卒中后日间过度嗜睡与脑小血管疾病的相关危险因素分析
Analysis of Risk Factors Associated with Excessive Daytime Sleepiness after Stroke and Cerebral Small Vessel Disease
DOI: 10.12677/acm.2025.1561814, PDF, HTML, XML,   
作者: 王欣悦, 方传勤*:安徽医科大学第二附属医院神经内科,安徽 合肥
关键词: 卒中脑小血管疾病日间过度嗜睡Stroke Cerebral Small Vessel Disease Excessive Daytime Sleepiness
摘要: 目的:有关导致卒中后日间过度嗜睡(excessive daytime sleepiness, EDS)的危险因素尚不明确,本研究旨在探究卒中后日间过度嗜睡的相关危险因素。方法:前瞻性收集本院152例发病时间72小时内的首次卒中患者,获得其一般临床资料。所有患者在入院后7~14天内接受Epworth嗜睡量表评估。头颅磁共振(MRI)用于评估白质高信号(WMH)、脑微出血(CMB)、腔隙及血管周围间隙(PVS)。采用二元Logistic回归分析卒中后日间过度嗜睡的危险因素。结果:在单因素分析中,NIHSS评分、吸烟史、脑梗死、白细胞计数、脑微出血与日间过度嗜睡之间存在潜在相关性,将其纳入多因素Logistic回归分析。在多因素Logistic回归分析中,调整相关变量后,吸烟(OR = 4.104, 95% CI = 1.430~11.775, P = 0.009),NIHSS评分(OR = 1.202, 95% CI = 1.038~1.391, P = 0.014),脑梗死(OR = 0.222, 95% CI = 0.075~0.662, P = 0.007),脑微出血(OR = 0.316, 95% CI = 0.113~0.885, P = 0.028)仍然是日间过度嗜睡的独立危险因素。结论:卒中后日间过度嗜睡在吸烟、脑梗死、NIHSS评分高、白细胞计数高、存在脑微出血患者中较为常见。其中吸烟,NIHSS评分,脑微出血、脑梗死可以作为EDS的独立危险因素,其联合预测模型较单个预测因素有更高的预测价值。
Abstract: Objective: Risk factors for excessive daytime sleepiness (EDS) after stroke are unclear, and the aim of this study was to investigate the risk factors associated with excessive daytime sleepiness after stroke. Methods: General clinical data were prospectively collected from 152 patients with first stroke within 72 hours of onset at our institution. All patients were evaluated with Epworth Sleepiness Scale within 7~14 days of admission. Magnetic resonance imaging (MRI) was used to assess white matter high signal (WMH), cerebral microbleeds (CMB), lacunar and perivascular spaces (PVS). Binary logistic regression was used to analyze risk factors for excessive daytime sleepiness after stroke. Results: In univariate analysis, potential correlations among NIHSS score, smoking history, cerebral infarction, white blood cell count, cerebral microhemorrhage, and excessive daytime sleepiness were included in multifactorial Logistic regression analysis. In the multifactorial Logistic regression analysis, after adjusting for relevant variables, smoking (OR = 4.104, 95% CI = 1.430~11.775, P = 0.009), NIHSS score (OR = 1.202, 95% CI = 1.038~1.391, P = 0.014), cerebral infarction (OR = 0.222, 95% CI = 0.075~0.662, P = 0.007), and cerebral microhemorrhage (OR = 0.316, 95% CI = 0.113~0.885, P = 0.028) remained independent risk factors for excessive daytime sleepiness. Conclusions: Excessive daytime sleepiness after stroke is more common in patients with smoking, cerebral infarction, high NIHSS score, high white blood cell count, and presence of cerebral microhemorrhage. Among them, smoking, NIHSS score, cerebral microhemorrhage, and cerebral infarction can be used as independent risk factors for EDS, and their joint prediction model has higher predictive value than individual predictors.
文章引用:王欣悦, 方传勤. 卒中后日间过度嗜睡与脑小血管疾病的相关危险因素分析[J]. 临床医学进展, 2025, 15(6): 974-981. https://doi.org/10.12677/acm.2025.1561814

