[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[2]
|
Schlam, I. and Swain, S.M. (2021) HER2-Positive Breast Cancer and Tyrosine Kinase Inhibitors: The Time Is Now. npj Breast Cancer, 7, Article No. 56. https://doi.org/10.1038/s41523-021-00265-1
|
[3]
|
Slamon, D.J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., et al. (2001) Use of Chemotherapy Plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. New England Journal of Medicine, 344, 783-792. https://doi.org/10.1056/nejm200103153441101
|
[4]
|
Routy, B., Le Chatelier, E., Derosa, L., et al. (2018) Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science, 359, 91-97.
|
[5]
|
Gopalakrishnan, V., Spencer, C.N., Nezi, L., et al. (2018) Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science, 359, 97-103.
|
[6]
|
Goedert, J.J., Jones, G., Hua, X., Xu, X., Yu, G., Flores, R., et al. (2015) Investigation of the Association between the Fecal Microbiota and Breast Cancer in Postmenopausal Women: A Population-Based Case-Control Pilot Study. JNCI: Journal of the National Cancer Institute, 107, djv147. https://doi.org/10.1093/jnci/djv147
|
[7]
|
Bobin-Dubigeon, C., Luu, H.T., Leuillet, S., Lavergne, S.N., Carton, T., Le Vacon, F., et al. (2021) Faecal Microbiota Composition Varies between Patients with Breast Cancer and Healthy Women: A Comparative Case-Control Study. Nutrients, 13, Article 2705. https://doi.org/10.3390/nu13082705
|
[8]
|
Aarnoutse, R., Hillege, L.E., Ziemons, J., De Vos-Geelen, J., de Boer, M., Aerts, E.M.E.R., et al. (2021) Intestinal Microbiota in Postmenopausal Breast Cancer Patients and Controls. Cancers, 13, Article 6200. https://doi.org/10.3390/cancers13246200
|
[9]
|
Guan, X., Ma, F., Sun, X., Li, C., Li, L., Liang, F., et al. (2020) Gut Microbiota Profiling in Patients with HER2-Negative Metastatic Breast Cancer Receiving Metronomic Chemotherapy of Capecitabine Compared to Those under Conventional Dosage. Frontiers in Oncology, 10, Article 902. https://doi.org/10.3389/fonc.2020.00902
|
[10]
|
Fernández, M.F., Reina-Pérez, I., Astorga, J.M., Rodríguez-Carrillo, A., Plaza-Díaz, J. and Fontana, L. (2018) Breast Cancer and Its Relationship with the Microbiota. International Journal of Environmental Research and Public Health, 15, Article 1747. https://doi.org/10.3390/ijerph15081747
|
[11]
|
Zhu, J., Liao, M., Yao, Z., Liang, W., Li, Q., Liu, J., et al. (2018) Breast Cancer in Postmenopausal Women Is Associated with an Altered Gut Metagenome. Microbiome, 6, Article No. 136. https://doi.org/10.1186/s40168-018-0515-3
|
[12]
|
Wu, A.H., Tseng, C., Vigen, C., Yu, Y., Cozen, W., Garcia, A.A., et al. (2020) Gut Microbiome Associations with Breast Cancer Risk Factors and Tumor Characteristics: A Pilot Study. Breast Cancer Research and Treatment, 182, 451-463. https://doi.org/10.1007/s10549-020-05702-6
|
[13]
|
Yang, P., Wang, Z., Peng, Q., Lian, W. and Chen, D. (2021) Comparison of the Gut Microbiota in Patients with Benign and Malignant Breast Tumors: A Pilot Study. Evolutionary Bioinformatics, 17, 1-10. https://doi.org/10.1177/11769343211057573
|
[14]
|
Mccarron, A.J., Armstrong, C., Glynn, G., Millar, B.C., Rooney, P.J., Goldsmith, C.E., et al. (2012) Antibacterial Effects on Acinetobacter Species of Commonly Employed Antineoplastic Agents Used in the Treatment of Haematological Malignancies: An in Vitro Laboratory Evaluation. British Journal of Biomedical Science, 69, 14-17. https://doi.org/10.1080/09674845.2012.11669916
|
[15]
|
Lehouritis, P., Cummins, J., Stanton, M., Murphy, C.T., McCarthy, F.O., Reid, G., et al. (2015) Local Bacteria Affect the Efficacy of Chemotherapeutic Drugs. Scientific Reports, 5, Article No. 14554. https://doi.org/10.1038/srep14554
|
[16]
|
Yang, J., Liu, K., Qu, J. and Wang, X. (2013) The Changes Induced by Cyclophosphamide in Intestinal Barrier and Microflora in Mice. European Journal of Pharmacology, 714, 120-124. https://doi.org/10.1016/j.ejphar.2013.06.006
