阿尔兹海默症治疗策略新进展
New Progress in the Treatment of Alzheimer’s Disease
DOI: 10.12677/acm.2025.1561810, PDF, HTML, XML,   
作者: 朱玉婷:内蒙古医科大学精神卫生学院,内蒙古 呼和浩特;内蒙古自治区精神卫生中心,老年心理一科,内蒙古 呼和浩特;刘永义*:内蒙古医科大学精神卫生学院,内蒙古 呼和浩特;内蒙古自治区精神卫生中心,司法鉴定中心,内蒙古 呼和浩特
关键词: 阿尔兹海默症药物治疗发病机制Alzheimer’s Disease Drug Treatment Mechanism Research
摘要: 阿尔兹海默症是一种严重的神经退行性疾病,主要表现为认知功能障碍和记忆力衰退。近年来,随着对阿尔兹海默症病理机制的深入研究,治疗方法也在不断进步,阿尔兹海默症作为神经退行性疾病领域的研究焦点,其药物治疗及多靶点干预策略正经历从“症状缓解”到“病理干预”的革命性转变。本文将重点阐述阿尔兹海默症发病机制、药物治疗、非药物治疗及多靶点策略的研究进展,以期为阿尔兹海默症的治疗策略提供新的思路。
Abstract: Alzheimer’s disease is a grave neurodegenerative disorder, predominantly manifested by cognitive impairments and memory deterioration. In recent years, along with the profound exploration of the pathological mechanisms of Alzheimer’s disease, therapeutic approaches have been evolving steadily. As a central research focus within the realm of neurodegenerative diseases, the pharmaceutical treatment strategies for Alzheimer’s disease are experiencing a revolutionary shift from “symptom alleviation” to “pathological intervention”. This paper will comprehensively elaborate on the research advancements regarding the pathogenesis, pharmaceutical treatments, and strategies of Alzheimer’s disease, with the aim of offering novel perspectives for the treatment strategies of this condition.
文章引用:朱玉婷, 刘永义. 阿尔兹海默症治疗策略新进展[J]. 临床医学进展, 2025, 15(6): 947-954. https://doi.org/10.12677/acm.2025.1561810

1. 引言

阿尔兹海默症(Alzheimer’s Disease, AD)是一种进行性神经退行性疾病,其病理特征为脑组织退化,包括神经细胞丢失、异常蛋白积聚(β-淀粉样蛋白)及神经原纤维缠结[1]。AD的临床表现主要包括进行性的记忆障碍、语言功能和其他认知能力的衰退[2]。全球范围内,AD已成为重要的公共卫生问题。据2019年的《世界阿尔茨海默病报告》,全球约有5000万AD患者,预计到2050年这一数字将增至1.15亿[3]。在中国,AD的发病率和死亡率逐年上升,已成为城乡居民的第五大死因[4]。根据2022年的数据,中国阿尔兹海默症患者的数量已经达到690万,并预计到2060年将增至1380万[5]。随着全球老龄化加剧,阿尔兹海默症的负担将进一步加重,给家庭和社会带来巨大的经济和心理压力。因此,本研究将重点阐述阿尔兹海默症发病机制及治疗手段的研究进展,以期为阿尔兹海默症的治疗策略提供新的思路,延缓疾病进展,改善患者疾病预后。

2. 阿尔兹海默症的发病机制

AD的发病机制是多方面的,涉及遗传、环境、代谢等多个因素,其病理机制也呈现显著的复杂性。

2.1. β-淀粉样蛋白的沉积

β-淀粉样蛋白主要形成于大脑中的老年斑块,其异常代谢和沉积被认为是AD发病的核心机制之一[6]β-淀粉样蛋白的聚集形式,如寡聚体,被认为是主要的神经毒素,能够引起神经元损伤和死亡,可能是AD患者脑内提前于神经元变性的早期事件[7]。其产生的神经毒性的机制是形成离子通道从而破坏细胞内Ca2+动态平衡[8]β-淀粉样蛋白激活胶质细胞介导的炎症反应分泌促炎因子,如白细胞介素1、白细胞介素6及肿瘤坏死因子α等,可以导致神经细胞变性、损伤和死亡[9]。有遗传学证据显示,家族性AD (fAD)相关的基因突变(如APP、PSEN1/PSEN2)直接导致Aβ生成增加或Aβ42/Aβ40比例升高,支持Aβ在病理中的上游作用[10]。但也有研究指出,约20~40%认知正常老年人存在Aβ斑块,而部分AD患者斑块负荷较低,提示Aβ沉积并非充分或必要条件[11]

