[1]
|
Syahrizal, A.B., Kareem, B.A., Anbanadan, S., et al. (2001) Risk Factors for Infection in Total Knee Replacement Surgery at Hospital Kuala Lumpur. Medical Journal of Malaysia, 56, 5-8.
|
[2]
|
Poultsides, L.A., Triantafyllopoulos, G.K., Sakellariou, V.I., et al. (2018) Infection Risk Assessment in Patients Undergoing Primary Total Knee Arthroplasty. International Orthopaedics, 42, 87-94. https://doi.org/10.1007/s00264-017-3675-z
|
[3]
|
Poultsides, L.A., Ma, Y., Della Valle, A.G., Chiu, Y., Sculco, T.P. and Memtsoudis, S.G. (2013) In-hospital Surgical Site Infections after Primary Hip and Knee Arthroplasty—Incidence and Risk Factors. The Journal of Arthroplasty, 28, 385-389. https://doi.org/10.1016/j.arth.2012.06.027
|
[4]
|
Dowsey, M.M. and Choong, P.F. (2009) Obese Diabetic Patients Are at Substantial Risk for Deep Infection after Primary TKA. Clinical Orthopaedics and Related Research, 467, 1577-1581. https://doi.org/10.1007/s11999-008-0551-6
|
[5]
|
Wagner, E.R., Kamath, A.F., Fruth, K., et al. (2016) Effect of Body Mass Index on Reoperation and Complications after Total Knee Arthroplasty. The Journal of Bone and Joint Surgery, 98, 2052-2060. https://doi.org/10.2106/JBJS.16.00093
|
[6]
|
McLawhorn, A.S., Southren, D., Wang, Y.C., Marx, R.G. and Dodwell, E.R. (2016) Cost-Effectiveness of Bariatric Surgery Prior to Total Knee Arthroplasty in the Morbidly Obese. Journal of Bone and Joint Surgery, 98, e6. https://doi.org/10.2106/jbjs.n.00416
|
[7]
|
Guo, J.J., Yang, H., Qian, H., Huang, L., Guo, Z. and Tang, T. (2010) The Effects of Different Nutritional Measurements on Delayed Wound Healing after Hip Fracture in the Elderly. Journal of Surgical Research, 159, 503-508. https://doi.org/10.1016/j.jss.2008.09.018
|
[8]
|
Climo, M.W., Sepkowitz, K.A., Zuccotti, G., et al. (2009) The Effect of Daily Bathing with Chlorhexidine on the Acquisition of Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus, and Healthcare-Associated Bloodstream Infections: Results of a Quasi-Experimental Multicenter Trial. Critical Care Medicine, 37, 1858-1865. https://doi.org/10.1097/CCM.0b013e31819ffe6d
|
[9]
|
Benjamin, R.J., Dy, B., Warren, R., et al. (2011) Skin Disinfection with a Single-Step 2% Chlorhexidine Swab Is More Effective than a Two-Step Povidone-Iodine Method in Preventing Bacterial Contamination of Apheresis Platelets. Transfusion, 51, 531-538. https://doi.org/10.1111/j.1537-2995.2010.02868.x
|
[10]
|
Hooper, G.J., Rothwell, A.G., Frampton, C. and Wyatt, M.C. (2011) Does the Use of Laminar Flow and Space Suits Reduce Early Deep Infection after Total Hip and Knee Replacement? The Journal of Bone and Joint Surgery. British volume, 93, 85-90. https://doi.org/10.1302/0301-620x.93b1.24862
|
[11]
|
Bannister, G.C., Auchiacloss, J.M., Johnson, D.P., et al. (1988) The Timing of Tourniquet Application in Relation to Prophylactic Antibiotic Administration. The Bone & Joint Journal, 70, 322-324. https://doi.org/10.1302/0301-620X.70B2.3346316
|
[12]
|
Illingworth, K.D., Mihalko, W.M., Parvizi, J., et al. (2013) How to Minimize Infection and Thereby Maximize Patient Outcomes in Total Joint Arthroplasty: A Multicenter Approach: AAOS Exhibit Selection. The Journal of Bone and Joint Surgery, 95, e50. https://doi.org/10.2106/JBJS.L.00596
|
[13]
|
Zhou, X.D., Li, J. and Xiong, Y. (2013) Risk Factors for Infection after Knee Arthroplasty. Do We Really Need Closed-Suction Drainage in Total Hip Arthroplasty? A Meta-Analysis. International Orthopaedics, 37, 2109-2118.
