无创神经调控在偏头痛治疗中的研究进展
Research Progress of Non-Invasive Neuromodulation in Migraine Treatment
摘要: 偏头痛是常见的致残性神经系统疾病,典型特征为反复发作并伴有相关伴随症状,病因不明,药物治疗仍是最常见的治疗方法。目前急性期和预防性用药均存在诸多局限,因此兼具有效性和副作用轻微的无创神经调控愈发受到关注。本文主要综述了经颅磁刺激、经皮眶上神经刺激、无创迷走神经刺激、远程电神经调节、经颅直流电刺激、经皮枕神经电刺激、枕–三叉神经联合电刺激、前庭神经刺激、经皮乳突电刺激、无创脉冲射频等无创神经调控技术在偏头痛治疗中的作用,以期为偏头痛的治疗提供更多选择。
Abstract: Migraine is a common disabling neurological disease characterized by recurrent attacks with associated symptoms and unknown etiology. Drug therapy is still the most common treatment. At present, both acute and preventive medication have many limitations. Therefore, non-invasive neuromodulation, which is both effective and has mild side effects, has received increasing attention. This article mainly reviews the roles of non-invasive neuromodulation techniques such as transcranial magnetic stimulation, transcutaneous supraorbital nerve stimulation, non-invasive vagus nerve stimulation, remote electrical neuromodulation, percutaneous mastoid electrical stimulator, transcranial direct current electrical stimulation, transcutaneous occipital nerve stimulation, external combined occipital and trigeminal neurostimulation, caloric vestibular stimulation, non-invasive pulsed radio frequency in the treatment of migraine, in order to provide more options for the treatment of migraine.
文章引用:宁露, 谭戈. 无创神经调控在偏头痛治疗中的研究进展[J]. 临床医学进展, 2025, 15(6): 1149-1158. https://doi.org/10.12677/acm.2025.1561836

1. 引言

偏头痛是临床上常见的原发性头痛疾病,以发作性、中重度、搏动样头痛为主要表现,常伴有恶心、呕吐、畏光、畏声等症状[1]。根据2021年全球疾病负担研究显示,偏头痛影响了全球约15.2%的人口,是全球十大主要致残原因之一,高频发作及偏头痛慢性化严重影响患者日常生活质量,给社会带来了沉重的经济负担[2] [3]。偏头痛发病机制尚不明确,可能的机制有:血管学说、皮层扩散性抑制、三叉神经血管学说、视网膜–丘脑–皮质机制、炎症介质学说、基因遗传学说等[4]

偏头痛治疗包括药物治疗及非药物治疗,药物治疗仍是最常见的治疗方法,分为缓解或解除头痛及相关伴随症状的急性期治疗和减少头痛急性发作的预防性治疗。急性期治疗药物包括非甾体抗炎药、对乙酰氨基酚、含咖啡因复方制剂、曲普坦类、麦角胺及其衍生物、地坦类、吉泮类等[5] [6]。预防性治疗药物包括:氟桂利嗪、托吡酯、丙戊酸钠、美托洛尔、普瑞巴林、阿米替林、吉泮类、A型肉毒素、降钙素基因相关肽单克隆抗体等[5] [6]。非药物治疗包括针灸、无创神经调节、行为疗法、神经阻滞等[7]-[10]

无论是急性期治疗或预防性治疗,药物治疗都存在诸多局限,如药物治疗无效、依从性差、存在药物使用禁忌症、无法耐受药物治疗反应、急性期镇痛药物滥用倾向等。考虑到药物治疗的诸多问题,无创神经调节技术受到越来越多的关注,目前临床上已对多种无创神经调节技术进行了研究。本文主要在PubMed、Web of Science等数据库进行检索,纳入了近15年无创神经调节治疗偏头痛的临床研究,优先纳入随机对照试验、前瞻性研究及Meta分析,排除了病例报告、动物试验等,现将依次进行总结。