2.2. Tau蛋白异常磷酸化

Tau蛋白在突触前末梢的异常积累会干扰突触囊泡的正常分布和突触传递,导致突触损伤和认知功能下降[12]。此外,Tau蛋白发生异常的过度磷酸化,导致其结构和功能发生改变,异常修饰的Tau蛋白通过自组装形成螺旋状纤维(如4-nm螺旋纤维),逐步聚集成神经原纤维缠结(NFTs),导致神经元内稳态失衡,Tau功能丧失使微管分解,轴浆流受阻,线粒体分布异常,最终引发突触丧失和轴突退化,影响认知功能[13] [14]。另有研究指出,Tau聚集物可通过突触连接在脑区间扩散,沿轴突运输,被邻近神经元摄取,形成新的病理灶,并通过外泌体、突触分泌或直接释放到细胞外空间,被邻近神经元内吞,形成“播种效应”,进一步破坏线粒体运输、激活应激通路(如内质网应激)、引发神经炎症,导致突触丧失、神经元死亡和痴呆[15] [16]

2.3. 氧化应激与线粒体功能障碍

随着年龄的增长,氧化应激水平增加,导致细胞内自由基的积累,从而损伤细胞结构和功能,慢性炎症反应也会进一步加剧氧化应激和神经元损伤,从而导致AD的发生[17]。线粒体障碍可能导致能量代谢受损,从而影响神经元的功能和存活,增加ROS的产生,导致氧化应激,进一步损害神经元,线粒体相关的基因及蛋白不仅与AD的发病机制相关,也可以用于预测AD的发病风险[18]。有研究指出,AD患者脑组织中,线粒体分裂蛋白Drp1 (DLP1)和Fis1的表达显著升高,而融合蛋白Mfn1、Mfn2、OPA1的水平下降,导致线粒体过度分裂,形成碎片化线粒体,无法维持正常形态和能量供应,而Aβ寡聚体与Drp1发生物理结合,进一步加剧线粒体分裂。这种互作随AD病程进展而增强,导致线粒体碎片化和突触损伤[19] [20]。由此可见,AD中的线粒体功能调控异常表现为分裂–融合失衡、自噬缺陷、运输障碍等机制相互交织,形成恶性循环,推动神经元退化和认知衰退。

3. 阿尔兹海默症的药物治疗

基于AD的发病机制,部分学者对于AD的治疗进行了探索。AD的常规治疗方法主要包括药物治疗和非药物治疗。

3.1. 常规药物治疗

常规药物治疗目前主要使用的药物包括乙酰胆碱酯酶抑制剂(如多奈哌齐、加兰他敏和利斯的明)和N-甲基-D-天冬氨酸(NMDA)受体拮抗剂(如美金刚) [21]。前期研究证实了二者在AD中的疗效,Jiaxun Guo等研究指出,美金刚联合多奈派齐在认知、总体评估、日常活动和神经精神症状方面表现出更好的结果,但接受性低于单药治疗和安慰剂,联合治疗可能更具成本效益,减缓AD的进展[22]。但常规药物治疗仅能控制症状及疾病进展,不能做到早期预防,因此,针对发病机制的药物研发及抗体应用极为必要。

3.2. 基于β-淀粉样蛋白和tau蛋白的药物治疗

针对β-淀粉样蛋白聚集形式的抗体疗法在临床试验中显示出减少淀粉样斑块可以减缓早期AD患者的认知衰退。例如,aducanumab、lecanemab和donanemab等单克隆抗体已被批准用于治疗AD,并且这些药物通过降低大脑中的β-淀粉样蛋白沉积来减缓认知和功能的下降[23]-[25]。这些抗体主要针对β-淀粉样蛋白的聚集形式,包括寡聚体和纤维状结构,这些中间形式被认为比成熟的纤维斑块具有更强的神经毒性[26]。此外,tau蛋白免疫疗法也是目前研究的重点之一,包括抗tau抗体和tau疫苗等,并在临床试验中显示出一定的功能改善效果[23]。前期研究显示,一种针对Asp421截短型tau蛋白的单克隆抗体5G2,在tau病理小鼠模型中显示了清除tau蛋白、改善神经功能和减少小胶质细胞激活的效果[27]。另有研究发现一种名为RNJ1的新型泛-tau抗体在tau病理小鼠模型中也表现出减少tau病理和改善神经功能的效果[28]。水合甲硫氨酸甲酯(HMTM)作为一种tau聚集抑制剂,在阿尔兹海默症样tau病模型中显示出改善胆碱能神经元功能的潜力,但其在与乙酰胆碱酯酶抑制剂联合使用时效果减弱,表明可能存在药物间的相互作用[29]。此外,一些新型tau聚集抑制剂如A和B在AD转基因小鼠模型中也显示出减少tau病理的效果[30]。TTBK1作为tau磷酸化和聚集的关键因子,其抑制剂也在AD治疗中显示出前景[31]。但目前多数Tau抗体的脑内浓度不足,需依赖新型递送系统(如纳米脂质体)提升靶向性,而AD患者中约30%以Tau病理为主,而Aβ/Tau共病患者对单一靶点药物响应更佳,需通过生物标志物进一步指导分型治疗。

