[1]
|
Dyrskjøt, L., Hansel, D.E., Efstathiou, J.A., Knowles, M.A., Galsky, M.D., Teoh, J., et al. (2023) Bladder Cancer. Nature Reviews Disease Primers, 9, Article No. 58. https://doi.org/10.1038/s41572-023-00468-9
|
[2]
|
Kamat, A.M., Hahn, N.M., Efstathiou, J.A., Lerner, S.P., Malmström, P., Choi, W., et al. (2016) Bladder Cancer. The Lancet, 388, 2796-2810. https://doi.org/10.1016/s0140-6736(16)30512-8
|
[3]
|
Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., Jaymand, M., et al. (2020) Tumor Microenvironment Complexity and Therapeutic Implications at a Glance. Cell Communication and Signaling, 18, Article No. 59. https://doi.org/10.1186/s12964-020-0530-4
|
[4]
|
DeNardo, D.G. and Ruffell, B. (2019) Macrophages as Regulators of Tumour Immunity and Immunotherapy. Nature Reviews Immunology, 19, 369-382. https://doi.org/10.1038/s41577-019-0127-6
|
[5]
|
Chen, Y., Song, Y., Du, W., Gong, L., Chang, H. and Zou, Z. (2019) Tumor-Associated Macrophages: An Accomplice in Solid Tumor Progression. Journal of Biomedical Science, 26, Article No. 78. https://doi.org/10.1186/s12929-019-0568-z
|
[6]
|
Zhao, L., Wang, Z., Tan, Y., Ma, J., Huang, W., Zhang, X., et al. (2024) Il-17A/CEBPβ/OPN/LYVE-1 Axis Inhibits Anti-Tumor Immunity by Promoting Tumor-Associated Tissue-Resident Macrophages. Cell Reports, 43, Article 115039. https://doi.org/10.1016/j.celrep.2024.115039
|
[7]
|
Pan, Y., Yu, Y., Wang, X. and Zhang, T. (2020) Tumor-Associated Macrophages in Tumor Immunity. Frontiers in Immunology, 11, Article 583084. https://doi.org/10.3389/fimmu.2020.583084
|
[8]
|
O’Neill, L.A.J., Kishton, R.J. and Rathmell, J. (2016) A Guide to Immunometabolism for Immunologists. Nature Reviews Immunology, 16, 553-565. https://doi.org/10.1038/nri.2016.70
|
[9]
|
Zhu, S., Yi, M., Wu, Y., Dong, B. and Wu, K. (2021) Roles of Tumor-Associated Macrophages in Tumor Progression: Implications on Therapeutic Strategies. Experimental Hematology & Oncology, 10, Article No. 60. https://doi.org/10.1186/s40164-021-00252-z
|
[10]
|
Murray, P.J. (2017) Macrophage Polarization. Annual Review of Physiology, 79, 541-566. https://doi.org/10.1146/annurev-physiol-022516-034339
|
[11]
|
Annamalai, R.T., Turner, P.A., Carson, W.F., Levi, B., Kunkel, S. and Stegemann, J.P. (2018) Harnessing Macrophage-Mediated Degradation of Gelatin Microspheres for Spatiotemporal Control of BMP2 Release. Biomaterials, 161, 216-227. https://doi.org/10.1016/j.biomaterials.2018.01.040
|
[12]
|
Chanmee, T., Ontong, P., Konno, K. and Itano, N. (2014) Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment. Cancers, 6, 1670-1690. https://doi.org/10.3390/cancers6031670
|
[13]
|
Li, M., Cui, Y., Qi, Q., Liu, J., Li, J., Huang, G., et al. (2024) SPOP Downregulation Promotes Bladder Cancer Progression Based on Cancer Cell-Macrophage Crosstalk via STAT3/CCL2/IL-6 Axis and Is Regulated by Vezf1. Theranostics, 14, 6543-6559. https://doi.org/10.7150/thno.101575
|
[14]
|
Qi, D., Lu, Y., Qu, H., Dong, Y., Jin, Q., Sun, M., et al. (2024) Independent Prognostic Value of CLDN6 in Bladder Cancer Based on M2 Macrophages Related Signature. iScience, 27, Article 109138. https://doi.org/10.1016/j.isci.2024.109138
