[1]
|
Jellinger, K.A. (2020) Neuropathology of the Alzheimer’s Continuum: An Update. Free Neuropathology, 1, Article 32.
|
[2]
|
汪睿彤, 刘珏. 阿尔茨海默病的流行病学研究进展[J]. 中国慢性病预防与控制, 2021, 29(9): 707-711.
|
[3]
|
Zeisel, J., Bennett, K. and Fleming, R. (2020) World Alzheimer Report 2020: Design, Dignity, Dementia: Dementia-Related Design and the Built Environment. https://www.alzint.org/resource/world-alzheimer-report-2020/
|
[4]
|
Ren, R., Qi, J., Lin, S., Liu, X., Yin, P., Wang, Z., et al. (2022) The China Alzheimer Report 2022. General Psychiatry, 35, e100751. https://doi.org/10.1136/gpsych-2022-100751
|
[5]
|
Better, M.A. (2023) Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement, 19, 1598-1695.
|
[6]
|
苏梓南, 李凯, 张根发. 阿尔茨海默病β淀粉样蛋白沉积斑块和寡聚体致病假说及其面临的挑战[J]. 中华老年多器官疾病杂志, 2023, 22(2): 157-160.
|
[7]
|
Söderberg, L., Johannesson, M., Nygren, P., Laudon, H., Eriksson, F., Osswald, G., et al. (2023) Lecanemab, Aducanumab, and Gantenerumab—Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer’s Disease. Neurotherapeutics, 20, 195-206. https://doi.org/10.1007/s13311-022-01308-6
|
[8]
|
刘伟, 张誉丹, 王梦真, 等. Aβ通道在阿尔茨海默症发病过程中的作用及其机制[J]. 生理科学进展, 2022, 53(3): 167-172.
|
[9]
|
于佳欣, 林淼, 张文轩, 等. 阿尔茨海默病相关免疫炎症反应的研究进展[J]. 生命科学, 2024, 36(4): 467-476.
|
[10]
|
Du, X., Wang, X. and Geng, M. (2018) Alzheimer’s Disease Hypothesis and Related Therapies. Translational Neurodegeneration, 7, Article No. 2. https://doi.org/10.1186/s40035-018-0107-y
|
[11]
|
Ricciarelli, R. and Fedele, E. (2017) The Amyloid Cascade Hypothesis in Alzheimer’s Disease: It’s Time to Change Our Mind. Current Neuropharmacology, 15, 926-935. https://doi.org/10.2174/1570159x15666170116143743
|
[12]
|
Carrano, N. (2023) A New Therapeutic Approach to Tauopathies: Targeting Presynaptic Tau with Antisense Oligonucleotides to Synaptogyrin‐3. Alzheimer’s & Dementia, 19, e074699. https://doi.org/10.1002/alz.074699
|
[13]
|
Pluta, R. and Czuczwar, S.J. (2024) Trans-and Cis-Phosphorylated Tau Protein: New Pieces of the Puzzle in the Development of Neurofibrillary Tangles in Post-Ischemic Brain Neurodegeneration of the Alzheimer’s Disease-Like Type. International Journal of Molecular Sciences, 25, Article 3091. https://doi.org/10.3390/ijms25063091
|
[14]
|
Tian, S., Ye, T. and Cheng, X. (2023) The Behavioral, Pathological and Therapeutic Features of the Triple Transgenic Alzheimer’s Disease (3 × Tg-Ad) Mouse Model Strain. Experimental Neurology, 368, Article ID: 114505. https://doi.org/10.1016/j.expneurol.2023.114505
|
[15]
|
Gibbons, G.S., Lee, V.M.Y. and Trojanowski, J.Q. (2019) Mechanisms of Cell-To-Cell Transmission of Pathological Tau. JAMA Neurology, 76, 101-108. https://doi.org/10.1001/jamaneurol.2018.2505
