|
[1]
|
Ohnishi, Y., Pascual-Garrido, C., Kumagae, H., Sakai, A. and Uchida, S. (2017) Arthroscopic Technique for Isolated Posterolateral Rotational Instability of the Knee. Arthroscopy Techniques, 6, e291-e295. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Xue, Y., Riva, N., Zhao, L., Shieh, J., Chin, Y., Gatt, A., et al. (2023) Recent Advances of Exosomes in Soft Tissue Injuries in Sports Medicine: A Critical Review on Biological and Biomaterial Applications. Journal of Controlled Release, 364, 90-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wellsandt, E., Failla, M.J., Axe, M.J. and Snyder-Mackler, L. (2018) Does Anterior Cruciate Ligament Reconstruction Improve Functional and Radiographic Outcomes over Nonoperative Management 5 Years after Injury? The American Journal of Sports Medicine, 46, 2103-2112. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sharabi, M., Agron, R., Dolev, A., Haj-Ali, R. and Yassin, M. (2024) Predictive Refined Computational Modeling of ACL Tear Injury Patterns. Bioengineering, 11, Article No. 413. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Xu, Y., Zhang, W., Wang, L., Ming, Y., Li, Y. and Ni, G. (2021) Stem Cell Therapies in Tendon-Bone Healing. World Journal of Stem Cells, 13, 753-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Buckthorpe, M., La Rosa, G. and Villa, F.D. (2019) Restoring Knee Extensor Strength after Anterior Cruciate Ligament Reconstruction: A Clinical Commentary. International Journal of Sports Physical Therapy, 14, 159-172. [Google Scholar] [CrossRef]
|
|
[7]
|
Li, X., Wang, M., Jing, X., Guo, W., Hao, C., Zhang, Y., et al. (2018) Bone Marrow-and Adipose Tissue-Derived Mesenchymal Stem Cells: Characterization, Differentiation, and Applications in Cartilage Tissue Engineering. Critical Reviews in Eukaryotic Gene Expression, 28, 285-310. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yang, Q., Liu, G., Chen, G., Chen, G., Chen, K., Fan, L., et al. (2024) Novel Injectable Adhesive Hydrogel Loaded with Exosomes for Holistic Repair of Hemophilic Articular Cartilage Defect. Bioactive Materials, 42, 85-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, M., Tang, Y., Chen, C., Zhou, J., Zheng, C., Chen, H., et al. (2020) Comparison of Bone Surface and Trough Fixation on Bone-Tendon Healing in a Rabbit Patella-Patellar Tendon Injury Model. Journal of Orthopaedic Translation, 21, 49-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kim, W.J. and Kim, G.H. (2022) A Bioprinted Complex Tissue Model for Myotendinous Junction with Biochemical and Biophysical Cues. Bioengineering & Translational Medicine, 7, e10321. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Liu, Y., Thomopoulos, S., Chen, C., Birman, V., Buehler, M.J. and Genin, G.M. (2014) Modelling the Mechanics of Partially Mineralized Collagen Fibrils, Fibres and Tissue. Journal of the Royal Society Interface, 11, Article ID: 20130835. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Genin, G.M. and Thomopoulos, S. (2017) Unification through Disarray. Nature Materials, 16, 607-608. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Thomopoulos, S., Parks, W.C., Rifkin, D.B. and Derwin, K.A. (2015) Mechanisms of Tendon Injury and Repair. Journal of Orthopaedic Research, 33, 832-839. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
(2023) Physical Therapy for People with Lateral Elbow Tendinopathy: Using the Evidence to Guide Musculoskeletal Rehabilitation Clinical Practice. Journal of Orthopaedic & Sports Physical Therapy, 53, 5-6.
