热循环载荷下SiCp/Al材料损伤演化的仿真研究
Simulation of Damage Evolution of SiCp/Al Materials under Thermal Cycling Loading
DOI: 10.12677/mos.2025.146489, PDF, HTML, XML,    国家自然科学基金支持
作者: 臧传相, 邹 震, 余毅权:南京中车浦镇海泰制动设备有限公司,江苏 南京;崔鑫垚, 杨智勇*:北京交通大学机械与电子控制工程学院,北京
关键词: SiCp/Al材料热循环损伤演化微观结构损伤SiCp/Al Composites Thermal Cycle Damage Evolution Microstructure Damage
摘要: SiCp/Al材料制动盘在频繁的高温环境下,其组织性能必然会发生变化。为阐明SiCp/Al材料服役过程中微观损伤演变规律与机制,借助Abaqus软件构建了SiCp/A356复合材料热损伤的RVE仿真模型并进行仿真分析。结果表明:SiCp/Al材料在上限温度不高于200℃的热循环时,无明显的基体损伤和界面开裂,热循环温度决定材料微观结构损伤模式与程度;热循环中SiCp/A356复合材料颗粒尖端区域和间距较小的颗粒之间的基体承受较大热应力,热应力大小与分布是SiCp/A356制动盘摩擦面热裂纹的萌生与扩展主要驱动力。论文研究对SiCp/A356复合材料制备及其制动盘的成形质量控制具有重要的工程指导价值。
Abstract: The microstructure and properties of SiCp/Al brake discs are bound to change under frequent high-temperature environments. To clarify the evolution law and mechanism of microscopic damage of SiCp/Al composites during service, an RVE simulation model of thermal damage of SiCp/A356 composites was constructed with the aid of Abaqus software and simulation analysis was carried out. The results show that when the SiCp/Al composites undergo a thermal cycle with an upper limit temperature at most 200˚C, there is no obvious matrix damage or interface cracking. The thermal cycle temperature determines the mode and degree of microstructure damage of the composites. Under the action of thermal cycling loading, both the matrix located at the particle tips and the matrix between the particles with a smaller spacing are subjected to large thermal stresses in the SiCp/A356 composites. The magnitude and distribution of thermal stresses are the main driving forces for the initiation and propagation of thermal cracks on the friction surface of the SiCp/A356 brake disc. The research has important engineering guiding value for the fabrication of SiCp/A356 composites and the forming quality control of brake disc.
文章引用:臧传相, 邹震, 余毅权, 崔鑫垚, 杨智勇. 热循环载荷下SiCp/Al材料损伤演化的仿真研究[J]. 建模与仿真, 2025, 14(6): 196-205. https://doi.org/10.12677/mos.2025.146489

1. 引言

SiCp/Al材料是一种比强度高、耐磨、导热性好的材料,其密度仅为钢铁材料的35%~40%,是制动盘轻量化的理想材料[1]-[3]。目前,SiCp/Al制动盘已成为城轨列车制动盘轻量化的重要手段[4]-[6]。城轨列车具有独特的运行特点,其站间距短、载重量大、制动减速度大,且制动频繁,使SiCp/Al制动盘承受苛刻的强摩擦和热载荷的交互作用[7]-[9]。在微观尺度上,复合材料是由铝合金基体、增强体和界面组成,SiCp/Al制动盘每一次制动升降温,本质上都相当于对制动盘进行了一次热处理,会导致铝基复合材料的微观组织发生转变。但目前尚缺乏制动温升条件下,SiCp/Al材料损伤演化与组织转变的系统性研究。

近年来,代表性体积单元Representative Volume Element (RVE)的有限元建模方式得到广泛应用[10]-[12]。基于此,复合材料异质相界面交互作用、损伤局部化、裂纹萌生等相关的热点问题被不断挖掘和认识[13]-[18],通过仿真能直接获取材料微观结构在失效过程中的应力–应变响应,还能施加变温载荷以模拟微观材料热应力,从而为SiCp/Al材料在热载荷下的微观结构响应研究提供方法。