3.3. 基于氧化应激的药物治疗

Hussain F等研究指出,新的费鲁酸和没食子酸衍生物通过抑制单胺氧化酶(MAO-B)、乙酰胆碱酯酶(AChE)、环氧合酶-2 (COX-2)和5-脂氧合酶(5-LOX)等多种酶,显示出显著的抗氧化和抗炎作用,并且在体外实验中表现出对H2O2诱导的SH-SY5Y细胞具有良好的神经保护效果,在体内实验中也显示出良好的抗氧化潜力,可作为AD的治疗药物[32]。水飞蓟素作为一种辅助药物,能够显著降低阿尔兹海默症患者的氧化应激标志物和炎症水平,同时提高患者的认知功能[33]。大麻二酚作为一种非精神活性的大麻素,具有显著的抗氧化和抗炎特性,能够在AD模型中提供神经保护作用,其机制包括通过调节氧化应激和神经炎症来减缓AD的进展[34]。黄芪提取物及其生物活性成分如香草酸和大豆黄酮在果蝇模型中显示出显著的抗氧化作用,能够改善线粒体功能并减轻AD和帕金森病的症状[35]。四氢喹啉衍生物显示出强大的AChE抑制作用,并且对淀粉样β蛋白(Aβ)纤维有解离作用,这使其成为潜在的AD治疗药物[36]。而抗抑郁药通过调节血清素受体来减轻Aβ寡聚体引起的氧化应激,从而具有神经保护作用[37]。另外,线粒体功能障碍被认为是AD发病机制中的一个关键因素,通过改善线粒体功能,可能为克服针对淀粉样蛋白的治疗限制提供一种新的方法[38]。前期研究显示,尼洛替尼虽然在动物模型中显示出对线粒体功能的影响,但在临床应用中并未显示出显著的神经保护效果,尽管线粒体功能调节在理论上具有潜力,但其在AD治疗中的实际效果仍需进一步验证[39]。另有研究开发了载有黄酮醇的纳米脂质体(SB-NLCs),用于口服给药治疗由淀粉样β蛋白引起的阿尔茨海默症,通过优化脂质体的物理化学性质,提高了药物在大脑中的稳定性和释放效率,并在动物模型中显示出显著的治疗效果,如改善学习记忆能力[40]。此外,通过在脂质体表面修饰薄荷醇,构建了能够增强血脑屏障通透性的薄荷醇修饰的槲皮素脂质体(Men-Qu-Lips),这进一步提高了药物在大脑中的浓度,从而改善了氧化应激和神经炎症[41]。另外,将纳米递送系统应用于AD的治疗,通过结构优化(如靶向配体修饰、pH响应释放),显著提升药物脑内蓄积,成为线粒体疗法的核心突破方向。但在应用线粒体靶向药物时需注意其对其他器官的线粒体功能的影响。

4. 阿尔兹海默症的非药物治疗及干预策略

4.1. 阿尔兹海默症的非药物治疗

AD的非药物治疗近年来取得了显著进展,涵盖了多种干预措施,旨在改善患者的生活质量、认知功能和行为症状。音乐疗法作为一种非药物治疗手段,在改善阿尔兹海默症患者的记忆方面显示出潜力,前期研究表明,音乐疗法能够保留患者对熟悉歌曲的记忆,并可能与相关的个人记忆联系在一起,并可以减少痴呆相关精神病症状[42] [43]。认知刺激和训练是提高阿尔兹海默症患者全球认知功能的有效非药物治疗方法之一,包括认知训练、多学科项目和回忆疗法等,均显示出显著的临床效果[44]。微电流治疗作为一种非侵入性治疗手段,通过调节MAPK信号通路来减轻神经炎症,并改善阿尔兹海默症小鼠模型的认知功能和记忆障碍[45]。运动疗法通过增加脑血流、促进海马体积增加和神经生成来发挥作用,结合常规治疗的运动疗法在减少行为和心理症状方面也表现出较好的效果[46] [47]。高压氧治疗(HBOT)作为一种新兴的非药物干预手段,通过改善大脑血流和功能连接,可能对阿尔兹海默症患者有益,初步结果表明HBOT可能有助于维持患者的认知功能和日常生活能力[48]