2. 经颅磁刺激

2.1. 装置简介及作用机制

经颅磁刺激(Transcranial Magnetic Stimulation, TMS)是一种非侵入性神经调控技术,将外部磁脉冲施加到头皮,在大脑皮层产生电流,使神经组织去极化产生动作电位,进而影响皮质兴奋性及神经元网络[11]。TMS有多种模式,在偏头痛治疗以单脉冲经颅磁刺激(single-pulse Transcranial Magnetic Stimulation, sTMS)、重复经颅磁刺激(repetitive Transcranial Magnetic Stimulation, rTMS)为主,前者作用部位为枕叶,后者作用部位为初级运动皮层(M1)或前额叶背外侧(DLPFC)。目前机制不明,sTMS可能的机制是抑制皮质扩散性抑制、调节丘脑皮质信号传导;rTMS可能的机制为调节神经元兴奋性及神经递质的释放[12] [13]

2.2. 临床效果

2.2.1. sTMS的临床效果

急性治疗根据需要可进行3次脉冲,如果每15分钟没有缓解,可以重复另外两次。Richard等人进行了一项多中心、随机、双盲、平行、安慰剂对照试验,发现sTMS在先兆偏头痛患者的治疗中有效,sTMS组2小时无痛反应率高于安慰剂组(39% vs 22%, p = 0.0179),这种优势可持续至治疗后24小时和48小时[14]。在一项发作性偏头痛(Episodic Migraine, EM)及慢性偏头痛(Chronic Migraine, CM)患者急性治疗的研究中发现,62%的患者疼痛及恶心、畏光、畏声等伴随症状有改善[15]

预防性治疗方案各研究存在差异。Amaal等人对头痛天数在4~25天的偏头痛患者采用每日2次,每次4个连续脉冲的治疗方案,予以3个月的预防性治疗后发现46%的患者达到了50%的缓解率,患者头痛天数、急性用药天数、HIT-6评分均有下降[16]。在2022年一项为期12个月的前瞻性研究中,对难治性偏头痛患者研究采用滴定治疗方案,从每天2次,每次2个连续脉冲,逐渐增加至每天3次,每次6个连续脉冲,治疗3月后有60%的患者对治疗有反应,治疗12月后有45%的患者对治疗持续有反应,在每月头痛天数及偏头痛天数、HIT-6评分、药物过度使用性头痛(Medication-overuse headache, MOH)患者比例均有较为显著的下降[17]。但纳入人群的不同使其无法评估哪种方案疗效更佳,需要进一步的随机对照研究。在青少年偏头痛患者中sTMS也是一种可行的、耐受性良好的治疗方法[18]

2.2.2. rTMS的临床效果

rTMS研究主要集中在预防性治疗,刺激频率为10 Hz、20 Hz或67 Hz,治疗频率为隔日一次或三次,每次脉冲数400~2000不等,运动阈值70%~100%不等,疗程亦未统一,通常在2周及以上,临床效果不尽相同。在一项以M1区为治疗靶点的双盲随机对照试验中,治疗1月后,rTMS组在头痛频率及严重程度降低>50%中有更好的表现,分别为78.7% vs 33.3% (p = 0.0001)、76.6% vs 27.1% (p = 0.0001),并且在CM的患者中改善更明显[19]。而在以DLPFC为治疗靶区的研究中,部分提示rTMS治疗没有获益,部分提示rTMS治疗显著减少了急性药物摄入量和功能障碍[20] [21]。综合现有研究发现,预防性治疗通常采用高频率刺激,有更多的研究证据支持M1区的rTMS预防性治疗偏头痛,而DLPFC区的rTMS有待进一步研究[22] [23]。同时各研究中纳入人群、治疗强度、频率、靶区的多项差异使其难以评估最佳的治疗方案,因此最合适的脑区以及刺激频率、强度、疗程等仍有待进一步研究明确,以期获得更准确更精细的治疗方案。

2.3. 安全性

TMS总体耐受性良好,部分患者报告了头晕、恶心、耳鸣、感觉异常、头皮不适、偏头痛症状恶化等,无严重不良事件报告,该技术安全性已被广泛认可[15]-[21]

3. 经皮眶上神经刺激

3.1. 装置简介及作用机制

经皮眶上神经刺激(transcutaneous Supraorbital Nerve Stimulation, tSNS)是对前额提供微脉冲电刺激的装置,作用于三叉神经的分支眶上神经和滑车上神经。目前主要有Cefaly和HeadaTerm两种设备。tSNS作用机制尚不清楚,可能是三叉神经疼痛调节和中枢疼痛通路正常化[24]