|
[14]
|
Jamsen, E., Huhtala, H., Puolakka, T. and Moilanen, T. (2009) Risk Factors for Infection after Knee Arthroplasty. A Register-Based Analysis of 43,149 Cases. The Journal of Bone and Joint Surgery, 91, 38-47. https://doi.org/10.2106/JBJS.G.01686
|
[15]
|
Surin, V., Sundholm, K. and Backman, L. (1983) Infection after Total Hip Replacement. With Special Reference to a Discharge from the Wound. The Journal of Bone and Joint Surgery. British volume, 65, 412-418. https://doi.org/10.1302/0301-620x.65b4.6874711
|
[16]
|
Masterson, E.L., Masri, B.A. and Duncan, C.P. (1998) Treatment of Infection at the Site of Total Hip Replacement. Instructional Course Lectures, 47, 297-306.
|
[17]
|
Weiss, A.P. and Krackow, K.A. (1993) Persistent Wound Drainage after Primary Total Knee Arthroplasty. The Journal of Arthroplasty, 8, 285-289. https://doi.org/10.1016/S0883-5403(06)80091-4
|
[18]
|
Patel, V.P., Walsh, M., Sehgal, B., Preston, C., DeWal, H. and Di Cesare, P.E. (2007) Factors Associated with Prolonged Wound Drainage after Primary Total Hip and Knee Arthroplasty. The Journal of Bone & Joint Surgery, 89, 33-38. https://doi.org/10.2106/jbjs.f.00163
|
[19]
|
Vince, K.G. and Abdeen, A. (2006) Wound Problems in Total Knee Arthroplasty. Clinical Orthopaedics and Related Research, 452, 88-90. https://doi.org/10.1097/01.blo.0000238821.71271.cc
|
[20]
|
Muffly, B.T., Ayeni, A.M., Jones, C.A., Heo, K.Y., Guild, G.N. and Premkumar, A. (2024) Periprosthetic Joint Infection Risk after Primary Total Knee Arthroplasty: Are All Preoperative Corticosteroid Injections the Same? The Journal of Arthroplasty, 39, 1312-1316.e7. https://doi.org/10.1016/j.arth.2023.10.053
|
[21]
|
中华医学会肠外肠内营养学分会老年营养支持学组. 中国老年患者肠外肠内营养应用指南(2020) [J]. 中华老年医学杂志, 2020, 39(2): 119-132.