RVE是满足结构周期性及边界周期性假设的复合材料微观单元,其具有复合材料微观结构的充足信息[19]-[21]。通过SiCp/Al材料微观结构的RVE参数化建模,并引入SiC颗粒的脆断模型、基体的Johnson-Cook模型和界面的内聚力单元[22] [23],阐明了在拉伸状态下,裂纹或绕过颗粒沿界面扩展,或贯穿颗粒,较少有界面破坏的现象。Bienias等[17]将基于Traction-Separation失效准则的XFEM赋予纤维增强复合材料的碳纤维和基体,将内聚力模型赋予界面,由拉伸过程可知材料损伤源于开裂和界面脱粘,导致该区域材料的承载能力弱化,加剧结构破坏进程直至材料失效。Haiyan Zhu等[24]采用数值模拟和试验研究相结合的分析方法,实现了不同工况下制动盘损伤的准确预测,揭示了制动盘热裂纹持续向深裂纹扩展并最终断裂的机理。

综上所述,本文结合台架试验的制动温升情况,开展SiCp/Al材料热循环的RVE仿真研究,表征SiCp/Al材料微观结构受热载荷影响下的连续损伤行为,明确SiCp/Al材料微观损伤演化机制及其裂纹萌生与扩展机制,从而为SiCp/Al制动盘的工程应用和服役安全性提供技术支撑。

2. RVE仿真模型构建

热循环试验材料取自SiCp/Al制动盘,基体为A356铝合金,SiC颗粒标称粒径20 μm,含量为20 wt.%,典型形貌见图1(a),包含大量类三棱柱、类四棱柱颗粒,颗粒边缘棱角分明。对SiCp/Al材料进行TEM下界面区域观察(图1(b)),可见颗粒与基体边界清晰并结合紧密,无明显过渡区域。

Figure 1. Microscopic morphological characteristics of SiCp/Al composites. (a) Morphology of SiC particles under SEM, (b) Particle-matrix interface under TEM

1. SiCp/Al复合材料的微观形态特征。(a) SEM下的SiC颗粒形态,(b) TEM下的颗粒–基体界面

SiCp/Al材料RVE几何模型包含基体和SiC颗粒群(图2)。SiC颗粒以三棱柱、四棱柱为构型,依据扫描电镜照片确定粒径约为20 μm,含量约为20 wt.%。考虑SiCp/Al材料界面无明显过渡区域,在基体与SiC颗粒交界处插入零厚度粘结单元以实现界面结合效果。为将单个RVE设定为复合材料连续统一体的代表,模型给RVE建立周期性边界条件[25] [26],实现了RVE边界的连续性。为模拟基体的累积塑性损伤行为和界面的开裂行为,基体赋予延性损伤准则,界面赋予拉伸-分离准则,相关SiCp/Al材料组元的物理性能和损伤模型参照文献[27]

Figure 2. RVE geometric model of SiCp/Al composites

2. SiCp/Al材料RVE几何模型

在Abaqus中采用C3D4单元类型完成RVE几何模型网格划分,网格尺寸为1.5 μm,通过Abaqus插件在基体与增强相交界处插入粘结单元,网格类型为COH4D8,以实现界面结合效果,插入的粘结单元厚度为0。网格划分结果如图3所示。

仿真前处理中对模型施加周期性边界条件(PBC),该边界条件可将RVE设定为复合材料连续统一体,使得相邻RVE的邻边无论是在变形还是非变形条件下都可相互配合。同时SiCp/A356材料在热载荷下会产生材料热应力,产生原因是在经历变温载荷时,复合材料基体和增强相因热物理参数差异,其界面处产生热错配应力所致。由于微米级RVE尺寸远小于制动盘有限元模型网格尺寸,因此,在进行制动盘关注点的温度载荷的时域输入时,可假设RVE内部温度场均匀一致,其内部不存在温度差。通过RVE整体预定义温度场,并配合复合材料组元热物理特性差异,从而产生RVE所受的材料热应力。

Figure 3. RVE model mesh of SiCp/A356 composites. (a) Matrix mesh; (b) Particle mesh