|
[15]
|
Kessenbrock, K., Plaks, V. and Werb, Z. (2010) Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell, 141, 52-67. https://doi.org/10.1016/j.cell.2010.03.015
|
[16]
|
Nagumo, Y., Kandori, S., Tanuma, K., Nitta, S., Chihara, I., Shiga, M., et al. (2021) PLD1 Promotes Tumor Invasion by Regulation of MMP-13 Expression via NF-κB Signaling in Bladder Cancer. Cancer Letters, 511, 15-25. https://doi.org/10.1016/j.canlet.2021.04.014
|
[17]
|
Guo, Y., Li, Z., Sun, W., Gao, W., Liang, Y., Mei, Z., et al. (2022) M2 Tumor Associate Macrophage-(TAM-) Derived LncRNA HISLA Promotes EMT Potential in Bladder Cancer. Journal of Oncology, 2022, Article 8268719. https://doi.org/10.1155/2022/8268719
|
[18]
|
Xu, Y., Zeng, H., Jin, K., Liu, Z., Zhu, Y., Xu, L., et al. (2022) Immunosuppressive Tumor-Associated Macrophages Expressing Interlukin-10 Conferred Poor Prognosis and Therapeutic Vulnerability in Patients with Muscle-Invasive Bladder Cancer. Journal for ImmunoTherapy of Cancer, 10, e003416. https://doi.org/10.1136/jitc-2021-003416
|
[19]
|
Yu, Y., Liang, Y., Xie, F., Zhang, Z., Zhang, P., Zhao, X., et al. (2024) Tumor-Associated Macrophage Enhances PD-L1-Mediated Immune Escape of Bladder Cancer through PKM2 Dimer-STAT3 Complex Nuclear Translocation. Cancer Letters, 593, Article 216964. https://doi.org/10.1016/j.canlet.2024.216964
|
[20]
|
Cheng, M., Chen, S., Li, K., Wang, G., Xiong, G., Ling, R., et al. (2024) CD276-Dependent Efferocytosis by Tumor-Associated Macrophages Promotes Immune Evasion in Bladder Cancer. Nature Communications, 15, Article No. 2818. https://doi.org/10.1038/s41467-024-46735-5
|
[21]
|
Nian, Z., Dou, Y., Shen, Y., Liu, J., Du, X., Jiang, Y., et al. (2024) Interleukin-34-Orchestrated Tumor-Associated Macrophage Reprogramming Is Required for Tumor Immune Escape Driven by P53 Inactivation. Immunity, 57, 2344-2361.E7. https://doi.org/10.1016/j.immuni.2024.08.015
|
[22]
|
Koll, F.J., Banek, S., Kluth, L., Köllermann, J., Bankov, K., Chun, F.K.-H., et al. (2023) Tumor-Associated Macrophages and Tregs Influence and Represent Immune Cell Infiltration of Muscle-Invasive Bladder Cancer and Predict Prognosis. Journal of Translational Medicine, 21, Article No. 124. https://doi.org/10.1186/s12967-023-03949-3
|
[23]
|
Sun, M., Zeng, H., Jin, K., Liu, Z., Hu, B., Liu, C., et al. (2022) Infiltration and Polarization of Tumor-Associated Macrophages Predict Prognosis and Therapeutic Benefit in Muscle-Invasive Bladder Cancer. Cancer Immunology, Immunotherapy, 71, 1497-1506. https://doi.org/10.1007/s00262-021-03098-w
|
[24]
|
Qu, G., Liu, Z., Yang, G., Xu, Y., Xiang, M. and Tang, C. (2021) Development of a Prognostic Index and Screening of Prognosis Related Genes Based on an Immunogenomic Landscape Analysis of Bladder Cancer. Aging, 13, 12099-12112. https://doi.org/10.18632/aging.202917
|
[25]
|
Tian, L., Yi, X., Dong, Z., Xu, J., Liang, C., Chao, Y., et al. (2018) Calcium Bisphosphonate Nanoparticles with Chelator-Free Radiolabeling to Deplete Tumor-Associated Macrophages for Enhanced Cancer Radioisotope Therapy. ACS Nano, 12, 11541-11551. https://doi.org/10.1021/acsnano.8b06699