3.2. 临床效果

在急性期治疗中最佳的治疗时长尚无定论。Denise等人的研究发现予以tSNS治疗1小时,与对照组相比,在治疗后1小时、2小时的平均疼痛强度有显著降低,分别为−59% ± 35% vs −30% ± 31% (p < 0.0001),−50% ± 36% vs −32% ± 37% (p = 0.026) [25]。在前庭性偏头痛患者中予以治疗20分钟后患者眩晕及头痛均有改善,平均改善率分别为61.3%、77.2% [26]。2022年一项研究发现,与对照组相比,进行2小时tSNS治疗后2小时无痛(25.5% vs 18.3%, p = 0.043)、2小时无MBS (最令人烦恼的偏头痛相关症状) (56.4% vs 42.3%, p = 0.001)、2小时疼痛缓解(69.5% vs 55.2%, p = 0.001)、24小时持续无痛(22.8% vs 15.8%, p = 0.039)及疼痛缓解(45.9% vs 34.4%, p = 0.006)均有获益[27]。急性止痛的目的是快速止痛,尽早恢复正常社会能力,研究发现60分钟治疗时间的依从率高于2小时治疗时间[27]。未来应进行不同治疗时间的疗效对比,以期在尽可能短的治疗时间获得最大的获益。

预防性治疗方案各研究基本统一,每天治疗20分钟,疗程通常为3个月。2013年的一项双盲、随机、对照研究证明了其有效性,治疗组每月偏头痛天数减少≥50%的应答率显著高于对照组(38.1% vs 12.1%, p = 0.023),同时每月头痛天数、急性药物使用均有下降[28]。但在CM患者的预防性治疗研究中暂未发现明显的获益[29]。有研究进行了联合治疗的试验,发现在tSNS联合氟桂利嗪预防偏头痛的疗效优于单用tSNS或氟桂利嗪,单用tSNS与单用氟桂利嗪疗效相当[30]

3.3. 安全性

tSNS不良反应轻微,包括局部疼痛、感觉异常、嗜睡、疲劳、刺激后头痛、局部皮肤过敏[31]

4. 无创迷走神经刺激

4.1. 装置简介及作用机制

无创迷走神经刺激(non-invasive Vagus Nerve Stimulation, nVNS)是一种小型设备,它将电刺激应用于颈部的前外侧皮肤或耳部皮肤,覆盖迷走神经下降的区域。主要包括两种装置,gammaCore装置作用于颈部的迷走神经,NEMOS装置作用于耳部迷走神经。可能的机制为迷走神经刺激可以抑制皮质扩散性抑制,具有抗炎特性,可以抑制三叉神经伤害感觉,增强疼痛的中枢下行调节,并调节下丘脑、三叉神经脊髓核、桥脑核、海马旁回和视觉皮层的活动[32]

4.2. 临床效果

对于急性治疗,通常是在头痛发作时立即进行两次刺激,如果需要,在20分钟和2小时再进行两次刺激。Cristina等人进行了一项gammaCore作为急性治疗的随机、双盲、安慰剂对照研究,尽管它没有达到其主要终点(2小时无疼痛),但在各种次要终点(包括30和60分钟无疼痛)中nVNS组都有显著的统计学差异[33]。在后来PRESTO研究小组发表的一项事后分析表明,nVNS治疗也会导致救援药物使用量的减少,也增加了治疗后2小时出现轻度疼痛或无疼痛的可能性[34]

预防治疗方案根据不同装置方案有所不同,gammaCore为每天三次,每次两次刺激,一次刺激持续2分钟;NEMOS装置为每天总计四小时的治疗。2019年的PREMIUM试验发现,在EM患者中使用gammaCoren治疗与假刺激相比,没有显示出疗效优势,但在对每月依从性 ≥ 67%的患者的后期分析中,nVNS治疗组每月偏头痛天数减少更明显(2.27 vs 1.53, p = 0.043),有先兆患者获益大于无先兆患者[35]。Straube等人使用NEMOS进行CM预防性治疗的随机对照研究,分别予以1 Hz、25 Hz,发现1 Hz治疗组每月头痛天数减少明显大于25 Hz治疗组(−7.0 ± 4.6 vs −3.3 ± 5.4, p = 0.035),头痛天数减少≥50%分别为29.4%、13.3% [36]。目前nVNS在偏头痛的治疗上还有一定的争议,未来需要更多高质量的RCT研究进一步证明其疗效。