3. SiCp/A356复合材料RVE模型网格。(a) 基体网格;(b) 颗粒网格

制动盘台架试验的温度低于400℃,所以对RVE模型分别施加室温 ↔ 200℃、室温 ↔ 300℃和室温 ↔ 400℃的温度循环。由于RVE模型尺寸较小,本研究认为整个模型温度是相同的,对整个模型施加预定义温度场,以从室温 ↔ 400℃的温度循环为例,施加的温度循环曲线(仅展示了6次循环)如图4所示。

Figure 4. Temperature cycling curve (Only 6 cycles are shown)

4. 温度循环曲线(仅展示6次循环)

3. SiCp/Al材料微观结构损伤及仿真分析

3.1. 热循环温度与次数对材料内部应力的影响

图5为SiCp/Al材料RVE在30℃ ↔ 200℃和30℃ ↔ 400℃热循环过程中的基体等效应力,由于基体与SiC颗粒的热物理性能差异,在经历变温载荷时RVE内部由于变形不协调而产生热错配应力。可见,RVE处于热循环温度峰值时其基体热应力最大,且30℃ ↔ 200℃热循环产生的基体应力水平明显低于30℃ ↔ 400℃热循环(图5(b)图5(e))。当RVE温度降至热循环初始温度30℃时,RVE基体存在高水平的残余热应力,表明RVE在经历高温阶段时发生了基体的局部塑性变形,且热循环温度越高,基体的残余热应力水平越高(图5(c)图5(f))。因此,在热循环过程中SiCp/Al材料内部产生的热错配应力与残余应力是导致其产生微观结构损伤的主要驱动力。

Figure 5. Equivalent stress of the RVE matrix in thermal cycling

5. 热循环中RVE基体等效应力

图6为SiCp/Al材料RVE在30℃ ↔ 200℃和30℃ ↔ 400℃热循环过程中的损伤历程,Scalar stiffness damage (SDEG)用于衡量RVE组元的疲劳损伤程度,当SDEG = 1时代表材料失效。可见,在热错配应力与残余应力的驱动下,RVE内部首先发生的损伤模式均为界面开裂,随着热循环次数的增加,RVE的基体因累计塑性应变损伤而发生材料失效,相比之下,30℃ ↔ 400℃热循环下发生界面开裂及基体失效的区域更多,损伤历程更快。由RVE在30℃ ↔ 200℃热循环过程中的损伤历程可知,界面开裂、基体失效以及基体塑性变形使得在后续热循环过程中RVE内部的热应力得以释放,减缓了RVE组元的损伤历程。这使得SiCp/Al材料微观结构损伤在30℃ ↔ 200℃热循环后期能维持在一定水平,保持了材料力学性能的稳定,这也与热循环试验观察及力学测试所呈现的结果一致。RVE在30℃↔400℃热循环下产生的热错配应力与残余应力水平较高,局部的界面开裂和基体失效不足以释放大部分应力,因此在后续热循环过程中,RVE基体失效与界面开裂进一步加剧并相互贯通,在SiCp/Al材料热循环试验中表现为界面开裂和基体失效对材料构成了微观裂纹。

3.2. 热循环温度与次数对摩擦面热裂纹萌生与扩展的影响

图7表示热循环温度为200℃、300℃、400℃以及循环次数从0~200次下,RVE模型基体热应力随循环次数变化的模型Z轴截面图。从图可知,在热循环中,颗粒尖端区域和间距较小的颗粒之间的区域,

Figure 6. Damage history of RVE during thermal cycling

6. 热循环中RVE损伤历程

基体存在明显应力集中现象,这些产生大应力的区域更容易在热循环中发生基体损伤和裂纹萌生现象。在同一循环次数下,随着循环温度的增加,基体热应力最大值升高,热应力面积增加,基体损伤和裂纹萌生几率增加;在同一循环温度下,随着循环次数的增加,基体热应力面积几乎保持不变,但基体热应力最大值升高,基体损伤和裂纹萌生更容易发生。