|
[26]
|
Coscia, M., Quaglino, E., Iezzi, M., Curcio, C., Pantaleoni, F., Riganti, C., et al. (2010) Zoledronic Acid Repolarizes Tumour-Associated Macrophages and Inhibits Mammary Carcinogenesis by Targeting the Mevalonate Pathway. Journal of Cellular and Molecular Medicine, 14, 2803-2815. https://doi.org/10.1111/j.1582-4934.2009.00926.x
|
[27]
|
del Mar Maldonado, M., Schlom, J. and Hamilton, D.H. (2023) Blockade of Tumor-Derived Colony-Stimulating Factor 1 (CSF1) Promotes an Immune-Permissive Tumor Microenvironment. Cancer Immunology, Immunotherapy, 72, 3349-3362. https://doi.org/10.1007/s00262-023-03496-2
|
[28]
|
Li, Z., Ding, Y., Liu, J., Wang, J., Mo, F., Wang, Y., et al. (2022) Depletion of Tumor Associated Macrophages Enhances Local and Systemic Platelet-Mediated Anti-PD-1 Delivery for Post-Surgery Tumor Recurrence Treatment. Nature Communications, 13, Article No. 1845. https://doi.org/10.1038/s41467-022-29388-0
|
[29]
|
Chen, C., He, W., Huang, J., Wang, B., Li, H., Cai, Q., et al. (2018) LNMAT1 Promotes Lymphatic Metastasis of Bladder Cancer via CCL2 Dependent Macrophage Recruitment. Nature Communications, 9, Article No. 3826. https://doi.org/10.1038/s41467-018-06152-x
|
[30]
|
Yang, H., Zhang, Q., Xu, M., Wang, L., Chen, X., Feng, Y., et al. (2020) CCL2-CCR2 Axis Recruits Tumor Associated Macrophages to Induce Immune Evasion through PD-1 Signaling in Esophageal Carcinogenesis. Molecular Cancer, 19, Article No. 41. https://doi.org/10.1186/s12943-020-01165-x
|
[31]
|
Chiang, Y., Lu, L., Tsai, C., Tsai, Y., Wang, C., Hsueh, F., et al. (2024) C-C Chemokine Receptor 4 (CCR4)-Positive Regulatory T Cells Interact with Tumor-Associated Macrophages to Facilitate Metastatic Potential after Radiation. European Journal of Cancer, 198, Article 113521. https://doi.org/10.1016/j.ejca.2023.113521
|
[32]
|
Lu, G. and Qiu, Y. (2023) Spi1-Mediated CXCL12 Expression in Bladder Cancer Affects the Recruitment of Tumor‐associated Macrophages. Molecular Carcinogenesis, 63, 448-460. https://doi.org/10.1002/mc.23663
|
[33]
|
Praharaj, M., Shen, F., Lee, A.J., Zhao, L., Nirschl, T.R., Theodros, D., et al. (2024) Metabolic Reprogramming of Tumor-Associated Macrophages Using Glutamine Antagonist JHU083 Drives Tumor Immunity in Myeloid-Rich Prostate and Bladder Cancers. Cancer Immunology Research, 12, 854-875. https://doi.org/10.1158/2326-6066.cir-23-1105
|
[34]
|
Ouyang, Y., Ou, Z., Zhong, W., Yang, J., Fu, S., Ouyang, N., et al. (2023) FGFR3 Alterations in Bladder Cancer Stimulate Serine Synthesis to Induce Immune-Inert Macrophages That Suppress T-Cell Recruitment and Activation. Cancer Research, 83, 4030-4046. https://doi.org/10.1158/0008-5472.can-23-1065
|
[35]
|
Loriot, Y., Matsubara, N., Park, S.H., Huddart, R.A., Burgess, E.F., Houede, N., et al. (2023) Erdafitinib or Chemotherapy in Advanced or Metastatic Urothelial Carcinoma. New England Journal of Medicine, 389, 1961-1971. https://doi.org/10.1056/nejmoa2308849
|
[36]