4.3. 安全性

nVNS具有良好的耐受性,不良反应包括颈部僵硬、嘴唇或面部下垂、肩部不适、耳鸣、声音沙哑、轻度意识模糊和头晕[33]-[36]

5. 远程电神经调节

5.1. 装置简介及作用机制

远程电神经调节(Remote Electrical Neuromodulation, REN)是无线、可穿戴、电池供电的刺激装置,由智能手机软件应用程序控制,应用于外侧三角肌腹部和肱三头肌之间的外侧上臂;通过诱导条件性疼痛调节(CPM)来调节疼痛[37]

5.2. 临床效果

急性治疗最佳治疗持续时间为45分钟。2017年发表的一项前瞻性、双盲、随机、交叉、假对照试验对71名患者进行治疗的研究,发现64%的偏头痛患者使用REN减少了50%的疼痛,而使用假REN的患者只有26%,早期应用效果更佳[38]。在David等人的研究中,对发病1小时内的EM患者进行REN治疗,与假刺激比较,2小时疼痛缓解应答率为66.7% vs 38.8% (p < 0.0001)、无痛应答率为37.4% vs 18.4% (p = 0.003),2小时MBS缓解应答率46.3% vs 22.2% (p = 0.0008);积极治疗的疼痛缓解和无痛优势持续到治疗后48小时[39]。并且在青少年和孕妇的治疗中同样有效且安全[40]-[42]

预防治疗隔天一次,每次45分钟。在一项前瞻性、随机、双盲、安慰剂对照、多中心试验中显示,REN在每月平均偏头痛天数减少及减少镇痛药物使用上优于安慰剂组,在进行EM和CM亚组分析时,显著性依然存在[43]。但目前关于预防性治疗的研究较少,治疗频率也待进一步研究优化。

5.3. 安全性

REN的不良事件并不常见,部分报道了温暖感、手臂或手麻木、瘙痒、疼痛、刺痛和肌肉痉挛,均轻微可逆[38]-[43]

6. 其他无创神经调控

6.1. 经皮乳突电刺激

经皮乳突电刺激(Percutaneous Mastoid Electrical Stimulator, PMES)通过粘连在双侧乳突的电极片对小脑顶核区域进行电刺激治疗。1998年Reis等人首次证实了顶核刺激具有神经保护功能,其可以引起梗死期去极化波的持久抑制,保护大鼠免受脑缺血[44] [45]。皮质扩散性抑制与去极化波具有共同的过程特征,无创经皮乳突电刺激器可以模拟实验性顶核刺激以发挥调控作用[46]。PMES研究集中在预防性治疗,治疗方案通常是每天45分钟的双侧刺激。我国有研究者进行了一项多中心、随机、双盲和假对照试验,证实PMES治疗在偏头痛预防中有良好的疗效,研究发现PMES组在治疗3月后偏头痛天数的减少明显大于安慰剂组(−71.3% vs −14.4%, p < 0.001),偏头痛天数50%的缓解率显著高于安慰剂组(82.5% vs. 17.5%, p < 0.001),在PMES组中,60%的患者在第三个月偏头痛天数减少≥75%,35%的患者在第三个月没有偏头痛发作[47]。在我国一项针对EM患者的头对头研究中发现,经皮乳突电刺激和经皮眶上神经刺激均能有效预防偏头痛,其安全性和有效性相当[48]。PMES治疗中未报告严重不良事件,部分可能有皮肤异常感觉等[47] [48]。但目前而言PMES在偏头痛的研究偏少,尚未发现在慢性偏头痛的疗效研究以及急性治疗的数据,未来需要进一步的研究,同时确定最佳的治疗方案。