由此可见,非药物治疗在提高患者生活质量和认知功能方面具有重要价值。结合药物治疗与非药物治疗,构建综合性干预方案,或将成为未来阿尔兹海默症治疗的新趋势,且非药物治疗可以作为辅助治疗手段,进一步加强药物治疗的疗效,从而改善患者疾病预后。

4.2. 阿尔兹海默症的多靶点干预策略

前期研究发现了一些新型的多靶点配体,如基于吡咯衍生物的双作用MAO-B/AChE抑制剂vh0,该化合物不仅具有良好的抗氧化活性,还能够穿越血脑屏障,显示出良好的药物特性[49]。通过深度学习模型和分子对接技术筛选出的潜在药物靶点和药物,如GABBR2和FABP3,也表明了通过多重途径干预AD的潜力[50]。新型的harmine衍生物ZLQH-5被发现可以同时抑制GSK-3β和DYRK1A,这两种激酶在AD的发病过程中起重要作用[51]。针对LRP1受体的多价靶向策略也在AD治疗中显示出潜力,通过纳米级多价支架来改善血脑屏障的通透性,从而促进淀粉样β蛋白的清除[52]。针对mTORC1和mTORC2的选择性RNA靶向策略也在改善AD病理过程中显示出积极的结果[53]。由此可见,多靶点干预策略为阿尔兹海默症的治疗提供了新的视角和可能性。

4.3. 基于人工智能的药物治疗干预策略

人工智能作为优秀的整合及分析工具,帮助筛选AD的风险基因并基于此加速了药物发现及干预策略优化。有研究指出,AI整合多组学数据(基因组、转录组、蛋白质组)和蛋白质互作网络,识别高置信度的AD风险基因(ARGs),通过AI框架发现了103个ARGs,并验证了吡格列酮(抗糖尿病药物)可通过下调GSK-3β和CDK5等靶点降低AD风险[54]。机器学习(ML)算法(如随机森林、深度卷积神经网络)用于高通量筛选化合物库,识别多靶点导向配体(MTDLs),例如筛选同时抑制BACE1、γ-分泌酶等AD相关酶类的候选药物[55]。传统单靶点药物(如胆碱酯酶抑制剂)仅缓解症状,而AI驱动的MTDLs可同时干预淀粉样蛋白沉积、tau磷酸化和神经炎症等病理环节,指出托法替尼和巴瑞替尼组合可靶向治疗AD导致的神经炎症和代谢异常[56]。基于强化学习可以根据患者状态(如认知评分、生物标志物)动态调整药物组合,优化疗效并减少副作用[57]。而MultiDCP模型则可以通过逆转疾病相关基因表达,为患者定制药物(如多西他赛) [58]。由此可见,AI通过加速靶点发现、优化多靶点药物设计、重新定位现有药物及制定个性化方案,为AD治疗提供了突破性工具,但其临床治疗效果仍需跨学科协作应用进一步验证。

5. 总结与展望

目前的研究表明药物治疗辅以非药物治疗及多靶点干预策略有望成为阿尔茨海默症治疗的主流趋势。针对疾病的多重病理机制,而且能够综合考虑患者的个体差异,为患者提供更为个性化的治疗方案,既能针对阿尔茨海默症的核心病理改变,也能兼顾患者的整体状况,为延缓病程、改善症状提供全方位的支持。未来需通过生物标志物指导的精准医疗、AI 驱动的药物设计(如AlphaFold2预测药物–蛋白相互作用)及新型递送技术(如脑靶向纳米载体),进一步提升药物疗效与安全性,推动AD治疗从“一刀切”向个性化干预迈进,探索更多潜在的有效途径及治疗策略,以期为AD的治疗提供理论基础,改善患者的生活质量和预后。