1. 介绍

卒中是全球公认的第二大死亡原因,同时也是第三大致残原因。2019年,缺血性卒中占所有新发卒中病例的60%以上,而出血性卒中占近30% [1]。除了卒中急性期的治疗,卒中后并发症的治疗和预防同样至关重要。神经精神症状,如抑郁、冷漠、焦虑、易怒和睡眠障碍,在脑卒中患者中很常见,但在临床实践中常被忽视[2] [3]。睡眠障碍包括睡眠相关呼吸障碍和睡眠–觉醒障碍。研究表明,10%~50%的卒中后患者存在失眠、觉醒障碍(嗜睡、白天嗜睡、疲劳)、睡眠相关运动障碍(不宁腿综合征等)和睡眠异常(REM睡眠行为障碍)等睡眠–觉醒障碍,此外,睡眠相关呼吸障碍表现为阻塞性、中枢性或混合性呼吸暂停,这些症状在50%~70%的卒中患者中常见[4]。睡眠问题是脑卒中患者临床管理中的重要考虑因素,通常,睡眠被认为是一种复杂的生理状态,其受到体内各系统的复杂调节和组织,在恢复身心功能方面发挥着重要作用[5]。日间过度嗜睡(Excessive Daytime Sleepiness, EDS)是急性卒中患者中较易被忽视的并发症,据报道其患病率为6%~49.5%不等[6]。先前的研究发现EDS与全身炎症[7]、不宁腿综合征、糖尿病、肥胖[8]、临床不良结局[9]、中风复发[10]有关,此外,表现出脑小血管疾病(CSVD)特征的老年人与日间过度嗜睡有关,其中EDS与脑白质病变、腔隙和CSVD负担显著相关[11]。还有不少研究表明,CSVD与其他睡眠障碍有关,如中度至重度阻塞性呼吸睡眠暂停是中老年人WMH的独立危险因素[12],与呼吸无关的睡眠碎片化与脑室旁脑白质病变和血管周围纤细严重程度增加之间存在关联[13]。在神经系统疾病中,目前较多有关EDS的研究多集中于帕金森病,阿尔兹海默病,头痛等,而在卒中患者中数据相当不一致,并且CSVD的作用甚不明确。故本研究旨在确定EDS的风险因素,并特别关注CSVD的作用。

2. 资料与方法

2.1. 研究对象

前瞻性收集2023年12月至2024年10月在安徽医科大学第二附属医院神经内科住院的急性卒中患者。入组标准如下:(1) 发病时间在72小时内的首次脑梗死或脑出血患者;(2) 美国国立卫生研究院卒中量表(NIHSS)评分 ≤ 15分的轻中度卒中;(3) 能够接受标准嗜睡量表评估;(4) 住院期间能够进行头部磁共振成像(MRI)。排除标准:(1) 卒中发作前使用精神药物或镇静药物;(2) 在神经内科住院少于7天;(3) 临床数据不完整。本研究由安徽医科大学第二附属医院伦理审查委员会批准。获得患者或其授权者的知情同意。

2.2. 一般资料

收集所有研究对象年龄、性别、卒中类型(脑梗死、脑出血)、卒中部位、既往史、入院收缩压、入院舒张压等。实验室数据(白细胞计数、血小板计数、血红蛋白计数、空腹血糖计数、总胆红素计数、尿酸计数、同型半胱氨酸计数、低密度脂蛋白计数)。使用美国国立卫生研究院卒中评分(National Institutes of Health Stroke Scale, NIHSS)评估入院时卒中的严重程度。

2.3. 影像数据

对所有患者进行基线脑磁共振成像,以评估小血管疾病的成像特征,包括血管周围间隙(PVS)、白质高信号(WMH)、腔隙和脑微出血(CMB)。PVS是指在T2加权图像上出现的小的(<3毫米)点状(如果是垂直的)或线状(如果是平行的)高密度,主要位于基底节和半卵圆中心。PVS的严重程度采用经过验证的半定量量表进行分级,量表范围为0至4 [14]。WMH的特征是T2加权或FLAIR图像上位于脑室周围和深部白质区域的信号强度增高区域。其严重程度采用Fazekas量表进行评估,脑室周围WMH (PWMH)和深部WMH (DWMH)的评分范围分别为0至3分,Fazekas总评分范围为0至6分[15]。腔隙定义为位于基底节、内囊、半卵圆中心或脑干的直径为3~15毫米的圆形或卵圆形病变,在T2加权和FLAIR成像上显示与脑脊液样信号相同。最后,CMB定义为位于小脑、脑干、基底节区、脑白质或皮质–皮质下交界处的小的(2~5毫米)、均匀的、圆形的、SWI低信号强度病灶。