Figure 7. Matrix thermal stress under different thermal cycles. (a) Room temperature ↔ 200℃; (b) Room temperature ↔ 300℃; (c) Room temperature ↔ 400℃

7. 不同热循环下的基体热应力。(a) 室温 ↔ 200℃;(b) 室温 ↔ 300℃;(c) 室温 ↔ 400℃

Figure 8. Cumulative plastic strain of the matrix under different thermal cycles. (a) Room temperature ↔200℃; (b) Room temperature ↔ 300℃; (c) Room temperature ↔ 400℃

8. 不同热循环下的基体累积塑性应变。(a) 室温 ↔ 200℃;(b) 室温 ↔ 300℃;(c) 室温 ↔ 400℃

图8所示为三种热循环的基体累积塑性应变随循环次数变化截面图,累积塑性应变为材料热循环中塑性应变的累加,可预测和表征材料损伤和裂纹形成。由图8可知,随着循环次数的增加,基体的损伤逐渐加剧,在颗粒尖端区域和间距较小的颗粒之间的基体由于应力较大,更容易产生材料损伤和微裂纹。同时,在同一循环次数下,随着循环温度的升高,基体损伤明显加剧,产生了更明显的基体微裂纹现象。

在RVE模型中基体和颗粒之间的界面是通过插入粘结单元来实现的,通过粘结单元的SDEG来表示界面的损伤程度,SDEG值由0到1表示单元由开始到完全损伤的过程。图9所示为三种热循环下RVE模型的颗粒–基体界面的SDEG随循环次数变化的截面图。从图9中可以看出,室温−400℃温度热循环的RVE模型产生了明显的界面损伤现象,室温−300℃热循环的RVE模型产生了相对较少的界面损伤的现象,而室温−200℃热循环的RVE模型产生了相对更少的界面损伤,说明随着循环温度的升高,SiCp/A356复合材料RVE模型中颗粒–基体界面的损伤逐渐加剧。

Figure 9. Interface SDEG under different thermal cycles. (a) Room temperature ↔ 200℃; (b) Room temperature ↔ 300℃; (c) Room temperature ↔ 400℃

9. 不同热循环下界面SDEG。(a) 室温 ↔ 200℃;(b) 室温 ↔ 300℃;(c) 室温 ↔ 400℃

综上所述,在同一循环温度下,随着循环次数的增加,在颗粒尖端区域和间距较小的颗粒之间的基体热应力最大值增大,基体塑性应变加剧,更容易产生材料损伤和微裂纹。同时,在同一循环次数下,随着循环温度的升高,基体热应力区面积增加,热应力最大值增大,RVE模型中颗粒–基体界面的损伤逐渐加剧,产生了更明显的基体微裂纹现象。

4. 结论

本文结合SiCp/Al制动盘服役的温度条件,进行了SiCp/Al材料热循环试验的RVE仿真分析,明确了SiCp/Al材料内部微观损伤及摩擦面热裂纹萌生与扩展的成因,阐明了摩擦面热裂纹的形成机制。主要结论如下:

1) SiCp/Al材料通过界面开裂、基体失效以及基体塑性变形的方式释放热应力。SiCp/Al材料在上限温度不高于200℃的热循环时,无明显的基体损伤和界面开裂。SiCp/Al材料在热循环中其内部产生的热错配应力与残余应力是导致材料微观结构损伤的主要驱动力。

2) 热循环中SiCp/A356复合材料颗粒尖端区域和间距较小的颗粒之间的基体受到较大热应力,易在热循环中产生损伤;随着循环次数和循环温度的增加,热错配应力导致基体和界面损伤逐渐加剧,是SiCp/A356制动盘摩擦面热裂纹萌生与扩展的主导因素。