NOTES

*通讯作者。

参考文献

[1] Jellinger, K.A. (2020) Neuropathology of the Alzheimer’s Continuum: An Update. Free Neuropathology, 1, Article 32.
[2] 汪睿彤, 刘珏. 阿尔茨海默病的流行病学研究进展[J]. 中国慢性病预防与控制, 2021, 29(9): 707-711.
[3] Zeisel, J., Bennett, K. and Fleming, R. (2020) World Alzheimer Report 2020: Design, Dignity, Dementia: Dementia-Related Design and the Built Environment.
https://www.alzint.org/resource/world-alzheimer-report-2020/
[4] Ren, R., Qi, J., Lin, S., Liu, X., Yin, P., Wang, Z., et al. (2022) The China Alzheimer Report 2022. General Psychiatry, 35, e100751.
https://doi.org/10.1136/gpsych-2022-100751
[5] Better, M.A. (2023) Alzheimer’s Disease Facts and Figures. Alzheimers Dement, 19, 1598-1695.
[6] 苏梓南, 李凯, 张根发. 阿尔茨海默病β淀粉样蛋白沉积斑块和寡聚体致病假说及其面临的挑战[J]. 中华老年多器官疾病杂志, 2023, 22(2): 157-160.
[7] Söderberg, L., Johannesson, M., Nygren, P., Laudon, H., Eriksson, F., Osswald, G., et al. (2023) Lecanemab, Aducanumab, and Gantenerumab—Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer’s Disease. Neurotherapeutics, 20, 195-206.
https://doi.org/10.1007/s13311-022-01308-6
[8] 刘伟, 张誉丹, 王梦真, 等. Aβ通道在阿尔茨海默症发病过程中的作用及其机制[J]. 生理科学进展, 2022, 53(3): 167-172.
[9] 于佳欣, 林淼, 张文轩, 等. 阿尔茨海默病相关免疫炎症反应的研究进展[J]. 生命科学, 2024, 36(4): 467-476.
[10] Du, X., Wang, X. and Geng, M. (2018) Alzheimer’s Disease Hypothesis and Related Therapies. Translational Neurodegeneration, 7, Article No. 2.
https://doi.org/10.1186/s40035-018-0107-y
[11] Ricciarelli, R. and Fedele, E. (2017) The Amyloid Cascade Hypothesis in Alzheimer’s Disease: It’s Time to Change Our Mind. Current Neuropharmacology, 15, 926-935.
https://doi.org/10.2174/1570159x15666170116143743
[12] Carrano, N. (2023) A New Therapeutic Approach to Tauopathies: Targeting Presynaptic Tau with Antisense Oligonucleotides to Synaptogyrin‐3. Alzheimers & Dementia, 19, e074699.
https://doi.org/10.1002/alz.074699
[13] Pluta, R. and Czuczwar, S.J. (2024) Trans-and Cis-Phosphorylated Tau Protein: New Pieces of the Puzzle in the Development of Neurofibrillary Tangles in Post-Ischemic Brain Neurodegeneration of the Alzheimer’s Disease-Like Type. International Journal of Molecular Sciences, 25, Article 3091.
https://doi.org/10.3390/ijms25063091
[14] Tian, S., Ye, T. and Cheng, X. (2023) The Behavioral, Pathological and Therapeutic Features of the Triple Transgenic Alzheimer’s Disease (3 × Tg-Ad) Mouse Model Strain. Experimental Neurology, 368, Article ID: 114505.
https://doi.org/10.1016/j.expneurol.2023.114505
[15] Gibbons, G.S., Lee, V.M.Y. and Trojanowski, J.Q. (2019) Mechanisms of Cell-To-Cell Transmission of Pathological Tau. JAMA Neurology, 76, 101-108.
https://doi.org/10.1001/jamaneurol.2018.2505
[16] Chen, X. and Mobley, W.C. (2019) Alzheimer Disease Pathogenesis: Insights from Molecular and Cellular Biology Studies of Oligomeric Aβ and Tau Species. Frontiers in Neuroscience, 13, Article 659.
https://doi.org/10.3389/fnins.2019.00659
[17] Kosyreva, A., Sentyabreva, A., Tsvetkov, I. and Makarova, O. (2022) Alzheimer’s Disease and Inflammaging. Brain Sciences, 12, Article 1237.
https://doi.org/10.3390/brainsci12091237
[18] Zhang, Y., Miao, Y., Tan, J., Chen, F., Lei, P. and Zhang, Q. (2023) Identification of Mitochondrial Related Signature Associated with Immune Microenvironment in Alzheimer’s Disease. Journal of Translational Medicine, 21, Article No. 458.
https://doi.org/10.1186/s12967-023-04254-9
[19] Wang, W., Zhao, F., Ma, X., Perry, G. and Zhu, X. (2020) Mitochondria Dysfunction in the Pathogenesis of Alzheimer’s Disease: Recent Advances. Molecular Neurodegeneration, 15, Article No. 30.