|
[16]
|
Chen, X. and Mobley, W.C. (2019) Alzheimer Disease Pathogenesis: Insights from Molecular and Cellular Biology Studies of Oligomeric Aβ and Tau Species. Frontiers in Neuroscience, 13, Article 659. https://doi.org/10.3389/fnins.2019.00659
|
[17]
|
Kosyreva, A., Sentyabreva, A., Tsvetkov, I. and Makarova, O. (2022) Alzheimer’s Disease and Inflammaging. Brain Sciences, 12, Article 1237. https://doi.org/10.3390/brainsci12091237
|
[18]
|
Zhang, Y., Miao, Y., Tan, J., Chen, F., Lei, P. and Zhang, Q. (2023) Identification of Mitochondrial Related Signature Associated with Immune Microenvironment in Alzheimer’s Disease. Journal of Translational Medicine, 21, Article No. 458. https://doi.org/10.1186/s12967-023-04254-9
|
[19]
|
Wang, W., Zhao, F., Ma, X., Perry, G. and Zhu, X. (2020) Mitochondria Dysfunction in the Pathogenesis of Alzheimer’s Disease: Recent Advances. Molecular Neurodegeneration, 15, Article No. 30. https://doi.org/10.1186/s13024-020-00376-6
|
[20]
|
Burillo, J., Marqués, P., Jiménez, B., González-Blanco, C., Benito, M. and Guillén, C. (2021) Insulin Resistance and Diabetes Mellitus in Alzheimer’s Disease. Cells, 10, Article 1236. https://doi.org/10.3390/cells10051236
|
[21]
|
Varadharajan, A., Davis, A.D., Ghosh, A., Jagtap, T., Xavier, A., Menon, A.J., et al. (2023) Guidelines for Pharmacotherapy in Alzheimer’s Disease—A Primer on FDA-Approved Drugs. Journal of Neurosciences in Rural Practice, 14, 566-573. https://doi.org/10.25259/jnrp_356_2023
|
[22]
|
Guo, J., Wang, Z., Liu, R., Huang, Y., Zhang, N. and Zhang, R. (2020) Memantine, Donepezil, or Combination Therapy—What Is the Best Therapy for Alzheimer’s Disease? A Network Meta‐Analysis. Brain and Behavior, 10, e01831. https://doi.org/10.1002/brb3.1831
|
[23]
|
Suzuki, N., Hatta, T., Ito, M. and Kusakabe, K. (2024) Anti-Amyloid-β Antibodies and Anti-Tau Therapies for Alzheimer’s Disease: Recent Advances and Perspectives. Chemical and Pharmaceutical Bulletin, 72, 602-609. https://doi.org/10.1248/cpb.c24-00069
|
[24]
|
Beveridge, J., Kaniecki, E., Naidu, A., Silverglate, B.D. and Grossberg, G. (2024) How Promising Are the Latest Monoclonal Antibodies Targeting Amyloid-β for the Treatment of Early Alzheimer’s Disease? Expert Opinion on Emerging Drugs, 29, 35-43. https://doi.org/10.1080/14728214.2024.2304059
|
[25]
|
Golde, T.E. and Levey, A.I. (2023) Immunotherapies for Alzheimer’s Disease. Science, 382, 1242-1244. https://doi.org/10.1126/science.adj9255
|
[26]
|
Ono, K., Shiina, H., Matsumoto, M., et al. (2024) The Roles of Aβ in Alzheimer’s Disease: In Light of the Latest Findings. Brain and Nerve, 76, 399-408.