6.2. 经颅直流电刺激

经颅直流电刺激(Transcranial Direct Current Stimulation, tDCS)是通过在头皮放置电极,将微弱的直流电送达大脑来调节大脑皮质的兴奋性。机制可能与调节神经元的放电,影响大脑中神经递质的释放和调节神经可塑性有关,tDCS可以根据刺激电极的极性(阳极或阴极)来增加或降低特定脑区的兴奋性,从而减轻头痛症状[49]。在偏头痛的临床应用集中在预防性治疗,治疗方案为每次20分钟,治疗5~28次不等。在大多数阳极刺激试验中,阳极通常放置在运动皮层区域的上方,阴极位于眶上区域的上方。而在阴极刺激试验中,阴极目标区域是枕骨区域,参考中央或眶上区域。皮质刺激的常见部位包括初级运动皮层(M1)、初级感觉皮层(S1)、DLPFC和视觉皮层(VC) [50]。研究报道右侧M1或S1的阴极tDCS可以降低CM个体的头痛频率、持续时间和强度[51]。一项RCT的荟萃分析评估了针对不同大脑区域tDCS的有效性和安全性,发现具有 M1/VC激活和VC抑制的tDCS可以改善偏头痛症状[50]。tDCS一般安全且耐受性良好,副作用包括头皮瘙痒、刺痛感或轻微不适,但这些副作用都是暂时的[50] [51]。但现有的研究仍有局限性,如患者群体异质性、治疗方案的差异,未来需要更严谨的研究进一步证明其疗效。

6.3. 经皮枕神经电刺激

经皮枕神经电刺激(transcutaneous Occipital Nerve Stimulation, tONS)通过覆盖双侧枕神经的电极发生作用。预防治疗方案为每天一次,每次30分钟,治疗时频率有2 Hz、100 Hz、2或100 Hz。机制存在争议,可能与内源性阿片类药物释放或三叉神经–颈复合体有关。我国一项随机对照研究发现高、中、低频的tONS对无先兆偏头痛病人均有显著疗效,tONS组的50%反应率和头痛程度降低幅度均显著优于假刺激组,不同频率的tONS处理组之间无显著差异。仅一例报告了疼痛,调整刺激强度后不适消退[52]

6.4. 枕–三叉神经联合电刺激

枕–三叉神经联合电刺激(external combined occipital and trigeminal neurostimulation, eCOT-NS)是一种同时刺激枕神经和三叉神经的人体工程学耳机,设备名为Relivion。该设备配备有移动应用程序,患者及医生可以进行远程治疗检测,动态调整治疗方案。eCOT-NS研究集中在急性治疗,每次治疗1小时。Stewart等人的研究发现与安慰剂相比,eCOT-NS在2 h疼痛缓解(60% vs 37%, p < 0.001)、2 h疼痛消失(46% vs 12%, p < 0.001)、2 h MBS症状缓解(47% vs 11%, p < .001)上有更好的表现;Oved等人的研究同样有相同的发现。主要的不良反应有皮肤异常感觉,疼痛、局部皮肤过敏等,均轻微可逆[53] [54]

6.5. 前庭神经刺激

前庭神经刺激(Caloric Vestibular Stimulation, CVS)是一种非侵入性的直流供电设备,由伸入外耳道的耳罩式耳机组成,工作原理是向耳道提供受控的热波形。被用作多种神经系统疾病的临床工具,包括评估脑干功能和前庭功能障碍综合征的诊断。由于偏头痛通路似乎涉及脑干功能障碍区域,CVS被认为是脑干神经调节的可能机制[55] [56]。预防治疗方案为每天进行2次治疗。2017年一项评估了CVS在预防发作性偏头痛中的作用,CVS治疗3个月后,治疗组偏头痛天数明显少于安慰剂组并且急性用药减少和每月疼痛评分也有改善[57]。报道的副作用包括恶心、耳部不适、瘙痒、刺激、耳鸣、头痛增加和视力模糊,但通常耐受性良好[57]