|
|
[15]
|
Liu, S.H., Panossian, V., Al-Shaikh, R., Tomin, E., Shepherd, E., Finerman, G.A., et al. (1997) Morphology and Matrix Composition during Early Tendon to Bone Healing. Clinical Orthopaedics and Related Research, 339, 253-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ishibashi, Y., Toh, S., Okamura, Y., Sasaki, T. and Kusumi, T. (2001) Graft Incorporation within the Tibial Bone Tunnel after Anterior Cruciate Ligament Reconstruction with Bone-Patellar Tendon-Bone Autograft. The American Journal of Sports Medicine, 29, 473-479. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Robert, H., Es-Sayeh, J., Heymann, D., Passuti, N., Eloit, S. and Vaneenoge, E. (2003) Hamstring Insertion Site Healing after Anterior Cruciate Ligament Reconstruction in Patients with Symptomatic Hardware or Repeat Rupture: A Histologic Study in 12 Patients. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 19, 948-954. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Centeno, C.J. (2020) Bone Marrow Concentrate (BMC) Therapy in Musculoskeletal Disorders: Evidence-Based Policy Position Statement of American Society of Interventional Pain Physicians (ASIPP). Pain Physician, 2, E85-E131. [Google Scholar] [CrossRef]
|
|
[19]
|
Anz, A.W., Hackel, J.G., Nilssen, E.C. and Andrews, J.R. (2014) Application of Biologics in the Treatment of the Rotator Cuff, Meniscus, Cartilage, and Osteoarthritis. Journal of the American Academy of Orthopaedic Surgeons, 22, 68-79. [Google Scholar] [CrossRef]
|
|
[20]
|
Zhu, Y., Yan, J., Zhang, H. and Cui, G. (2023) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes: A Novel Therapeutic Agent for Tendon-Bone Healing (Review). International Journal of Molecular Medicine, 52, 121. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lim, J., Hui, J., Li, L., Thambyah, A., Goh, J. and Lee, E. (2004) Enhancement of Tendon Graft Osteointegration Using Mesenchymal Stem Cells in a Rabbit Model of Anterior Cruciate Ligament Reconstruction. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 20, 899-910. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ouyang, H.W., Goh, J.C.H. and Lee, E.H. (2004) Use of Bone Marrow Stromal Cells for Tendon Graft-to-Bone Healing: Histological and Immunohistochemical Studies in a Rabbit Model. The American Journal of Sports Medicine, 32, 321-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ouyang, H.W., Goh, J.C.H. and Lee, E.H. (2004) Use of Bone Marrow Stromal Cells for Tendon Graft-to-Bone Healing. The American Journal of Sports Medicine, 32, 321-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Canseco, J.A., Kojima, K., Penvose, A.R., Ross, J.D., Obokata, H., Gomoll, A.H., et al. (2012) Effect on Ligament Marker Expression by Direct-Contact Co-Culture of Mesenchymal Stem Cells and Anterior Cruciate Ligament Cells. Tissue Engineering Part A, 18, 2549-2558. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
He, Y., Liu, S., Deng, S., Kuang, L., Xu, S., Li, Z., et al. (2019) Mechanical Stretch Promotes the Osteogenic Differentiation of Bone Mesenchymal Stem Cells Induced by Erythropoietin. Stem Cells International, 2019, Article ID: 1839627. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Teng, C., Zhou, C., Xu, D. and Bi, F. (2016) Combination of Platelet-Rich Plasma and Bone Marrow Mesenchymal Stem Cells Enhances Tendon-Bone Healing in a Rabbit Model of Anterior Cruciate Ligament Reconstruction. Journal of Orthopaedic Surgery and Research, 11, 96. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Setiawati, R., Utomo, D.N., Rantam, F.A., Ifran, N.N. and Budhiparama, N.C. (2017) Early Graft Tunnel Healing after Anterior Cruciate Ligament Reconstruction with Intratunnel Injection of Bone Marrow Mesenchymal Stem Cells and Vascular Endothelial Growth Factor. Orthopaedic Journal of Sports Medicine, 5, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Abels, E.R. and Breakefield, X.O. (2016) Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cellular and Molecular Neurobiology, 36, 301-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Xiang, X., Zhu, S., He, H., Yu, X., Xu, Y. and He, C. (2022) Mesenchymal Stromal Cell-Based Therapy for Cartilage Regeneration in Knee Osteoarthritis. Stem Cell Research & Therapy, 13, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Xu, X., Liang, Y., Li, X., Ouyang, K., Wang, M., Cao, T., et al. (2021) Exosome-Mediated Delivery of Kartogenin for Chondrogenesis of Synovial Fluid-Derived Mesenchymal Stem Cells and Cartilage Regeneration. Biomaterials, 269, Article ID: 120539. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