|
[27]
|
Martin-Avila, A., Modak, S.R., Rajamohamedsait, H.B., et al. (2024) Clearing Truncated Tau Protein Restores Neuronal Function and Prevents Microglia Activation in Tauopathy Mice. bioRxiv. https://doi.org/10.1101/2024.05.21.595198
|
[28]
|
Cruz, E., Nisbet, R.M., Padmanabhan, P., et al. (2024) Proteostasis as a Fundamental Principle of Tau Immunotherapy. bioRxiv. https://doi.org/10.1101/2024.02.12.580007
|
[29]
|
Zadrozny, M., Drapich, P., Gasiorowska-Bien, A., Niewiadomski, W., Harrington, C.R., Wischik, C.M., et al. (2024) Neuroprotection of Cholinergic Neurons with a Tau Aggregation Inhibitor and Rivastigmine in an Alzheimer’s-Like Tauopathy Mouse Model. Cells, 13, Article 642. https://doi.org/10.3390/cells13070642
|
[30]
|
Drapich, P., Zadrozny, M., Mironczuk, S., Gasiorowska, A., Melis, V., Riedel, G., et al. (2023) Reduction in Tau‐Pathology Induced with Two Novel Tau Aggregation Inhibitors in Alzheimer Mice. Alzheimer’s & Dementia, 19, e076607. https://doi.org/10.1002/alz.076607
|
[31]
|
Ahamad, S., Junaid, I.T. and Gupta, D. (2024) Computational Design of Novel Tau-Tubulin Kinase 1 Inhibitors for Neurodegenerative Diseases. Pharmaceuticals, 17, Article 952. https://doi.org/10.3390/ph17070952
|
[32]
|
Hussain, F., Tahir, A., Jan, M.S., Fatima, N., Sadiq, A. and Rashid, U. (2024) Exploitation of the Multitarget Role of New Ferulic and Gallic Acid Derivatives in Oxidative Stress-Related Alzheimer’s Disease Therapies: Design, Synthesis and Bioevaluation. RSC Advances, 14, 10304-10321. https://doi.org/10.1039/d4ra00766b
|
[33]
|
Navabi, S.M., Elieh-Ali-Komi, D., Afshari, D., Goudarzi, F., Mohammadi-Noori, E., Heydari, K., et al. (2024) Adjunctive Silymarin Supplementation and Its Effects on Disease Severity, Oxidative Stress, and Inflammation in Patients with Alzheimer’s Disease. Nutritional Neuroscience, 27, 1077-1087. https://doi.org/10.1080/1028415x.2023.2301163
|
[34]
|
Hickey, J.P., Collins, A.E., Nelson, M.L., Chen, H. and Kalisch, B.E. (2024) Modulation of Oxidative Stress and Neuroinflammation by Cannabidiol (CBD): Promising Targets for the Treatment of Alzheimer’s Disease. Current Issues in Molecular Biology, 46, 4379-4402. https://doi.org/10.3390/cimb46050266
|
[35]
|
Dai, Y., Wang, Y., Kang, Q., Wu, Y., Liu, Y., Su, Y., et al. (2024) The Protective Effect and Bioactive Compounds of Astragalus membranaceus against Neurodegenerative Disorders via Alleviating Oxidative Stress in drosophila. The FASEB Journal, 38, e23727. https://doi.org/10.1096/fj.202400390r
|
[36]
|
Mojzych, I., Zawadzka, A., Andrzejewski, K., Jampolska, M., Bednarikova, Z., Gancar, M., et al. (2024) A Novel Tetrahydroacridine Derivative with Potent Acetylcholinesterase Inhibitory Properties and Dissociative Capability against Aβ42 Fibrils Confirmed by in Vitro Studies. International Journal of Molecular Sciences, 25, Article ID: 10072. https://doi.org/10.3390/ijms251810072
|
[37]
|