基金项目

中央高校基本科研业务费专项资金(2024JBZY006)资助;国家自然科学基金“面上”资金(52372345)资助。

NOTES

*通讯作者。

参考文献

[1] Sahin, M., Guler, C., Misirli, C., Cetinarslan, C.S. and Eisazadeh, H. (2018) Properties of Al/Sic Metal Matrix Composites. Materials Testing, 60, 647-652.
https://doi.org/10.3139/120.111200
[2] Guler, K.A., Kisasoz, A. and Karaaslan, A. (2011) A Novel Method for Al/Sic Composite Fabrication: Lost Foam Casting. International Journal of Materials Research, 102, 304-308.
https://doi.org/10.3139/146.110476
[3] 杨智勇. 高速客车铝基复合材料制动盘热损伤和结构设计研究[D]: [博士学位论文]. 北京: 北京交通大学, 2008.
[4] Yuan, B., Liao, D., Jiang, W., Deng, H., Li, G. and Gu, J. (2023) Effect of Tool Tilt Angle on Microstructure, Mechanical Properties and Fracture Behavior of Dissimilar Friction Stir Lap Welding Joint of SiCp/ZL101 and ZL101. Journal of Materials Research and Technology, 23, 4642-4662.
https://doi.org/10.1016/j.jmrt.2023.02.094
[5] Yang, C., Yan, H., Chen, Q., Liu, Y. and Zhang, N. (2022) On the Impact of Surface Morphology and Transfer Film on Brake System Performance of High-Capacity Metro Train. Coatings, 12, Article 894.
https://doi.org/10.3390/coatings12070894
[6] Yuan, B., Liao, D., Jiang, W., Deng, H. and Li, G. (2022) Study on Friction and Wear Properties and Mechanism at Different Temperatures of Friction Stir Lap Welding Joint of SiCp/ZL101 and ZL101. Metals, 13, Article 3.
https://doi.org/10.3390/met13010003
[7] Pan, L., Han, J., Yang, Z., Wang, J., Li, X., Li, Z., et al. (2017) Temperature Effects on the Friction and Wear Behaviors of SiCp/A356 Composite against Semi-Metallic Materials. Advances in Materials Science and Engineering, 2017, 1-12.
https://doi.org/10.1155/2017/1824080
[8] Yang, Z., Wang, Z., Wang, J., Li, Z. and Liu, X. (2021) Tribological Properties of SiCp/A356 Composites against Semi-Metallic Materials under Dry and Wet Conditions. Journal of Materials Engineering and Performance, 30, 4148-4161.
https://doi.org/10.1007/s11665-021-05722-3
[9] Yang, Z., Ye, S., Wang, Z., Li, Z. and Li, W. (2023) Experimental and Simulation Study on Braking Noise Characteristics and Noise Reduction Strategies of the Friction Pair between the SiCp/A356 Brake Disc and the Synthetic Pad. Engineering Failure Analysis, 145, Article 107017.
https://doi.org/10.1016/j.engfailanal.2022.107017
[10] Kanit, T., Forest, S., Galliet, I., Mounoury, V. and Jeulin, D. (2003) Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach. International Journal of Solids and Structures, 40, 3647-3679.
https://doi.org/10.1016/s0020-7683(03)00143-4
[11] Xia, Z., Zhang, Y. and Ellyin, F. (2003) A Unified Periodical Boundary Conditions for Representative Volume Elements of Composites and Applications. International Journal of Solids and Structures, 40, 1907-1921.
https://doi.org/10.1016/s0020-7683(03)00024-6
[12] Kouznetsova, V., Geers, M.G.D. and Brekelmans, W.A.M. (2002) Multi-Scale Constitutive Modelling of Heterogeneous Materials with a Gradient-Enhanced Computational Homogenization Scheme. International Journal for Numerical Methods in Engineering, 54, 1235-1260.
https://doi.org/10.1002/nme.541
[13] Gao, M., Guo, E., Chen, Z., Kang, H. and Wang, T. (2023) Revealing the Role of Micropore Defects in Tensile Deformation of a B4Cp/Al Composite Using an Actual Three-Dimensional Model. Journal of Materials Research and Technology, 22, 3146-3155.
https://doi.org/10.1016/j.jmrt.2022.12.145
