[1]
|
Młynarska, E., Buławska, D., Czarnik, W., Hajdys, J., Majchrowicz, G., Prusinowski, F., et al. (2024) Novel Insights into Diabetic Kidney Disease. International Journal of Molecular Sciences, 25, Article 10222. https://doi.org/10.3390/ijms251810222
|
[2]
|
Gaddy, A., Elrggal, M., Madariaga, H., Kelly, A., Lerma, E. and Colbert, G.B. (2025) Diabetic Kidney Disease. Disease-a-Month, 71, Article ID: 101848. https://doi.org/10.1016/j.disamonth.2024.101848
|
[3]
|
Ghose, S., Satariano, M., Korada, S., Cahill, T., Shah, R. and Raina, R. (2024) Advancements in Diabetic Kidney Disease Management: Integrating Innovative Therapies and Targeted Drug Development. American Journal of Physiology-Endocrinology and Metabolism, 326, E791-E806. https://doi.org/10.1152/ajpendo.00026.2024
|
[4]
|
Wu, X., Zhao, L., Zhao, Y., He, X., Zou, L., Zhao, Y., et al. (2024) Traditional Chinese Medicine Improved Diabetic Kidney Disease through Targeting Gut Microbiota. Pharmaceutical Biology, 62, 423-435. https://doi.org/10.1080/13880209.2024.2351946
|
[5]
|
Shen, S., Zhong, H., Zhou, X., Li, G., Zhang, C., Zhu, Y., et al. (2024) Advances in Traditional Chinese Medicine Research in Diabetic Kidney Disease Treatment. Pharmaceutical Biology, 62, 222-232. https://doi.org/10.1080/13880209.2024.2314705
|
[6]
|
黄秀芳, 庾国桢, 童晶晶. 基于网络药理学分析陈皮的药理作用机制[J]. 中成药, 2019, 41(12): 3038-3045.
|
[7]
|
武俊紫, 姚政, 熊光轶, 等. 川陈皮素对糖尿病肾病大鼠的作用研究[J]. 中华中医药学刊, 2020, 38(8): 117-121, 270.
|
[8]
|
王梦诗, 郭玲, 何学红. 基于网络药理学及分子对接探析“黄芪-太子参-陈皮”角药治疗慢性肾衰竭的作用机制[J]. 中国民间疗法, 2023, 31(12): 61-66.
|
[9]
|
Lin, Z., Chan, Y., Pan, M., Tung, Y. and Su, Z. (2019) Aged Citrus Peel (Chenpi) Prevents Acetaminophen-Induced Hepatotoxicity by Epigenetically Regulating Nrf2 Pathway. The American Journal of Chinese Medicine, 47, 1833-1851. https://doi.org/10.1142/s0192415x19500939
|
[10]
|
Wu, H., Malone, A.F., Donnelly, E.L., Kirita, Y., Uchimura, K., Ramakrishnan, S.M., et al. (2018) Single-Cell Transcriptomics of a Human Kidney Allograft Biopsy Specimen Defines a Diverse Inflammatory Response. Journal of the American Society of Nephrology, 29, 2069-2080. https://doi.org/10.1681/asn.2018020125
|
[11]
|
Okada, T., Wada, J., Hida, K., Eguchi, J., Hashimoto, I., Baba, M., et al. (2006) Thiazolidinediones Ameliorate Diabetic Nephropathy via Cell Cycle-Dependent Mechanisms. Diabetes, 55, 1666-1677. https://doi.org/10.2337/db05-1285
|
[12]
|
Jia, Z., Sun, Y., Yang, G., Zhang, A., Huang, S., Heiney, K.M., et al. (2014) New Insights into the PPARγ Agonists for the Treatment of Diabetic Nephropathy. PPAR Research, 2014, Article ID: 818530. https://doi.org/10.1155/2014/818530
|
[13]
|
Zhu, C., Huang, S., Yuan, Y., Ding, G., Chen, R., Liu, B., et al. (2011) Mitochondrial Dysfunction Mediates Aldosterone-Induced Podocyte Damage. The American Journal of Pathology, 178, 2020-2031. https://doi.org/10.1016/j.ajpath.2011.01.029
|
[14]
|
Huang, S., Jin, Y., Zhang, L., Zhou, Y., Chen, N. and Wang, W. (2024) PPAR Gamma and PGC‐1α Activators Protect against Diabetic Nephropathy by Suppressing the Inflammation and NF‐κB Activation. Nephrology, 29, 858-872. https://doi.org/10.1111/nep.14381
|
[15]
|
Wang, H., Tian, Q., Zhang, R., Du, Q., Hu, J., Gao, T., et al. (2024) Nobiletin Alleviates Atherosclerosis by Inhibiting Lipid Uptake via the PPARG/CD36 Pathway. Lipids in Health and Disease, 23, Article No. 76. https://doi.org/10.1186/s12944-024-02049-5
|
[16]
|
Quilley, J., Santos, M. and Pedraza, P. (2011) Renal Protective Effect of Chronic Inhibition of COX-2 with SC-58236 in Streptozotocin-Diabetic Rats. American Journal of Physiology-Heart and Circulatory Physiology, 300, H2316-H2322. https://doi.org/10.1152/ajpheart.01259.2010
|
[17]
|
唐雨菲, 莫烨云, 李笑笑, 等. 地菍总黄酮对高脂饮食联合链脲佐菌素诱导糖尿病肾病小鼠脂质过氧化的影响[J]. 中国畜牧兽医, 2025, 52(1): 364-375.