2.4. 睡眠量表评估

使用Epworth嗜睡量表(ESS)对日间过度嗜睡进行评估,该量表由8个问题组成,分数在0到24之间。分数 > 10表示EDS [16]

2.5. 统计学分析

连续变量用中位数和四分位数间距表示,分类变量用数字和百分比表示。在嗜睡组与无嗜睡组的比较中,正态分布的连续变量采用t检验,非正态分布的连续变量采用Mann-Whitney U检验,分类变量则采用χ2检验或Fisher精确检验。单因素分析用于筛选与嗜睡相关的重要危险因素,P值小于0.05的变量被纳入多因素Logistic回归模型。通过VIF值评估多重共线性,若VIF > 5则提示存在显著共线性问题。最后,多因素模型的准确性通过受试者工作特征曲线(ROC)分析进行评估。统计显著性定义为P < 0.05。所有统计分析均使用SPSS (23.0版)进行。

3. 结果

3.1. 一般资料比较

本研究共纳入研究对象152名,其中男性106人(69.7%),女性46人(30.3%),年龄平均59.0 ± 13.3岁,脑梗死122 (80.3%),脑出血30 (19.7%)。日间过度嗜睡患者在NIHSS评分(中位数,5.0 VS 2.5,P = 0.009)、白细胞计数(中位数,8.4 VS 7.2,P = 0.040)、吸烟史(58.3% VS 36.7%, P = 0.048)、脑梗死(62.5% VS 83.6%, P = 0.018)、脑微出血(33.3% VS 57.8%, P = 0.028)中与无日间过度嗜睡患者存在显著差异。在卒中部位、其他实验室数据以及脑小血管病影像学特征(脑白质病变、血管周围间隙、腔隙)中无显著差异(P > 0.05)。具体详见表1表2

Table 1. Univariate analysis of general information in the excessive daytime sleepiness group and the no excessive daytime sleepiness group

1. 日间过度嗜睡组与无日间过度嗜睡组的一般资料单因素分析

总计(n = 152)

日间过度嗜睡(n = 24)

无日间过度嗜睡(n = 28)

P值

人口资料

性别,男

106 (69.7%)

20 (83.3%)

86 (67.2%)

0.115

年龄,年

59.0 (13.3)

60.6 (13.2)

58.6 (13.3)

0.760

卒中亚型

0.018

脑梗死

122 (80.3%)

15 (62.5%)

107 (83.6%)

脑出血

30 (19.7%)

9 (37.5%)

21 (16.4%)

卒中部位

右侧

74 (48.7%)

10 (41.7%)

64 (50.0%)

0.455

左侧

69 (45.4%)

14 (58.3%)

55 (43.0%)

0.167

双侧

9 (5.9%)

0 (0.0%)

9 (7.0%)

0.182

基底节区

56 (36.8%)

11 (45.8%)

45 (35.2%)

0.321

丘脑

13 (8.6%)

2 (8.3%)

11 (8.6%)

0.967

脑干

21 (13.8%)

3 (12.5%)

18 (14.1%)

0.839

脑叶

13 (8.6%)

2 (8.3%)

11 (8.6%)

0.967

小脑

6 (3.9%)

0 (0.0%)

6 (4.7%)

0.281

多处

40 (26.3%)

5 (20.8%)

35 (27.3%)

0.508

其他

3 (2.0%)

0 (0.0%)

3 (2.3%)

0.450

临床资料及实验室数据

入院收缩压

162.7 (28.6)

169.9 (33.6)

161.4 (27.5)

0.156

入院舒张压

93.0 (81.0~103.7)

98.5 (83.0~113.0)

92.5 (81.0~101.0)

0.214

NIHSS

3.0 (1.0~5.0)

5.0 (2.0~7.5)

2.5 (1.0~5.0)

0.009

WBC

7.36 (6.32~8.78)