https://doi.org/10.1186/s13024-020-00376-6
[20] Burillo, J., Marqués, P., Jiménez, B., González-Blanco, C., Benito, M. and Guillén, C. (2021) Insulin Resistance and Diabetes Mellitus in Alzheimer’s Disease. Cells, 10, Article 1236.
https://doi.org/10.3390/cells10051236
[21] Varadharajan, A., Davis, A.D., Ghosh, A., Jagtap, T., Xavier, A., Menon, A.J., et al. (2023) Guidelines for Pharmacotherapy in Alzheimer’s Disease—A Primer on FDA-Approved Drugs. Journal of Neurosciences in Rural Practice, 14, 566-573.
https://doi.org/10.25259/jnrp_356_2023
[22] Guo, J., Wang, Z., Liu, R., Huang, Y., Zhang, N. and Zhang, R. (2020) Memantine, Donepezil, or Combination Therapy—What Is the Best Therapy for Alzheimer’s Disease? A Network Meta‐Analysis. Brain and Behavior, 10, e01831.
https://doi.org/10.1002/brb3.1831
[23] Suzuki, N., Hatta, T., Ito, M. and Kusakabe, K. (2024) Anti-Amyloid-β Antibodies and Anti-Tau Therapies for Alzheimer’s Disease: Recent Advances and Perspectives. Chemical and Pharmaceutical Bulletin, 72, 602-609.
https://doi.org/10.1248/cpb.c24-00069
[24] Beveridge, J., Kaniecki, E., Naidu, A., Silverglate, B.D. and Grossberg, G. (2024) How Promising Are the Latest Monoclonal Antibodies Targeting Amyloid-β for the Treatment of Early Alzheimer’s Disease? Expert Opinion on Emerging Drugs, 29, 35-43.
https://doi.org/10.1080/14728214.2024.2304059
[25] Golde, T.E. and Levey, A.I. (2023) Immunotherapies for Alzheimer’s Disease. Science, 382, 1242-1244.
https://doi.org/10.1126/science.adj9255
[26] Ono, K., Shiina, H., Matsumoto, M., et al. (2024) The Roles of Aβ in Alzheimer’s Disease: In Light of the Latest Findings. Brain and Nerve, 76, 399-408.
[27] Martin-Avila, A., Modak, S.R., Rajamohamedsait, H.B., et al. (2024) Clearing Truncated Tau Protein Restores Neuronal Function and Prevents Microglia Activation in Tauopathy Mice. bioRxiv.
https://doi.org/10.1101/2024.05.21.595198
[28] Cruz, E., Nisbet, R.M., Padmanabhan, P., et al. (2024) Proteostasis as a Fundamental Principle of Tau Immunotherapy. bioRxiv.
https://doi.org/10.1101/2024.02.12.580007
[29] Zadrozny, M., Drapich, P., Gasiorowska-Bien, A., Niewiadomski, W., Harrington, C.R., Wischik, C.M., et al. (2024) Neuroprotection of Cholinergic Neurons with a Tau Aggregation Inhibitor and Rivastigmine in an Alzheimer’s-Like Tauopathy Mouse Model. Cells, 13, Article 642.
https://doi.org/10.3390/cells13070642
[30] Drapich, P., Zadrozny, M., Mironczuk, S., Gasiorowska, A., Melis, V., Riedel, G., et al. (2023) Reduction in Tau‐Pathology Induced with Two Novel Tau Aggregation Inhibitors in Alzheimer Mice. Alzheimers & Dementia, 19, e076607.
https://doi.org/10.1002/alz.076607
[31] Ahamad, S., Junaid, I.T. and Gupta, D. (2024) Computational Design of Novel Tau-Tubulin Kinase 1 Inhibitors for Neurodegenerative Diseases. Pharmaceuticals, 17, Article 952.
https://doi.org/10.3390/ph17070952
[32] Hussain, F., Tahir, A., Jan, M.S., Fatima, N., Sadiq, A. and Rashid, U. (2024) Exploitation of the Multitarget Role of New Ferulic and Gallic Acid Derivatives in Oxidative Stress-Related Alzheimer’s Disease Therapies: Design, Synthesis and Bioevaluation. RSC Advances, 14, 10304-10321.
https://doi.org/10.1039/d4ra00766b
[33] Navabi, S.M., Elieh-Ali-Komi, D., Afshari, D., Goudarzi, F., Mohammadi-Noori, E., Heydari, K., et al. (2024) Adjunctive Silymarin Supplementation and Its Effects on Disease Severity, Oxidative Stress, and Inflammation in Patients with Alzheimer’s Disease. Nutritional Neuroscience, 27, 1077-1087.
https://doi.org/10.1080/1028415x.2023.2301163