Yamamoto, K., Tsuji, M., Oguchi, T., Momma, Y., Ohashi, H., Ito, N., et al. (2024) Comparison of Protective Effects of Antidepressants Mediated by Serotonin Receptor in Aβ-Oligomer-Induced Neurotoxicity. Biomedicines, 12, Article 1158. https://doi.org/10.3390/biomedicines12061158
|
[38]
|
Atlante, A., Amadoro, G., Latina, V. and Valenti, D. (2022) Therapeutic Potential of Targeting Mitochondria for Alzheimer’s Disease Treatment. Journal of Clinical Medicine, 11, Article 6742. https://doi.org/10.3390/jcm11226742
|
[39]
|
Srivastava, A., Renna, H.A., Johnson, M., Sheehan, K., Ahmed, S., Palaia, T., et al. (2024) Nilotinib as a Prospective Treatment for Alzheimer’s Disease: Effect on Proteins Involved in Neurodegeneration and Neuronal Homeostasis. Life, 14, Article 1241. https://doi.org/10.3390/life14101241
|
[40]
|
Khodabandelou, S., Nazem, Z., Komaki, A., Ramezani, M., Firoozian, F., Faraji, N., et al. (2024) Development of Silibinin-Loaded Nanostructured Lipid Carriers for Alzheimer’s Disease Induced by Amyloid Beta in Wistar Rats. Journal of Materials Chemistry B, 12, 11426-11443. https://doi.org/10.1039/d4tb00775a
|
[41]
|
Liu, W., Yu, Y., Zang, J., Liu, Y., Li, F., Zhang, L., et al. (2024) Menthol-modified Quercetin Liposomes with Brain-Targeting Function for the Treatment of Senescent Alzheimer’s Disease. ACS Chemical Neuroscience, 15, 2283-2295. https://doi.org/10.1021/acschemneuro.4c00109
|
[42]
|
Madera-Cimadevilla, T., Cantero-García, M. and Rueda-Extremera, M. (2024) Music Therapy as Non-Pharmacological Treatment in Alzheimer’s Disease—Effects on Memory—Systematic Review. Journal of Ageing and Longevity, 4, 209-224. https://doi.org/10.3390/jal4030015
|
[43]
|
Burnand, A., Rookes, T., Mahmood, F., Davies, N., Walters, K., Orleans‐Foli, S., et al. (2024) Non‐Pharmacological Interventions in the Management of Dementia‐Related Psychosis: A Systematic Review and Meta‐Analysis. International Journal of Geriatric Psychiatry, 39, e6129. https://doi.org/10.1002/gps.6129
|
[44]
|
Dou, J., Zhang, H., Fu, X., Yang, Y. and Gao, X. (2024) Optimal Dose and Type of Non-Pharmacological Treatments to Improve Cognitive Function in People with Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. Aging & Mental Health, 29, 228-237. https://doi.org/10.1080/13607863.2024.2379427
|
[45]
|
Kim, E.H., Lee, W.S., Lee, J.H. and Kwon, D.R. (2024) Microcurrent Therapy as the Nonpharmacological New Protocol against Alzheimer’s Disease. Frontiers in Aging Neuroscience, 16, Article 1344072. https://doi.org/10.3389/fnagi.2024.1344072
|
[46]
|
Wang, N., Tai, H. and Tzeng, I. (2024) Non-Pharmacological Exercise Randomized Controlled Trials in Alzheimer’s Disease. Advances in Alzheimer’s Disease, 12, 553-560. https://doi.org/10.3233/aiad240040
|
[47]
|
Yin, Z., Li, Y., Bao, Q., Zhang, X., Xia, M., Zhong, W., et al. (2023) Comparative Efficacy of Multiple Non‐Pharmacological Interventions for Behavioural and Psychological Symptoms of Dementia: A Network Meta‐Analysis of Randomised Controlled Trials. International Journal of Mental Health Nursing, 33, 487-504. https://doi.org/10.1111/inm.13254
|
[48]
|