6.6. 无创脉冲射频

无创脉冲射频(Non-invasive pulsed Radio Frequency, NipRF)通过粘连在双侧颈部后部和枕骨结节之间的神经电极片进行枕大神经脉冲射频治疗。可能的机制是内源性阿片类药物增加,使中枢神经系统对疼痛刺激的反应减弱。每次治疗8分钟,总共2次,2次治疗间间隔一周。目前有研究将NipRF用于慢性偏头痛的预防性治疗,比较经皮电极枕大神经脉冲射频治疗和枕大神经阻滞的疗效,发现两组在头痛严重程度和头痛频次均显著降低,枕大神经阻滞下降更多,但两组间差异无统计学意义;主要不良反应是颈部出现轻度红斑。但轻微可逆[58]。但目前NipRF在偏头痛治疗的研究处于起步阶段,未来需要进一步随机、双盲、安慰剂对照研究以证疗效。

7. 总结

目前已有多种非侵入性神经调节装置用于偏头痛的预防和急性治疗,具有有效、无创、操作简单、不良反应小等优势。但无创神经调节相关研究仍存在局限性,如假刺激是否提供了一定治疗作用,是否真正实现双盲;治疗开始时间与头痛发生时间的关系,各研究纳入人群的差异,各亚型占比的差异等使得实际效果有一定的偏差和异质性,最佳的治疗方案需进一步研究。随着越来越多的设备被开发,严格的研究方案仍然是正确评估无创神经调控功效及安全性的优先事项。同时未来的研究也应更关注特殊人群如儿童、青少年、孕产妇、合并其他疾病的人群,使更多群体可以获益。