McKiernan, J., Donovan, M.J., O’Neill, V., Bentink, S., Noerholm, M., Belzer, S., et al. (2016) A Novel Urine Exosome Gene Expression Assay to Predict High-Grade Prostate Cancer at Initial Biopsy. JAMA Oncology, 2, Article No. 882. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lobb, R.J., Becker, M., Wen Wen, S., Wong, C.S.F., Wiegmans, A.P., Leimgruber, A., et al. (2015) Optimized Exosome Isolation Protocol for Cell Culture Supernatant and Human Plasma. Journal of Extracellular Vesicles, 4, Article No. 27031. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wu, Y., Li, J., Yuan, R., Deng, Z. and Wu, X. (2021) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Alleviate Hyperoxia-Induced Lung Injury via the Manipulation of microRNA-425. Archives of Biochemistry and Biophysics, 697, Article ID: 108712. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Shi, H., Hao, X., Sun, Y., Zhang, H., Zhao, Y., Wang, B., et al. (2023) Bone Marrow Mesenchymal Stem Cell‐Derived Exosomes Reduce Insulin Resistance and Obesity in Mice via the PI3K/AKT Signaling Pathway. FEBS Open Bio, 13, 1015-1026. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chai, M., Su, G., Chen, W., Gao, J., Wu, Q., Song, J., et al. (2024) Effects of Bone Marrow Mesenchymal Stem Cell-Derived Exosomes in Central Nervous System Diseases. Molecular Neurobiology, 61, 7481-7499. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tan, X., Xiao, H., Yan, A., Li, M. and Wang, L. (2024) Effect of Exosomes from Bone Marrow-Derived Mesenchymal Stromal Cells and Adipose-Derived Stromal Cells on Bone-Tendon Healing in a Murine Rotator Cuff Injury Model. Orthopaedic Journal of Sports Medicine, 12, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Huang, Y., He, B., Wang, L., Yuan, B., Shu, H., Zhang, F., et al. (2020) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Promote Rotator Cuff Tendon-Bone Healing by Promoting Angiogenesis and Regulating M1 Macrophages in Rats. Stem Cell Research & Therapy, 11, Article No. 496. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, Z., Jin, M., He, H., Dong, J., Li, J., Nie, J., et al. (2023) Mesenchymal Stem Cells and Macrophages and Their Interactions in Tendon-Bone Healing. Journal of Orthopaedic Translation, 39, 63-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Gordon, S., Plüddemann, A. and Martinez Estrada, F. (2014) Macrophage Heterogeneity in Tissues: Phenotypic Diversity and Functions. Immunological Reviews, 262, 36-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Sindrilaru, A., Peters, T., Wieschalka, S., Baican, C., Baican, A., Peter, H., et al. (2011) An Unrestrained Proinflammatory M1 Macrophage Population Induced by Iron Impairs Wound Healing in Humans and Mice. Journal of Clinical Investigation, 121, 985-997. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Shi, Y., Kang, X., Wang, Y., Bian, X., He, G., Zhou, M., et al. (2020) Exosomes Derived from Bone Marrow Stromal Cells (BMSCs) Enhance Tendon-Bone Healing by Regulating Macrophage Polarization. Medical Science Monitor, 26, e923328. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wu, B., Zhang, T., Chen, H., Shi, X., Guan, C., Hu, J., et al. (2024) Exosomes Derived from Bone Marrow Mesenchymal Stem Cell Preconditioned by Low-Intensity Pulsed Ultrasound Stimulation Promote Bone-Tendon Interface Fibrocartilage Regeneration and Ameliorate Rotator Cuff Fatty Infiltration. Journal of Orthopaedic Translation, 48, 89-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Fang, W.H. and Vangsness, C.T. (2024) Orthobiologic Products: Preservation Options for Orthopedic Research and Clinical Applications. Journal of Clinical Medicine, 13, Article No. 6577. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhang, C., Jiang, C., Jin, J., Lei, P., Cai, Y. and Wang, Y. (2023) Cartilage Fragments Combined with BMSCs-Derived Exosomes Can Promote Tendon-Bone Healing after ACL Reconstruction. Materials Today Bio, 23, Article ID: 100819. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Huang, L., Chen, L., Chen, H., Wang, M., Jin, L., Zhou, S., et al. (2023) Biomimetic Scaffolds for Tendon Tissue Regeneration. Biomimetics, 8, Article No. 246. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yokoya, S., Mochizuki, Y., Natsu, K., Omae, H., Nagata, Y. and Ochi, M. (2012) Rotator Cuff Regeneration Using a Bioabsorbable Material with Bone Marrow-Derived Mesenchymal Stem Cells in a Rabbit Model. The American Journal of Sports Medicine, 40, 1259-1268. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Liu, Q., Yu, Y., Reisdorf, R.L., Qi, J., Lu, C., Berglund, L.J., et al. (2019) Engineered Tendon-Fibrocartilage-Bone Composite and Bone Marrow-Derived Mesenchymal Stem Cell Sheet Augmentation Promotes Rotator Cuff Healing in a Non-Weight-Bearing Canine Model. Biomaterials, 192, 189-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Micalizzi, S., Russo, L., Giacomelli, C., Montemurro, F., Maria, C.D., Nencioni, M., et al. (2023) Multimaterial and Multiscale Scaffold for Engineering Enthesis Organ. International Journal of Bioprinting, 9, Article No. 763. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Tang, Y., Tian, J., Li, L., Huang, L., Shen, Q., Guo, S., et al. (2021) Biomimetic Biphasic Electrospun Scaffold for Anterior Cruciate Ligament Tissue Engineering. Tissue Engineering and Regenerative Medicine, 18, 819-830. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Thangarajah, T., Sanghani-Kerai, A., Henshaw, F., Lambert, S.M., Pendegrass, C.J. and Blunn, G.W. (2017) Application of a Demineralized Cortical Bone Matrix and Bone Marrow-Derived Mesenchymal Stem Cells in a Model of Chronic Rotator Cuff Degeneration. The American Journal of Sports Medicine, 46, 98-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Pauly, H.M., Sathy, B.N., Olvera, D., McCarthy, H.O., Kelly, D.J., Popat, K.C., et al. (2017) Hierarchically Structured Electrospun Scaffolds with Chemically Conjugated Growth Factor for Ligament Tissue Engineering. Tissue Engineering Part A, 23, 823-836. [Google Scholar] [CrossRef] [PubMed]
|