8.4 (7.2~10.1)

7.2 (6.3~8.7)

0.040

Plt

209.0 (176.25~252.75)

211.0 (148.7~278.5)

209.0 (180.2~251.0)

0.791

Hb

141.0 (129.25~151.0)

141.5 (134.0~159.5)

140.5 (128.0~150.7)

0.263

空腹血糖

5.48 (4.84~6.63)

5.6 (4.84~7.36)

5.4 (4.84~6.55)

0.701

总胆红素

14.0 (11.22~18.35)

13.8 (11.2~17.2)

14.0 (11.0~18.6)

0.998

UA

331.0 (266.2~397.2)

347.5 (297.5~449.2)

330.5 (259.7~389.2)

0.236

Hcy

13.9 (11.5~17.7)

14.4 (12.0~18.25)

13.7 (11.3~17.6)

0.390

LDL-C

3.15 (2.69~3.78)

3.1 (2.6~4.0)

3.1 (2.7~3.7)

0.871

既往史

高血压

106 (69.7%)

19 (79.2%)

87 (68.0%)

0.275

糖尿病

35 (23.0%)

7 (23.0%)

28 (21.9%)

0.438

高脂血症

41 (27.0%)

8 (33.3%)

33 (25.8%)

0.446

冠心病

6 (3.9%)

2 (8.3%)

4 (3.1%)

0.231

心律失常

57 (37.5%)

9 (37.5%)

48 (37.5%)

1.000

吸烟

61 (40.1%)

14 (58.3%)

47 (36.7%)

0.048

饮酒

68 (44.7%)

13 (54.2%)

55 (43.0%)

0.313

Table 2. Univariate analysis of CVSD characteristics in the excessive daytime sleepiness group versus the group without excessive daytime sleepiness

2. 日间过度嗜睡组与无日间过度嗜睡组CVSD特征的单因素分析

总计(n = 152)

日间过度嗜睡(n = 24)

无日间过度嗜睡(n = 28)

P值

脑微出血

82 (53.9%)

8 (33.3%)

74 (57.8%)

0.028

PWMH严重程度

1.0 (1.0~2.0)

1.0 (1.0~2.0)

1.0 (1.0~2.0)

0.942

DWMH严重程度

1.0 (1.0~1.0)

1.0 (1.0~1.0)

1.0 (1.0~1.0)

0.730

Fazekas评分

2.0 (2.0~3.7)

2.0 (2.0~3.7)

2.0 (2.0~3.7)

0.951

BG-PVS严重程度

2.0 (1.0~2.0)

2.0 (1.2~2.7)

2.0 (1.0~2.0)

0.759

CSO-PVS严重程度

2.0 (1.0~2.0)

2.0 (1.0~2.0)

2.0 (1.0~2.0)

0.518

腔隙

81 (53.3%)

11 (45.8%)

70 (54.7%)

0.426

3.2. 日间过度嗜睡组和无日间过度嗜睡组的多因素Logistic回归分析

在单因素分析中,吸烟史、脑梗死、NIHSS评分、白细胞计数、脑微出血与日间过度嗜睡之间存在潜在相关性,将其纳入多因素Logistic回归分析。在多因素Logistic回归分析中,调整相关变量后,吸烟(OR = 4.104, 95% CI = 1.430~11.775, P = 0.009),NIHSS评分(OR = 1.202, 95% CI = 1.038~1.391, P = 0.014),脑梗死(OR = 0.222, 95% CI = 0.075~0.662, P = 0.007),脑微出血(OR = 0.316, 95% CI = 0.113~0.885, P = 0.028)仍然是日间过度嗜睡的独立危险因素。具体见表3

Table 3. Multivariate Logistic regression analysis of characteristics associated with excessive daytime sleepiness

3. 日间过度嗜睡相关特征的多因素Logistic回归分析

OR

95% CI

P值

吸烟

4.104

1.430~11.775

0.009

NIHSS

1.202

1.038~1.391

0.014

脑梗死

0.222

0.075~0.662

0.007

白细胞

1.077

0.886~1.308

0.456

脑微出血

0.316

0.113~0.885

0.028

3.3. 基于多因素Logistic回归分析的预测模型

我们进行了受试者工作特征曲(ROC)分析,以评估多因素Logistic回归分析预测价值的准确性。与单个因素相比,吸烟,NIHSS评分,脑梗死,脑微出血的组合对日间过度嗜睡的具有更高的预测价值(AUC = 0.773),仅吸烟,NIHSS评分,脑梗死,脑微出血的AUC分别为0.608,0.666,0.395,0.378。见图1