NOTES

*通讯作者。

参考文献

[1] Headache Classification Committee of the International Headache Society (IHS) (2018) The International Classification of Headache Disorders, 3rd Edition. Cephalalgia, 38, 1-211.
[2] GBD 2021 Nervous System Disorders Collaborators (2024) Global, Regional, and National Burden of Disorders Affecting the Nervous System, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet Neurology, 23, 344-381.
[3] Leonardi, M. and Raggi, A. (2019) A Narrative Review on the Burden of Migraine: When the Burden Is the Impact on People’s Life. The Journal of Headache and Pain, 20, Article No. 41.
https://doi.org/10.1186/s10194-019-0993-0
[4] Dodick, D.W. (2018) Migraine. The Lancet, 391, 1315-1330.
https://doi.org/10.1016/s0140-6736(18)30478-1
[5] Ferrari, M.D., Goadsby, P.J., Burstein, R., Kurth, T., Ayata, C., Charles, A., et al. (2022) Migraine. Nature Reviews Disease Primers, 8, 1-20.
https://doi.org/10.1038/s41572-021-00328-4
[6] 中国医师协会神经内科医师分会, 中国研究型医院学会头痛与感觉障碍专业委员会. 中国偏头痛诊治指南(2022版) [J]. 中国疼痛医学杂志, 2022, 28(12): 881-898.
[7] Guo, W., Cui, H., Zhang, L., Du, R., Yuan, H. and Zheng, S. (2023) Acupuncture for the Treatment of Migraine: An Overview of Systematic Reviews. Current Pain and Headache Reports, 27, 239-257.
https://doi.org/10.1007/s11916-023-01120-7
[8] Amatrudo, G., Kengetter, J., McCrea, S. and Amatrudo, M. (2023) Cognitive Behavioral Therapy for the Management of Episodic Migraine. Current Pain and Headache Reports, 27, 471-477.
https://doi.org/10.1007/s11916-023-01129-y
[9] Starling, A. (2018) Noninvasive Neuromodulation in Migraine and Cluster Headache. Current Opinion in Neurology, 31, 268-273.
https://doi.org/10.1097/wco.0000000000000557
[10] Plato, B.M. and Whitt, M. (2020) Interventional Procedures in Episodic Migraine. Current Pain and Headache Reports, 24, Article No. 75.
https://doi.org/10.1007/s11916-020-00909-0
[11] Barker, A.T. and Shields, K. (2016) Transcranial Magnetic Stimulation: Basic Principles and Clinical Applications in Migraine. Headache: The Journal of Head and Face Pain, 57, 517-524.
https://doi.org/10.1111/head.13002
[12] Andreou, A.P., Holland, P.R., Akerman, S., Summ, O., Fredrick, J. and Goadsby, P.J. (2016) Transcranial Magnetic Stimulation and Potential Cortical and Trigeminothalamic Mechanisms in Migraine. Brain, 139, 2002-2014.
https://doi.org/10.1093/brain/aww118
[13] Lloyd, J.O., Chisholm, K.I., Oehle, B., Jones, M.G., Okine, B.N., AL-Kaisy, A., et al. (2020) Cortical Mechanisms of Single-Pulse Transcranial Magnetic Stimulation in Migraine. Neurotherapeutics, 17, 1973-1987.
https://doi.org/10.1007/s13311-020-00879-6
[14] Lipton, R.B., Dodick, D.W., Silberstein, S.D., Saper, J.R., Aurora, S.K., Pearlman, S.H., et al. (2010) Single-Pulse Transcranial Magnetic Stimulation for Acute Treatment of Migraine with Aura: A Randomised, Double-Blind, Parallel-Group, Sham-Controlled Trial. The Lancet Neurology, 9, 373-380.
https://doi.org/10.1016/s1474-4422(10)70054-5
[15] Bhola, R., Kinsella, E., Giffin, N., Lipscombe, S., Ahmed, F., Weatherall, M., et al. (2015) Single-Pulse Transcranial Magnetic Stimulation (sTMS) for the Acute Treatment of Migraine: Evaluation of Outcome Data for the UK Post Market Pilot Program. The Journal of Headache and Pain, 16, Article No. 535.
https://doi.org/10.1186/s10194-015-0535-3
[16] Starling, A.J., Tepper, S.J., Marmura, M.J., Shamim, E.A., Robbins, M.S., Hindiyeh, N., et al. (2018) A Multicenter, Prospective, Single Arm, Open Label, Observational Study of sTMS for Migraine Prevention (ESPOUSE Study). Cephalalgia, 38, 1038-1048.
https://doi.org/10.1177/0333102418762525
[17] Lloyd, J.O., Hill, B., Murphy, M., Al-Kaisy, A., Andreou, A.P. and Lambru, G. (2022) Single-Pulse Transcranial Magnetic Stimulation for the Preventive Treatment of Difficult-to-Treat Migraine: A 12-Month Prospective Analysis. The Journal of Headache and Pain, 23, Article No. 63.
https://doi.org/10.1186/s10194-022-01428-6
[18] Irwin, S.L., Qubty, W., Allen, I.E., Patniyot, I., Goadsby, P.J. and Gelfand, A.A. (2018) Transcranial Magnetic Stimulation for Migraine Prevention in Adolescents: A Pilot Open‐Label Study. Headache: The Journal of Head and Face Pain, 58, 724-731.
https://doi.org/10.1111/head.13284
[19] Misra, U.K., Kalita, J. and Bhoi, S.K. (2013) High-Rate Repetitive Transcranial Magnetic Stimulation in Migraine Prophylaxis: A Randomized, Placebo-Controlled Study. Journal of Neurology, 260, 2793-2801.