|
Wang, B., Zhou, B., Chen, J., Sun, X., Yang, W., Yang, T., et al. (2024) Type III Interferon Inhibits Bladder Cancer Progression by Reprogramming Macrophage-Mediated Phagocytosis and Orchestrating Effective Immune Responses. Journal for ImmunoTherapy of Cancer, 12, e007808. https://doi.org/10.1136/jitc-2023-007808
|
[37]
|
Jia, W., Luo, S., Lai, G., Li, S., Huo, S., Li, M., et al. (2021) Homogeneous Polyporus Polysaccharide Inhibits Bladder Cancer by Polarizing Macrophages to M1 Subtype in Tumor Microenvironment. BMC Complementary Medicine and Therapies, 21, Article No. 150. https://doi.org/10.1186/s12906-021-03318-x
|
[38]
|
Liu, C., He, D., Zhang, S., Chen, H., Zhao, J., Li, X., et al. (2022) Homogeneous Polyporus Polysaccharide Inhibit Bladder Cancer by Resetting Tumor-Associated Macrophages toward M1 through NF-κB/NLRP3 Signaling. Frontiers in Immunology, 13, Article 839460. https://doi.org/10.3389/fimmu.2022.839460
|
[39]
|
Guo, P., Dai, P., Yang, S., Wang, Z., Tong, Z., Hou, D., et al. (2023) Engineered Macrophages Tune Intratumoral Cytokines through Precisely Controlled Self-Pyroptosis to Enhance Bladder Cancer Immunotherapy. Small, 20, Article 2306699. https://doi.org/10.1002/smll.202306699
|
[40]
|
Zhang, L., Xiao, Z., Zhang, D., Yang, L., Yuan, Z., Wang, G., et al. (2024) Targeted Initiation of Trained Immunity in Tumor-Associated Macrophages with Membrane-Camouflaged Bacillus Calmette-Guérin for Lung Carcinoma Immunotherapy. ACS Nano, 18, 34219-34234. https://doi.org/10.1021/acsnano.4c11658
|
[41]
|
Xu, D., Wang, L., Wieczorek, K., Zhang, Y., Wang, Z., Wang, J., et al. (2022) Single-Cell Analyses of a Novel Mouse Urothelial Carcinoma Model Reveal a Role of Tumor-Associated Macrophages in Response to Anti-PD-1 Therapy. Cancers, 14, Article 2511. https://doi.org/10.3390/cancers14102511
|
[42]
|
Hu, B., Wang, Z., Zeng, H., Qi, Y., Chen, Y., Wang, T., et al. (2020) Blockade of DC-SIGN+ Tumor-Associated Macrophages Reactivates Antitumor Immunity and Improves Immunotherapy in Muscle-Invasive Bladder Cancer. Cancer Research, 80, 1707-1719. https://doi.org/10.1158/0008-5472.can-19-2254
|
[43]
|
Yang, M., Wang, B., Hou, W., Zeng, H., He, W., Zhang, X., et al. (2024) NAD+ Metabolism Enzyme NNMT in Cancer-Associated Fibroblasts Drives Tumor Progression and Resistance to Immunotherapy by Modulating Macrophages in Urothelial Bladder Cancer. Journal for ImmunoTherapy of Cancer, 12, e009281. https://doi.org/10.1136/jitc-2024-009281
|
[44]
|
Qi, F., Bao, Q., Hu, P., Guo, Y., Yan, Y., Yao, X., et al. (2024) Mild Magnetic Hyperthermia-Activated Immuno-Responses for Primary Bladder Cancer Therapy. Biomaterials, 307, Article 122514. https://doi.org/10.1016/j.biomaterials.2024.122514
|
[45]
|
Chuang, A.E.-Y., Tao, Y., Dong, S., Nguyen, H.T. and Liu, C. (2024) Polypyrrole/Iron-Glycol Chitosan Nanozymes Mediate M1 Macrophages to Enhance the X-Ray-Triggered Photodynamic Therapy for Bladder Cancer by Promoting Antitumor Immunity. International Journal of Biological Macromolecules, 280, Article 135608. https://doi.org/10.1016/j.ijbiomac.2024.135608
|