[14] Liu, B., Wang, Y. and Li, C. (2022) Simulation of Microscopic Interface Damage of Zrb2 Based Ceramics Based on Cohesive Zone Model. Mechanics of Advanced Materials and Structures, 30, 1417-1425.
https://doi.org/10.1080/15376494.2022.2033368
[15] Palizvan, M., Sadr, M.H. and Tahaye Abadi, M. (2020) Effect of Interface Properties on Micromechanical Damage Behavior of Fiber Reinforced Composites. Materials Today Communications, 23, Article 100856.
https://doi.org/10.1016/j.mtcomm.2019.100856
[16] Zhang, J.F., Zhang, X.X., Wang, Q.Z., Xiao, B.L. and Ma, Z.Y. (2018) Simulations of Deformation and Damage Processes of SiCp/Al Composites during Tension. Journal of Materials Science & Technology, 34, 627-634.
https://doi.org/10.1016/j.jmst.2017.09.005
[17] Bieniaś, J., Dębski, H., Surowska, B. and Sadowski, T. (2012) Analysis of Microstructure Damage in Carbon/Epoxy Composites Using Fem. Computational Materials Science, 64, 168-172.
https://doi.org/10.1016/j.commatsci.2012.03.033
[18] Ma, S., Zhang, X., Chen, T. and Wang, X. (2020) Microstructure-Based Numerical Simulation of the Mechanical Properties and Fracture of a Ti-Al3Ti Core-Shell Structured Particulate Reinforced A356 Composite. Materials & Design, 191, Article 108685.
https://doi.org/10.1016/j.matdes.2020.108685
[19] Bargmann, S., Klusemann, B., Markmann, J., Schnabel, J.E., Schneider, K., Soyarslan, C., et al. (2018) Generation of 3D Representative Volume Elements for Heterogeneous Materials: A Review. Progress in Materials Science, 96, 322-384.
https://doi.org/10.1016/j.pmatsci.2018.02.003
[20] Omairey, S.L., Dunning, P.D. and Sriramula, S. (2018) Development of an ABAQUS Plugin Tool for Periodic RVE Homogenisation. Engineering with Computers, 35, 567-577.
https://doi.org/10.1007/s00366-018-0616-4
[21] Raju, B., Hiremath, S.R. and Roy Mahapatra, D. (2018) A Review of Micromechanics Based Models for Effective Elastic Properties of Reinforced Polymer Matrix Composites. Composite Structures, 204, 607-619.
https://doi.org/10.1016/j.compstruct.2018.07.125
[22] Zhang, J., Ouyang, Q., Guo, Q., Li, Z., Fan, G., Su, Y., et al. (2016) 3D Microstructure-Based Finite Element Modeling of Deformation and Fracture of SiCp/Al Composites. Composites Science and Technology, 123, 1-9.
https://doi.org/10.1016/j.compscitech.2015.11.014
[23] 耿昆, 张杰, 张荻. 使役条件下SiCp/Al复合材料的建模拟实[J]. 航空制造技术, 2017, 60(17): 66-74.
[24] Zhu, H., Lian, S., Jin, M., Wang, Y., Yang, S., Lu, Q., et al. (2023) Review of Research on the Influence of Vibration and Thermal Fatigue Crack of Brake Disc on Rail Vehicles. Engineering Failure Analysis, 153, Article 107603.
https://doi.org/10.1016/j.engfailanal.2023.107603
[25] Böhm, H.J. (2011) Continuum Micromechanics of Materials. Institut für Leichtbau und Biomechanik.
[26] Tian, W., Qi, L., Chao, X., Liang, J. and Fu, M. (2019) Periodic Boundary Condition and Its Numerical Implementation Algorithm for the Evaluation of Effective Mechanical Properties of the Composites with Complicated Micro-Structures. Composites Part B: Engineering, 162, 1-10.
https://doi.org/10.1016/j.compositesb.2018.10.053
[27] Nguyen, V.-D., Béchet, E., Geuzaine, C. and Noels, L. (2012) Imposing Periodic Boundary Condition on Arbitrary Meshes by Polynomial Interpolation. Computational Materials Science, 55, 390-406.
https://doi.org/10.1016/j.commatsci.2011.10.017