|
[18]
|
Siddiqi, A., Saidullah, B. and Sultana, S. (2018) Anti‐Carcinogenic Effect of Hesperidin against Renal Cell Carcinoma by Targeting COX‐2/PGE2 Pathway in Wistar Rats. Environmental Toxicology, 33, 1069-1077. https://doi.org/10.1002/tox.22626
|
[19]
|
Krochmal, M., Kontostathi, G., Magalhães, P., Makridakis, M., Klein, J., Husi, H., et al. (2017) Urinary Peptidomics Analysis Reveals Proteases Involved in Diabetic Nephropathy. Scientific Reports, 7, Article No. 15160. https://doi.org/10.1038/s41598-017-15359-9
|
[20]
|
Li, G., Zhang, J., Liu, D., Wei, Q., Wang, H., Lv, Y., et al. (2021) Identification of Hub Genes and Potential Cerna Networks of Diabetic Nephropathy by Weighted Gene Co-Expression Network Analysis. Frontiers in Genetics, 12, Article 767654. https://doi.org/10.3389/fgene.2021.767654
|
[21]
|
Chen, S., Li, B., Chen, L. and Jiang, H. (2023) Uncovering the Mechanism of Resveratrol in the Treatment of Diabetic Kidney Disease Based on Network Pharmacology, Molecular Docking, and Experimental Validation. Journal of Translational Medicine, 21, Article No. 380. https://doi.org/10.1186/s12967-023-04233-0
|
[22]
|
Singh, P., Bansal, S., Kuhad, A., Kumar, A. and Chopra, K. (2020) Naringenin Ameliorates Diabetic Neuropathic Pain by Modulation of Oxidative-Nitrosative Stress, Cytokines and MMP-9 Levels. Food & Function, 11, 4548-4560. https://doi.org/10.1039/c9fo00881k
|
[23]
|
Syed, A.A., Reza, M.I., Shafiq, M., Kumariya, S., Singh, P., Husain, A., et al. (2020) Naringin Ameliorates Type 2 Diabetes Mellitus-Induced Steatohepatitis by Inhibiting Rage/NF-κB Mediated Mitochondrial Apoptosis. Life Sciences, 257, Article ID: 118118. https://doi.org/10.1016/j.lfs.2020.118118
|
[24]
|
李会英, 赵晓丽, 王丽, 等. 川陈皮素对高糖诱导的大鼠肾小球系膜细胞炎症因子和氧化应激水平的影响[J]. 中国新药杂志, 2019, 28(20): 2537-2542.
|
[25]
|
Murata, T., Ishiwa, S., Lin, X., Nakazawa, Y., Tago, K. and Funakoshi-Tago, M. (2023) The Citrus Flavonoid, Nobiletin Inhibits Neuronal Inflammation by Preventing the Activation of NF-κB. Neurochemistry International, 171, Article ID: 105613. https://doi.org/10.1016/j.neuint.2023.105613
|
[26]
|
He, Y., Wang, S., Sun, H., Li, Y. and Feng, J. (2022) Naringenin Ameliorates Myocardial Injury in STZ-Induced Diabetic Mice by Reducing Oxidative Stress, Inflammation and Apoptosis via Regulating the Nrf2 and NF-κB Signaling Pathways. Frontiers in Cardiovascular Medicine, 9, Article 946766. https://doi.org/10.3389/fcvm.2022.946766
|