[34] Hickey, J.P., Collins, A.E., Nelson, M.L., Chen, H. and Kalisch, B.E. (2024) Modulation of Oxidative Stress and Neuroinflammation by Cannabidiol (CBD): Promising Targets for the Treatment of Alzheimer’s Disease. Current Issues in Molecular Biology, 46, 4379-4402.
https://doi.org/10.3390/cimb46050266
[35] Dai, Y., Wang, Y., Kang, Q., Wu, Y., Liu, Y., Su, Y., et al. (2024) The Protective Effect and Bioactive Compounds of Astragalus membranaceus against Neurodegenerative Disorders via Alleviating Oxidative Stress in drosophila. The FASEB Journal, 38, e23727.
https://doi.org/10.1096/fj.202400390r
[36] Mojzych, I., Zawadzka, A., Andrzejewski, K., Jampolska, M., Bednarikova, Z., Gancar, M., et al. (2024) A Novel Tetrahydroacridine Derivative with Potent Acetylcholinesterase Inhibitory Properties and Dissociative Capability against Aβ42 Fibrils Confirmed by in Vitro Studies. International Journal of Molecular Sciences, 25, Article ID: 10072.
https://doi.org/10.3390/ijms251810072
[37] Yamamoto, K., Tsuji, M., Oguchi, T., Momma, Y., Ohashi, H., Ito, N., et al. (2024) Comparison of Protective Effects of Antidepressants Mediated by Serotonin Receptor in Aβ-Oligomer-Induced Neurotoxicity. Biomedicines, 12, Article 1158.
https://doi.org/10.3390/biomedicines12061158
[38] Atlante, A., Amadoro, G., Latina, V. and Valenti, D. (2022) Therapeutic Potential of Targeting Mitochondria for Alzheimer’s Disease Treatment. Journal of Clinical Medicine, 11, Article 6742.
https://doi.org/10.3390/jcm11226742
[39] Srivastava, A., Renna, H.A., Johnson, M., Sheehan, K., Ahmed, S., Palaia, T., et al. (2024) Nilotinib as a Prospective Treatment for Alzheimer’s Disease: Effect on Proteins Involved in Neurodegeneration and Neuronal Homeostasis. Life, 14, Article 1241.
https://doi.org/10.3390/life14101241
[40] Khodabandelou, S., Nazem, Z., Komaki, A., Ramezani, M., Firoozian, F., Faraji, N., et al. (2024) Development of Silibinin-Loaded Nanostructured Lipid Carriers for Alzheimer’s Disease Induced by Amyloid Beta in Wistar Rats. Journal of Materials Chemistry B, 12, 11426-11443.
https://doi.org/10.1039/d4tb00775a
[41] Liu, W., Yu, Y., Zang, J., Liu, Y., Li, F., Zhang, L., et al. (2024) Menthol-modified Quercetin Liposomes with Brain-Targeting Function for the Treatment of Senescent Alzheimer’s Disease. ACS Chemical Neuroscience, 15, 2283-2295.
https://doi.org/10.1021/acschemneuro.4c00109
[42] Madera-Cimadevilla, T., Cantero-García, M. and Rueda-Extremera, M. (2024) Music Therapy as Non-Pharmacological Treatment in Alzheimer’s Disease—Effects on Memory—Systematic Review. Journal of Ageing and Longevity, 4, 209-224.
https://doi.org/10.3390/jal4030015
[43] Burnand, A., Rookes, T., Mahmood, F., Davies, N., Walters, K., Orleans‐Foli, S., et al. (2024) Non‐Pharmacological Interventions in the Management of Dementia‐Related Psychosis: A Systematic Review and Meta‐Analysis. International Journal of Geriatric Psychiatry, 39, e6129.
https://doi.org/10.1002/gps.6129
[44] Dou, J., Zhang, H., Fu, X., Yang, Y. and Gao, X. (2024) Optimal Dose and Type of Non-Pharmacological Treatments to Improve Cognitive Function in People with Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. Aging & Mental Health, 29, 228-237.
https://doi.org/10.1080/13607863.2024.2379427
[45] Kim, E.H., Lee, W.S., Lee, J.H. and Kwon, D.R. (2024) Microcurrent Therapy as the Nonpharmacological New Protocol against Alzheimer’s Disease. Frontiers in Aging Neuroscience, 16, Article 1344072.
https://doi.org/10.3389/fnagi.2024.1344072