Figure 1. Predictive model for excessive daytime sleepiness and ROC curves for the predictive value of individual factors

1. 日间过度嗜睡的预测模型和单个因素预测价值的ROC曲线

4. 讨论

关于卒中后EDS的患病率,目前尚无统一报道,有综述报道患病率在6%~49.5%不等[4]。一项涉及1076名社区老年人的研究中,EDS的患病率为10.0% [10],造成患病率不一致的原因可能是使用的诊断标准不统一或社会人口特征和文化因素的差异影响了对问卷的回答,本研究中EDS的患病率为15.7%。

本研究显示吸烟会导致日间过度嗜睡的增加,这与部分研究结果类似,这可能与尼古丁的浓度有关,睡眠障碍的程度与个体血浆尼古丁浓度相关[17],研究表明REM睡眠是由巨大细胞被盖区中神经元的胆碱能刺激引起的,而中缝核的去甲肾上腺素能神经元抑制REM并诱导 NREM 睡眠。尼古丁通过直接刺激中枢Ach受体使慢波睡眠的时间缩短、NREM I期和II期的时间增加。同时本研究显示神经功能越差的脑卒中患者更容易发生EDS,这与田玲玲[18]等人的研究结果类似,卒中后日间过度嗜睡较易发生在旁正中丘脑卒中[19],下丘脑结构异常是导致卒中后白天嗜睡的重要因素,在睡眠向觉醒状态转变时,主要是通过增强下丘脑室旁核(PVN)谷氨酸能神经元的兴奋性来实现,其可以释放相关激素,如促肾上腺皮质激素释放激素(CRH)、催乳素释放激素(OT)和强啡肽原(PROD)等,来促进觉醒状态的维持和启动[20]。患者卒中程度越严重,NIHSS评分越高,神经功能越差,昼夜节律越易出现异常,并且程度越深。近年来,大量前瞻性研究揭示了日间过度嗜睡与脑卒中之间的显著关联,同时表明EDS是脑卒中的潜在独立危险因素。一项涉及7007名老年人的前瞻性多中心研究中发现,频繁的EDS与未来的血管事件和中风独立相关[21]。以往研究显示脑梗死病变部位位于丘脑、额叶皮质、中脑和脑桥的患者患EDS的概率高于其他病变部位的脑梗死患者[4] [18]。所以,目前有相当一部分研究表明脑卒中后日间嗜睡(EDS)的发生可能与睡眠–觉醒环路的结构损伤密切相关。脑梗死可以直接或间接损害睡眠–觉醒环路,或干扰与睡眠相关的神经递质的生成与传递,从而引发睡眠与觉醒功能障碍。觉醒系统的调控有赖于多个神经网络,包括解剖和化学神经网络等,这些网络主要分布于上丘脑后部、中脑等部位,通过板内核、突触或基底核等投射到大脑皮层,继而实现对睡眠和觉醒的调节。睡眠结构与觉醒功能的正常通常需要丘脑组织的保证完整性和功能正常。

本研究发现脑微出血与日间过度嗜睡存在关联,在调整相关因素后,此联系仍旧存在。相关研究表明,中度至重度阻塞性睡眠呼吸暂停可能是脑微出血的独立预测因子之一[22],在一项研究中,27名患有阻塞性睡眠呼吸暂停的脑梗死患者表现出更高的脑微出血程度、高血压患病率、吸烟率、卒中次数以及神经功能损伤程度,这些指标均显著高于未患有阻塞性睡眠呼吸暂停的患者。这表明阻塞性睡眠呼吸暂停可能是脑微出血的重要危险因素[23]。阻塞性睡眠呼吸暂停(OSA)会导致睡眠中出现呼吸暂停或通气量减低,呼吸暂停的发生会导致严重的睡眠碎片化,伴有频繁的觉醒和睡眠阶段变化,这使睡眠中的气体交换受阻,导致出现缺氧、高碳酸血症和频繁觉醒,通常会导致白天嗜睡,这可能是脑微出血与日间嗜睡之间的潜在关联之一。EDS是OSA的常见白天症状。这一说法可能有助于解释我们的结果,并有助于卒中后日间过度嗜睡的临床预测。但Zhao J等人的研究未发现CMB与日间过度嗜睡的相关性,仅报道了EDS与WMH、腔隙和CSVD负担显著相关[10],但明确了CSVD患者可能表现出异常的睡眠–觉醒模式。关于CMB导致日间过度嗜睡的病理机制尚不明确,目前CMB的研究集中于认知障碍方面,对于睡眠障碍方面尚有待深入。