|
[22]
|
Maradit Kremers, H., Wyles, C.C., Slusser, J.P., et al. (2024) Data-Driven Approach to Development of a Risk Score for Periprosthetic Joint Infections in Total Joint Arthroplasty Using Electronic Health Records. The Journal of Arthroplasty, 40, 1308-1316.e13. https://doi.org/10.1016/j.arth.2024.10.129
|
[23]
|
Sigmund, I.K., McNally, M.A., Luger, M., Böhler, C., Windhager, R. and Sulzbacher, I. (2021) Diagnostic Accuracy of Neutrophil Counts in Histopathological Tissue Analysis in Periprosthetic Joint Infection Using the ICM, IDSA, and EBJIS Criteria. Bone & Joint Research, 10, 536-547. https://doi.org/10.1302/2046-3758.108.bjr-2021-0058.r1
|
[24]
|
Goswami, K., Parvizi, J. and Maxwell Courtney, P. (2018) Current Recommendations for the Diagnosis of Acute and Chronic PJI for Hip and Knee—Cell Counts, Alpha-Defensin, Leukocyte Esterase, Next-Generation Sequencing. Current Reviews in Musculoskeletal Medicine, 11, 428-438. https://doi.org/10.1007/s12178-018-9513-0
|
[25]
|
Davalos, D. and Akassoglou, K. (2011) Fibrinogen as a Key Regulator of Inflammation in Disease. Seminars in Immunopathology, 34, 43-62. https://doi.org/10.1007/s00281-011-0290-8
|
[26]
|
Li, R., Shao, H., Hao, L., Yu, B., Qu, P., Zhou, Y., et al. (2019) Plasma Fibrinogen Exhibits Better Performance than Plasma D-Dimer in the Diagnosis of Periprosthetic Joint Infection: A Multicenter Retrospective Study. Journal of Bone and Joint Surgery, 101, 613-619. https://doi.org/10.2106/jbjs.18.00624
|
[27]
|
田居杰, 曹力, 李亦丞, 等. 部分炎症指标对膝关节假体周围感染的诊断价值[J]. 中华骨科杂志, 2023, 43(11): 751-758.
|
[28]
|
路鑫哲, 胡明玮, 徐浩, 等. 血清蛋白电泳对Tsukayama Ⅳ型假体周围感染的诊断意义[J]. 中华骨科杂志, 2023, 43(18): 1233-1240.
|
[29]
|
Zimmerli, W., Trampuz, A. and Ochsner, P.E. (2004) Prosthetic-Joint Infections. New England Journal of Medicine, 351, 1645-1654. https://doi.org/10.1056/nejmra040181
|
[30]
|
Aliyev, O., Yıldız, F., Kaya, H.B., Aghazada, A., Sümbül, B., Citak, M., et al. (2022) Sonication of Explants Enhances the Diagnostic Accuracy of Synovial Fluid and Tissue Cultures and Can Help Determine the Appropriate Antibiotic Therapy for Prosthetic Joint Infections. International Orthopaedics, 46, 415-422. https://doi.org/10.1007/s00264-021-05286-w
|
[31]
|
Drago, L. and Romanò, C.L. (2022) Commentary: Dithiothreitol (DTT), When Used as Biofilm Detaching Method to Diagnose Implant-Associated Infections, Does Not Affect Microorganisms’ Viability, according to the Current Literature. Frontiers in Microbiology, 12, Article 814945. https://doi.org/10.3389/fmicb.2021.814945
|
[32]
|
De Vecchi, E., Bortolin, M., Signori, V., Romanò, C.L. and Drago, L. (2016) Treatment with Dithiothreitol Improves Bacterial Recovery from Tissue Samples in Osteoarticular and Joint Infections. The Journal of Arthroplasty, 31, 2867-2870. https://doi.org/10.1016/j.arth.2016.05.008
|
[33]
|
顾增辉, 胡正辉, 吴晨颖, 等. 超声裂解法诊断关节置换术后假体周围感染研究进展[J]. 中华实验外科杂志, 2022, 39(11): 2254-2258.
|
[34]
|
Ouyang, Z., Li, H., Liu, X., Zhai, Z. and Li, X. (2014) Prosthesis Infection: Diagnosis after Total Joint Arthroplasty with Three-Phase Bone Scintigraphy. Annals of Nuclear Medicine, 28, 994-1003. https://doi.org/10.1007/s12149-014-0899-5
|
[35]
|
Tsukayama, D.T., Goldberg, V.M. and Kyle, R. (2003) Diagnosis and Management of Infection after Total Knee Arthroplasty. The Journal of Bone and Joint Surgery-American Volume, 85, S75-S80. https://doi.org/10.2106/00004623-200300001-00014
|
[36]
|
陈权, 曹力, 李亦丞, 等. 保留假体清创术联合抗生素关节腔用药治疗早期假体周围感染失败的危险因素[J]. 中华骨科杂志, 2023, 43(16): 1085-1093.