[46] Wang, N., Tai, H. and Tzeng, I. (2024) Non-Pharmacological Exercise Randomized Controlled Trials in Alzheimer’s Disease. Advances in Alzheimers Disease, 12, 553-560.
https://doi.org/10.3233/aiad240040
[47] Yin, Z., Li, Y., Bao, Q., Zhang, X., Xia, M., Zhong, W., et al. (2023) Comparative Efficacy of Multiple Non‐Pharmacological Interventions for Behavioural and Psychological Symptoms of Dementia: A Network Meta‐Analysis of Randomised Controlled Trials. International Journal of Mental Health Nursing, 33, 487-504.
https://doi.org/10.1111/inm.13254
[48] Mukaetova-Ladinska, E.B., Steptoe, J., Critchfield, M., Yoon, H., Sharif, M. and Arshad, Q. (2023) Hyperbaric Oxygen Therapy—A New Hope for Alzheimer’s Patients: A Case Report and Literature Review. Exploration of Neuroprotective Therapy, 3, 457-469.
https://doi.org/10.37349/ent.2023.00062
[49] Mateev, E., Karatchobanov, V., Dedja, M., Diamantakos, K., Mateeva, A., Muhammed, M.T., et al. (2024) Novel Pyrrole Derivatives as Multi-Target Agents for the Treatment of Alzheimer’s Disease: Microwave-Assisted Synthesis, in Silico Studies and Biological Evaluation. Pharmaceuticals, 17, Article 1171.
https://doi.org/10.3390/ph17091171
[50] Zhang, Y., Zhao, P., Gao, H., Zhong, M. and Li, J. (2024) Screening Targets and Therapeutic Drugs for Alzheimer’s Disease Based on Deep Learning Model and Molecular Docking. Journal of Alzheimers Disease, 100, 863-878.
https://doi.org/10.3233/jad-231389
[51] Qiu, J., Feng, X., Chen, H., Liu, W., Liu, W., Wu, L., et al. (2023) Discovery of Novel Harmine Derivatives as GSK‐3β/DYRK1A Dual Inhibitors for Alzheimer’s Disease Treatment. Archiv der Pharmazie, 357, Article ID: 2300404.
https://doi.org/10.1002/ardp.202300404
[52] Chen, J., Xiang, P., Duro-Castano, A., et al. (2024) Multivalent Modulation of Endothelial LRP1 Induces Fast Neurovascular Amyloid-β Clearance and Cognitive Function Improvement in Alzheimer’s Disease Models. bioRxiv.
https://doi.org/10.1101/2024.05.06.592767
[53] Stahl, J., Joji, A., Khorkova, O., Volmar, C. and Wahlestedt, C. (2023) Selective RNA‐Targeting of mTORC1 and 2 to Ameliorate Alzheimer’s Disease Pathogenesis. Alzheimers & Dementia, 19, e075752.
https://doi.org/10.1002/alz.075752
[54] Fang, J., Zhang, P., Wang, Q., Chiang, C., Zhou, Y., Hou, Y., et al. (2022) Artificial Intelligence Framework Identifies Candidate Targets for Drug Repurposing in Alzheimer’s Disease. Alzheimers Research & Therapy, 14, Article No. 7.
https://doi.org/10.1186/s13195-021-00951-z
[55] Arrué, L., Cigna-Méndez, A., Barbosa, T., Borrego-Muñoz, P., Struve-Villalobos, S., Oviedo, V., et al. (2022) New Drug Design Avenues Targeting Alzheimer’s Disease by Pharmacoinformatics-Aided Tools. Pharmaceutics, 14, Article 1914.
https://doi.org/10.3390/pharmaceutics14091914
[56] Li, V.O.K., Han, Y., Kaistha, T., et al. (2024) DeepDrug: An Expert-Led Domain-Specific AI-Driven Drug-Repurposing Mechanism for Selecting the Lead Combination of Drugs for Alzheimer’s Disease. medRxiv.
https://doi.org/10.1101/2024.07.06.24309990
[57] Bhattarai, K., Rajaganapathy, S., Das, T., Kim, Y., Chen, Y., Dai, Q., et al. (2023) Using Artificial Intelligence to Learn Optimal Regimen Plan for Alzheimer’s Disease. Journal of the American Medical Informatics Association, 30, 1645-1656.
https://doi.org/10.1093/jamia/ocad135
[58] Wu, Y., Liu, Q., Qiu, Y. and Xie, L. (2022) Deep Learning Prediction of Chemical-Induced Dose-Dependent and Context-Specific Multiplex Phenotype Responses and Its Application to Personalized Alzheimer’s Disease Drug Repurposing. PLOS Computational Biology, 18, e1010367.
https://doi.org/10.1371/journal.pcbi.1010367