本研究为单中心横断面研究,样本量较小,使用的Epworth嗜睡量表为主观量表,对结果均存在影响,以后应扩大样本量,开展多中心及纵向调查研究。

5. 结论

卒中后日间过度嗜睡在吸烟、脑梗死、NIHSS评分高、白细胞计数高、存在脑微出血患者中较为常见。其中吸烟,NIHSS评分,脑微出血、脑梗死可以作为EDS的独立危险因素,其联合预测模型较单个预测因素有更高的预测价值。

NOTES

*通讯作者。

参考文献

[1] Feigin, V.L., Stark, B.A., Johnson, C.O., Roth, G.A., Bisignano, C., Abady, G.G., et al. (2021) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20, 795-820.
https://doi.org/10.1016/s1474-4422(21)00252-0
[2] Angelelli, P., Paolucci, S., Bivona, U., Piccardi, L., Ciurli, P., Cantagallo, A., et al. (2004) Development of Neuropsychiatric Symptoms in Poststroke Patients: A Cross‐Sectional Study. Acta Psychiatrica Scandinavica, 110, 55-63.
https://doi.org/10.1111/j.1600-0447.2004.00297.x
[3] Suzuki, A., Mutai, H., Furukawa, T., Wakabayashi, A. and Hanihara, T. (2021) The Prevalence and Course of Neuropsychiatric Symptoms in Stroke Patients Impact Functional Recovery during in-Hospital Rehabilitation. Topics in Stroke Rehabilitation, 29, 1-8.
https://doi.org/10.1080/10749357.2020.1871283
[4] Hermann, D.M. and Bassetti, C.L. (2009) Sleep-Related Breathing and Sleep-Wake Disturbances in Ischemic Stroke. Neurology, 73, 1313-1322.
https://doi.org/10.1212/wnl.0b013e3181bd137c
[5] Joa, K., Kim, W., Choi, H., Park, C., Kim, E., Lee, S., et al. (2017) The Effect of Sleep Disturbances on the Functional Recovery of Rehabilitation Inpatients Following Mild and Moderate Stroke. American Journal of Physical Medicine & Rehabilitation, 96, 734-740.
https://doi.org/10.1097/phm.0000000000000744
[6] Ding, Q., Whittemore, R. and Redeker, N. (2016) Excessive Daytime Sleepiness in Stroke Survivors. Biological Research for Nursing, 18, 420-431.
https://doi.org/10.1177/1099800415625285
[7] Hoch, C.R. and Klinedinst, N.J. (2024) Excessive Daytime Sleepiness, Inflammation, and Platelet Energy Metabolism in Chronic Stroke Survivors. Nursing Research, 74, 79-84.
https://doi.org/10.1097/nnr.0000000000000773
[8] Šiarnik, P., Klobučníková, K., Šurda, P., Putala, M., Šutovský, S., Kollár, B., et al. (2018) Excessive Daytime Sleepiness in Acute Ischemic Stroke: Association with Restless Legs Syndrome, Diabetes Mellitus, Obesity, and Sleep-Disordered Breathing. Journal of Clinical Sleep Medicine, 14, 95-100.
https://doi.org/10.5664/jcsm.6890
[9] Vock, J., Achermann, P., Bischof, M., Milanova, M., Müller, C., Nirkko, A., et al. (2002) Evolution of Sleep and Sleep EEG after Hemispheric Stroke. Journal of Sleep Research, 11, 331-338.
https://doi.org/10.1046/j.1365-2869.2002.00316.x
[10] Pasic, Z., Smajlovic, D., Dostovic, Z., Kojic, B. and Selmanovic, S. (2011) Incidence and Types of Sleep Disorders in Patients with Stroke. Medical Archives, 65, 225-227.
https://doi.org/10.5455/medarh.2011.65.225-227