|
[17]
|
Fijlstra, M., Ferdous, M., Koning, A.M., Rings, E.H.H.M., Harmsen, H.J.M. and Tissing, W.J.E. (2014) Substantial Decreases in the Number and Diversity of Microbiota during Chemotherapy-Induced Gastrointestinal Mucositis in a Rat Model. Supportive Care in Cancer, 23, 1513-1522. https://doi.org/10.1007/s00520-014-2487-6
|
[18]
|
Chiba, A., Bawaneh, A., Velazquez, C., Clear, K.Y.J., Wilson, A.S., Howard-McNatt, M., et al. (2020) Neoadjuvant Chemotherapy Shifts Breast Tumor Microbiota Populations to Regulate Drug Responsiveness and the Development of Metastasis. Molecular Cancer Research, 18, 130-139. https://doi.org/10.1158/1541-7786.mcr-19-0451
|
[19]
|
Hussein, M.H., Schneider, E.K., Elliott, A.G., Han, M., Reyes-Ortega, F., Morris, F., et al. (2017) From Breast Cancer to Antimicrobial: Combating Extremely Resistant Gram-Negative “Superbugs” Using Novel Combinations of Polymyxin B with Selective Estrogen Receptor Modulators. Microbial Drug Resistance, 23, 640-650. https://doi.org/10.1089/mdr.2016.0196
|
[20]
|
Scott, S.A., Spencer, C.T., O’Reilly, M.C., Brown, K.A., Lavieri, R.R., Cho, C., et al. (2014) Discovery of Desketoraloxifene Analogues as Inhibitors of Mammalian, Pseudomonas aeruginosa, and NAPE Phospholipase D Enzymes. ACS Chemical Biology, 10, 421-432. https://doi.org/10.1021/cb500828m
|
[21]
|
Luxo, C., Jurado, A.S., Custódio, J.B.A. and Madeira, V.M.C. (2001) Toxic Effects of Tamoxifen on the Growth and Respiratory Activity of Bacillus stearothermophilus. Toxicology in Vitro, 15, 303-305. https://doi.org/10.1016/s0887-2333(01)00024-8
|
[22]
|
An, L., Wuri, J., Zheng, Z., Li, W. and Yan, T. (2021) Microbiota Modulate Doxorubicin induced Cardiotoxicity. European Journal of Pharmaceutical Sciences, 166, Article 105977. https://doi.org/10.1016/j.ejps.2021.105977
|
[23]
|
Sheahan, B.J., Theriot, C.M., Cortes, J.E. and Dekaney, C.M. (2022) Prolonged Oral Antimicrobial Administration Prevents Doxorubicin-Induced Loss of Active Intestinal Stem Cells. Gut Microbes, 14, Article 2018898. https://doi.org/10.1080/19490976.2021.2018898
|
[24]
|
Ramakrishna, C., Corleto, J., Ruegger, P.M., Logan, G.D., Peacock, B.B., Mendonca, S., et al. (2019) Dominant Role of the Gut Microbiota in Chemotherapy Induced Neuropathic Pain. Scientific Reports, 9, Article No. 20324. https://doi.org/10.1038/s41598-019-56832-x
|
[25]
|
Frank, M., Hennenberg, E.M., Eyking, A., Rünzi, M., Gerken, G., Scott, P., et al. (2015) TLR Signaling Modulates Side Effects of Anticancer Therapy in the Small Intestine. The Journal of Immunology, 194, 1983-1995. https://doi.org/10.4049/jimmunol.1402481
|
[26]
|
Motoori, M., Yano, M., Miyata, H., Sugimura, K., Saito, T., Omori, T., et al. (2017) Randomized Study of the Effect of Synbiotics during Neoadjuvant Chemotherapy on Adverse Events in Esophageal Cancer Patients. Clinical Nutrition, 36, 93-99. https://doi.org/10.1016/j.clnu.2015.11.008
|
[27]
|
Cuozzo, M., Castelli, V., Avagliano, C., Cimini, A., d’Angelo, M., Cristiano, C., et al. (2021) Effects of Chronic Oral Probiotic Treatment in Paclitaxel-Induced Neuropathic Pain. Biomedicines, 9, Article 346. https://doi.org/10.3390/biomedicines9040346
|
[28]
|
Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillère, R., Hannani, D., et al. (2013) The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 342, 971-976. https://doi.org/10.1126/science.1240537
|
[29]
|
Daillère, R., Vétizou, M., Waldschmitt, N., Yamazaki, T., Isnard, C., Poirier-Colame, V., et al. (2016) Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity, 45, 931-943. https://doi.org/10.1016/j.immuni.2016.09.009
|
[30]
|
Fluckiger, A., Daillère, R., Sassi, M., et al. (2020) Cross-Reactivity between Tumor MHC Class I-Restricted Antigens and an Entero-Coccal Bacteriophage. Science, 369, 936-942.