|
[37]
|
Bialecki, J., Bucsi, L., Fernando, N., Foguet, P., Guo, S., Haddad, F., et al. (2019) Hip and Knee Section, Treatment, One Stage Exchange: Proceedings of International Consensus on Orthopedic Infections. The Journal of Arthroplasty, 34, S421-S426. https://doi.org/10.1016/j.arth.2018.09.026
|
[38]
|
赵嘉铭, 马立峰, 刁乃成, 等. 一期翻修术在髋膝关节置换术后假体周围感染中的应用[J]. 国际外科学杂志, 2021, 48(11): 782-788.
|
[39]
|
张海耀, 李国庆, 汪洋, 等. 一期全髋关节置换联合关节腔内注射抗生素治疗关节周围骨折内固定术后感染[J]. 中华骨科杂志, 2024, 44(16): 1085-1092.
|
[40]
|
冯建民, 刘志宏, 杨庆铭. 全髋关节置换术后感染的二期翻修术[J]. 中华骨科杂志, 2001, 21(12): 745-748.
|
[41]
|
中华医学会骨科学分会关节外科学组 《中国PJI诊断和治疗指南》编写委员会. 中国人工关节感染诊断与治疗指南[J]. 中华外科杂志, 2021, 59(6): 430-442.
|
[42]
|
Visperas, A., Santana, D., Klika, A.K., Higuera‐Rueda, C.A. and Piuzzi, N.S. (2022) Current Treatments for Biofilm‐Associated Periprosthetic Joint Infection and New Potential Strategies. Journal of Orthopaedic Research, 40, 1477-1491. https://doi.org/10.1002/jor.25345
|
[43]
|
Ghosh, A., Jayaraman, N. and Chatterji, D. (2020) Small-Molecule Inhibition of Bacterial Biofilm. ACS Omega, 5, 3108-3115. https://doi.org/10.1021/acsomega.9b03695
|
[44]
|
Raafat, D., Otto, M., Reppschläger, K., Iqbal, J. and Holtfreter, S. (2019) Fighting Staphylococcus aureus Biofilms with Monoclonal Antibodies. Trends in Microbiology, 27, 303-322. https://doi.org/10.1016/j.tim.2018.12.009
|
[45]
|
Akanda, Z.Z., Taha, M. and Abdelbary, H. (2017) Current Review—The Rise of Bacteriophage as a Unique Therapeutic Platform in Treating Peri-Prosthetic Joint Infections. Journal of Orthopaedic Research, 36, 1051-1060. https://doi.org/10.1002/jor.23755
|
[46]
|
Jubel, J.M., Randau, T.M., Becker-Gotot, J., Scheidt, S., Wimmer, M.D., Kohlhof, H., et al. (2021) sCD28, sCD80, sCTLA-4, and sBTLA Are Promising Markers in Diagnostic and Therapeutic Approaches for Aseptic Loosening and Periprosthetic Joint Infection. Frontiers in Immunology, 12, Article 687065. https://doi.org/10.3389/fimmu.2021.687065
|
[47]
|
Heim, C.E., Vidlak, D. and Kielian, T. (2015) Interleukin-10 Production by Myeloid-Derived Suppressor Cells Contributes to Bacterial Persistence during staphylococcus Aureus Orthopedic Biofilm Infection. Journal of Leukocyte Biology, 98, 1003-1013. https://doi.org/10.1189/jlb.4vma0315-125rr
|
[48]
|
Ballbach, M., Dannert, A., Singh, A., Siegmund, D.M., Handgretinger, R., Piali, L., et al. (2017) Expression of Checkpoint Molecules on Myeloid-Derived Suppressor Cells. Immunology Letters, 192, 1-6. https://doi.org/10.1016/j.imlet.2017.10.001
|
[49]
|
Weber, R., Fleming, V., Hu, X., Nagibin, V., Groth, C., Altevogt, P., et al. (2018) Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors. Frontiers in Immunology, 9, Article 1310. https://doi.org/10.3389/fimmu.2018.01310
|