medicine Reports, 17, 3328-3335.
https://doi.org/10.3892/mmr.2017.8247
[12] Xu, Z., Li, N., Wooley, P.H., Yang, S. and Jiang, Y. (2013) Naringin Promotes Osteoblast Differentiation and Effectively Reverses Ovariectomy-Associated Osteoporosis. Journal of Orthopaedic Science, 18, 478-485.
https://doi.org/10.1007/s00776-013-0362-9
[13] Xu, T., Wang, L., Tao, Y., Ji, Y., Deng, F. and Wu, X. (2016) The Function of Naringin in Inducing Secretion of Osteoprotegerin and Inhibiting Formation of Osteoclasts. Evidence-Based Complementary and Alternative Medicine, 2016, Article ID: 8981650.
https://doi.org/10.1155/2016/8981650
[14] 黄俊波, 王世勇, 张晓敏, 李根, 姬菩忠, 赵红斌. 载柚皮苷复合支架对兔骨软骨缺损修复的实验研究[J]. 中国修复重建外科杂志, 2017, 31(4): 489-496.
[15] Chen, K., Lin, K., Chen, Y. and Yao, C. (2013) A Novel Porous Gelatin Composite Containing Naringin for Bone Repair. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 283941.
https://doi.org/10.1155/2013/283941
[16] Song, N., Zhao, Z., Ma, X., Sun, X., Ma, J., Li, F., et al. (2017) Naringin Promotes Fracture Healing through Stimulation of Angiogenesis by Regulating the VEGF/VEGFR-2 Signaling Pathway in Osteoporotic Rats. Chemico-Biological Interactions, 261, 11-17.
https://doi.org/10.1016/j.cbi.2016.10.020
[17] Shangguan, W., Zhang, Y., Li, Z., Tang, L., Shao, J. and Li, H. (2017) Naringin Inhibits Vascular Endothelial Cell Apoptosis via Endoplasmic Reticulum Stress-and Mitochondrial-Mediated Pathways and Promotes Intraosseous Angiogenesis in Ovariectomized Rats. International Journal of Molecular Medicine, 40, 1741-1749.
https://doi.org/10.3892/ijmm.2017.3160
[18] Li, L., Zeng, Z. and Cai, G. (2011) Comparison of Neoeriocitrin and Naringin on Proliferation and Osteogenic Differentiation in MC3T3-E1. Phytomedicine, 18, 985-989.
https://doi.org/10.1016/j.phymed.2011.03.002
[19] Schulman, R.C., Weiss, A.J. and Mechanick, J.I. (2011) Nutrition, Bone, and Aging: An Integrative Physiology Approach. Current Osteoporosis Reports, 9, 184-195.
https://doi.org/10.1007/s11914-011-0079-7
[20] Wu, J., Yang, Y., He, Y., Li, Q., Wang, X., Sun, C., et al. (2019) EFTUD2 Gene Deficiency Disrupts Osteoblast Maturation and Inhibits Chondrocyte Differentiation via Activation of the P53 Signaling Pathway. Human Genomics, 13, Article No. 63.
https://doi.org/10.1186/s40246-019-0238-y
[21] Abdi, A., Sadraie, H., Dargahi, L., Khalaj, L. and Ahmadiani, A. (2010) Apoptosis Inhibition Can Be Threatening in Aβ-Induced Neuroinflammation, through Promoting Cell Proliferation. Neurochemical Research, 36, 39-48.
https://doi.org/10.1007/s11064-010-0259-3
[22] 刘海, 李林福, 施伟梅, 杨建琼, 吴龙火. 雌激素受体在骨形成代谢中的研究进展[J]. 基因组学与应用生物学 2016, 35(7): 1656-1661.
[23] 纪志华, 贾丙申, 于鹏, 付昆, 孟志斌, 云大科. 激素性股骨头坏死中MMP2作用的研究[J]. 海南医学, 2017, 28(14): 2245-2246.
[24] 张国权, 范挽亭, 陈倩仪, 吕卫东, 赵琦, 黄盛兴. IL-17抗体对大鼠破骨细胞功能影响的体外研究[J]. 全科口腔医学电子杂志, 2018, 5(12): 7-10.
[25] Tao, S., Yuan, T., Rui, B., Zhu, Z., Guo, S. and Zhang, C. (2017) Exosomes Derived from Human Platelet-Rich Plasma Prevent Apoptosis Induced by Glucocorticoid-Associated Endoplasmic Reticulum Stress in Rat Osteonecrosis of the Femoral Head via the Akt/Bad/Bcl-2 Signal Pathway. Theranostics, 7, 733-750.
https://doi.org/10.7150/thno.17450
[26] Ichiseki, T., Ueda, S., Ueda, Y., Tuchiya, M., Kaneuji, A. and Kawahara, N. (2017) Involvement of Necroptosis, a Newly Recognized Cell Death Type, in Steroid-Induced Osteonecrosis in a Rabbit Model. International Journal of Medical Sciences, 14, 110-114.
https://doi.org/10.7150/ijms.17134
[27] Dai, Q., Zhang, Y., Liao, X., Jiang, Y., Lv, X., Yuan, X., et al. (2020) Fluorofenidone Alleviates Renal Fibrosis by Inhibiting Necroptosis through RIPK3/MLKL Pathway. Frontiers in Pharmacology, 11, Article 534775.
https://doi.org/10.3389/fphar.2020.534775