|
[31]
|
Bianchini, G. and Gianni, L. (2014) The Immune System and Response to HER2-Targeted Treatment in Breast Cancer. The Lancet Oncology, 15, e58-e68. https://doi.org/10.1016/s1470-2045(13)70477-7
|
[32]
|
Di Modica, M., Gargari, G., Regondi, V., Bonizzi, A., Arioli, S., Belmonte, B., et al. (2021) Gut Microbiota Condition the Therapeutic Efficacy of Trastuzumab in HER2-Positive Breast Cancer. Cancer Research, 81, 2195-2206. https://doi.org/10.1158/0008-5472.can-20-1659
|
[33]
|
Wang, Y., Wiesnoski, D.H., Helmink, B.A., Gopalakrishnan, V., Choi, K., DuPont, H.L., et al. (2019) Author Correction: Fecal Microbiota Transplantation for Refractory Immune Checkpoint Inhibitor-Associated Colitis. Nature Medicine, 25, Article 188. https://doi.org/10.1038/s41591-018-0305-2
|
[34]
|
Baruch, E.N., Youngster, I., Ben-Betzalel, G., Ortenberg, R., Lahat, A., Katz, L., et al. (2021) Fecal Microbiota Transplant Promotes Response in Immunotherapy-Refractory Melanoma Patients. Science, 371, 602-609. https://doi.org/10.1126/science.abb5920
|
[35]
|
Davar, D., Dzutsev, A.K., McCulloch, J.A., Rodrigues, R.R., Chauvin, J., Morrison, R.M., et al. (2021) Fecal Microbiota Transplant Overcomes Resistance to Anti-PD-1 Therapy in Melanoma Patients. Science, 371, 595-602. https://doi.org/10.1126/science.abf3363
|
[36]
|
Tanoue, T., Morita, S., Plichta, D.R., Skelly, A.N., Suda, W., Sugiura, Y., et al. (2019) A Defined Commensal Consortium Elicits CD8 T Cells and Anti-Cancer Immunity. Nature, 565, 600-605. https://doi.org/10.1038/s41586-019-0878-z
|
[37]
|
Sivan, A., Corrales, L., Hubert, N., Williams, J.B., Aquino-Michaels, K., Earley, Z.M., et al. (2015) Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti-PD-L1 Efficacy. Science, 350, 1084-1089. https://doi.org/10.1126/science.aac4255
|
[38]
|
Wastyk, H.C., Fragiadakis, G.K., Perelman, D., Dahan, D., Merrill, B.D., Yu, F.B., et al. (2021) Gut-Microbiota-Targeted Diets Modulate Human Immune Status. Cell, 184, 4137-4153.E14. https://doi.org/10.1016/j.cell.2021.06.019
|
[39]
|
Uribe-Herranz, M., Bittinger, K., Rafail, S., Guedan, S., Pierini, S., Tanes, C., et al. (2018) Gut Microbiota Modulates Adoptive Cell Therapy via CD8α Dendritic Cells and IL-12. JCI Insight, 3, e94952. https://doi.org/10.1172/jci.insight.94952
|