[11] Zhao, J., Kong, Q., Wang, M., Huang, H., Zhou, X., Guo, Y., et al. (2022) Association of Excessive Daytime Sleepiness with Cerebral Small Vessel Disease in Community-Dwelling Older Adults. Nature and Science of Sleep, 14, 765-773.
https://doi.org/10.2147/nss.s357586
[12] Patel, S.K., Hanly, P.J., Smith, E.E., Chan, W. and Coutts, S.B. (2015) Nocturnal Hypoxemia Is Associated with White Matter Hyperintensities in Patients with a Minor Stroke or Transient Ischemic Attack. Journal of Clinical Sleep Medicine, 11, 1417-1424.
https://doi.org/10.5664/jcsm.5278
[13] Wang, J., Chen, X., Liao, J., Zhou, L., Han, H., Tao, J., et al. (2020) Non Breathing-Related Sleep Fragmentation and Imaging Markers in Patients with Atherosclerotic Cerebral Small Vessel Disease (CSVD): A Cross-Sectional Case-Control Study. BMC Neurology, 20, Article No. 98.
https://doi.org/10.1186/s12883-020-01647-x
[14] Doubal, F.N., MacLullich, A.M.J., Ferguson, K.J., Dennis, M.S. and Wardlaw, J.M. (2010) Enlarged Perivascular Spaces on MRI Are a Feature of Cerebral Small Vessel Disease. Stroke, 41, 450-454.
https://doi.org/10.1161/strokeaha.109.564914
[15] Fazekas, F., Chawluk, J., Alavi, A., Hurtig, H. and Zimmerman, R. (1987) MR Signal Abnormalities at 1.5 T in Alzheimer’s Dementia and Normal Aging. American Journal of Roentgenology, 149, 351-356.
https://doi.org/10.2214/ajr.149.2.351
[16] Johns, M.W. (1991) A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep, 14, 540-545.
https://doi.org/10.1093/sleep/14.6.540
[17] Jaehne, A., Loessl, B., Bárkai, Z., Riemann, D. and Hornyak, M. (2009) Effects of Nicotine on Sleep during Consumption, Withdrawal and Replacement Therapy. Sleep Medicine Reviews, 13, 363-377.
https://doi.org/10.1016/j.smrv.2008.12.003
[18] 田玲玲, 谌秘, 邹田子. 康复期脑卒中患者日间过度嗜睡现状及影响因素研究[J]. 护理学杂志, 2024, 39(15): 11-15.
[19] Hermann, D.M. and Bassetti, C.L. (2016) Role of Sleep-Disordered Breathing and Sleep-Wake Disturbances for Stroke and Stroke Recovery. Neurology, 87, 1407-1416.
https://doi.org/10.1212/wnl.0000000000003037
[20] Chen, C., Zhong, Y., Jiang, S., Xu, W., Xiao, L., Wang, Z., et al. (2021) Dysfunctions of the Paraventricular Hypothalamic Nucleus Induce Hypersomnia in Mice. eLife, 10, e69909.
https://doi.org/10.7554/elife.69909
[21] Blachier, M., Dauvilliers, Y., Jaussent, I., Helmer, C., Ritchie, K., Jouven, X., et al. (2012) Excessive Daytime Sleepiness and Vascular Events: The Three City Study. Annals of Neurology, 71, 661-667.
https://doi.org/10.1002/ana.22656
[22] Koo, D.L., Kim, J.Y., Lim, J., Kwon, H. and Nam, H. (2017) Cerebral Microbleeds on MRI in Patients with Obstructive Sleep Apnea. Journal of Clinical Sleep Medicine, 13, 65-72.
https://doi.org/10.5664/jcsm.6390
[23] 徐杰文, 邓丽影, 邹学良, 等. 阻塞性睡眠呼吸紊乱对脑梗死患者脑微出血的影响[J]. 南方医科大学学报, 2012, 32(9): 1362-1365.