Mukaetova-Ladinska, E.B., Steptoe, J., Critchfield, M., Yoon, H., Sharif, M. and Arshad, Q. (2023) Hyperbaric Oxygen Therapy—A New Hope for Alzheimer’s Patients: A Case Report and Literature Review. Exploration of Neuroprotective Therapy, 3, 457-469. https://doi.org/10.37349/ent.2023.00062
|
[49]
|
Mateev, E., Karatchobanov, V., Dedja, M., Diamantakos, K., Mateeva, A., Muhammed, M.T., et al. (2024) Novel Pyrrole Derivatives as Multi-Target Agents for the Treatment of Alzheimer’s Disease: Microwave-Assisted Synthesis, in Silico Studies and Biological Evaluation. Pharmaceuticals, 17, Article 1171. https://doi.org/10.3390/ph17091171
|
[50]
|
Zhang, Y., Zhao, P., Gao, H., Zhong, M. and Li, J. (2024) Screening Targets and Therapeutic Drugs for Alzheimer’s Disease Based on Deep Learning Model and Molecular Docking. Journal of Alzheimer’s Disease, 100, 863-878. https://doi.org/10.3233/jad-231389
|
[51]
|
Qiu, J., Feng, X., Chen, H., Liu, W., Liu, W., Wu, L., et al. (2023) Discovery of Novel Harmine Derivatives as GSK‐3β/DYRK1A Dual Inhibitors for Alzheimer’s Disease Treatment. Archiv der Pharmazie, 357, Article ID: 2300404. https://doi.org/10.1002/ardp.202300404
|
[52]
|
Chen, J., Xiang, P., Duro-Castano, A., et al. (2024) Multivalent Modulation of Endothelial LRP1 Induces Fast Neurovascular Amyloid-β Clearance and Cognitive Function Improvement in Alzheimer’s Disease Models. bioRxiv. https://doi.org/10.1101/2024.05.06.592767
|
[53]
|
Stahl, J., Joji, A., Khorkova, O., Volmar, C. and Wahlestedt, C. (2023) Selective RNA‐Targeting of mTORC1 and 2 to Ameliorate Alzheimer’s Disease Pathogenesis. Alzheimer’s & Dementia, 19, e075752. https://doi.org/10.1002/alz.075752
|
[54]
|
Fang, J., Zhang, P., Wang, Q., Chiang, C., Zhou, Y., Hou, Y., et al. (2022) Artificial Intelligence Framework Identifies Candidate Targets for Drug Repurposing in Alzheimer’s Disease. Alzheimer’s Research & Therapy, 14, Article No. 7. https://doi.org/10.1186/s13195-021-00951-z
|
[55]
|
Arrué, L., Cigna-Méndez, A., Barbosa, T., Borrego-Muñoz, P., Struve-Villalobos, S., Oviedo, V., et al. (2022) New Drug Design Avenues Targeting Alzheimer’s Disease by Pharmacoinformatics-Aided Tools. Pharmaceutics, 14, Article 1914. https://doi.org/10.3390/pharmaceutics14091914
|
[56]
|
Li, V.O.K., Han, Y., Kaistha, T., et al. (2024) DeepDrug: An Expert-Led Domain-Specific AI-Driven Drug-Repurposing Mechanism for Selecting the Lead Combination of Drugs for Alzheimer’s Disease. medRxiv. https://doi.org/10.1101/2024.07.06.24309990
|
[57]
|
Bhattarai, K., Rajaganapathy, S., Das, T., Kim, Y., Chen, Y., Dai, Q., et al. (2023) Using Artificial Intelligence to Learn Optimal Regimen Plan for Alzheimer’s Disease. Journal of the American Medical Informatics Association, 30, 1645-1656. https://doi.org/10.1093/jamia/ocad135
|
[58]
|
Wu, Y., Liu, Q., Qiu, Y. and Xie, L. (2022) Deep Learning Prediction of Chemical-Induced Dose-Dependent and Context-Specific Multiplex Phenotype Responses and Its Application to Personalized Alzheimer’s Disease Drug Repurposing. PLOS Computational Biology, 18, e1010367. https://doi.org/10.1371/journal.pcbi.1010367
|