https://doi.org/10.1007/s00415-013-7072-2
[20] Granato, A., Fantini, J., Monti, F., Furlanis, G., Musho Ilbeh, S., Semenic, M., et al. (2019) Dramatic Placebo Effect of High Frequency Repetitive TMS in Treatment of Chronic Migraine and Medication Overuse Headache. Journal of Clinical Neuroscience, 60, 96-100.
https://doi.org/10.1016/j.jocn.2018.09.021
[21] Mohamad Safiai, N.I., Mohamad, N.A., Basri, H., Inche Mat, L.N., Hoo, F.K., Abdul Rashid, A.M., et al. (2022) High-frequency Repetitive Transcranial Magnetic Stimulation at Dorsolateral Prefrontal Cortex for Migraine Prevention: A Systematic Review and Meta-Analysis. Cephalalgia, 42, 1071-1085.
https://doi.org/10.1177/03331024221092423
[22] Cheng, Y., Zeng, B., Hung, C., Su, K., Wu, Y., Tu, Y., et al. (2022) Effectiveness and Acceptability of Noninvasive Brain and Nerve Stimulation Techniques for Migraine Prophylaxis: A Network Meta-Analysis of Randomized Controlled Trials. The Journal of Headache and Pain, 23, Article No. 28.
https://doi.org/10.1186/s10194-022-01401-3
[23] Leung, A., Shirvalkar, P., Chen, R., Kuluva, J., Vaninetti, M., Bermudes, R., et al. (2020) Transcranial Magnetic Stimulation for Pain, Headache, and Comorbid Depression: INS-NANS Expert Consensus Panel Review and Recommendation. Neuromodulation: Technology at the Neural Interface, 23, 267-290.
https://doi.org/10.1111/ner.13094
[24] Lauritsen, C.G. and Silberstein, S.D. (2018) Rationale for Electrical Parameter Determination in External Trigeminal Nerve Stimulation (eTNS) for Migraine: A Narrative Review. Cephalalgia, 39, 750-760.
https://doi.org/10.1177/0333102418796781
[25] Chou, D.E., Shnayderman Yugrakh, M., Winegarner, D., Rowe, V., Kuruvilla, D. and Schoenen, J. (2018) Acute Migraine Therapy with External Trigeminal Neurostimulation (ACME): A Randomized Controlled Trial. Cephalalgia, 39, 3-14.
https://doi.org/10.1177/0333102418811573
[26] Beh, S.C. (2020) External Trigeminal Nerve Stimulation: Potential Rescue Treatment for Acute Vestibular Migraine. Journal of the Neurological Sciences, 408, Article ID: 116550.
https://doi.org/10.1016/j.jns.2019.116550
[27] Kuruvilla, D.E., Mann, J.I., Tepper, S.J., Starling, A.J., Panza, G. and Johnson, M.A.L. (2022) Phase 3 Randomized, Double-Blind, Sham-Controlled Trial of eTNS for the Acute Treatment of Migraine (Team). Scientific Reports, 12, Article No. 5110.
https://doi.org/10.1038/s41598-022-09071-6
[28] Meng, F. and Zhang, J. (2013) Migraine Prevention with a Supraorbital Transcutaneous Stimulator: A Randomized Controlled Trial. Neurology, 81, 1102-1103.
https://doi.org/10.1212/01.wnl.0000435063.25330.55
[29] Ordás, C.M., Cuadrado, M.L., Pareja, J.A., de-las-Casas-Cámara, G., Gómez-Vicente, L., Torres-Gaona, G., et al. (2019) Transcutaneous Supraorbital Stimulation as a Preventive Treatment for Chronic Migraine: A Prospective, Open-Label Study. Pain Medicine, 21, 415-422.
https://doi.org/10.1093/pm/pnz119
[30] Jiang, L., Yuan, D.L., Li, M., Liu, C., Liu, Q., Zhang, Y., et al. (2018) Combination of Flunarizine and Transcutaneous Supraorbital Neurostimulation Improves Migraine Prophylaxis. Acta Neurologica Scandinavica, 139, 276-283.
https://doi.org/10.1111/ane.13050
[31] Magis, D., Sava, S., d’Elia, T.S., Baschi, R. and Schoenen, J. (2013) Safety and Patients’ Satisfaction of Transcutaneous Supraorbital Neurostimulation (tSNS) with the Cefaly® Device in Headache Treatment: A Survey of 2313 Headache Sufferers in the General Population. The Journal of Headache and Pain, 14, Article No. 95.
https://doi.org/10.1186/1129-2377-14-95
[32] Morais, A., Liu, T., Qin, T., Sadhegian, H., Ay, I., Yagmur, D., et al. (2020) Vagus Nerve Stimulation Inhibits Cortical Spreading Depression Exclusively through Central Mechanisms. Pain, 161, 1661-1669.
https://doi.org/10.1097/j.pain.0000000000001856
[33] Tassorelli, C., Grazzi, L., de Tommaso, M., et al. (2018) Noninvasive Vagus Nerve Stimulation as Acute Therapy for Migraine. Neurology, 91, e364-e373.
[34] Grazzi, L., Tassorelli, C., de Tommaso, M., Pierangeli, G., Martelletti, P., Rainero, I., et al. (2019) Correction to: Practical and Clinical Utility of Non-Invasive Vagus Nerve Stimulation (nVNS) for the Acute Treatment of Migraine: A Post Hoc Analysis of the Randomized, Sham-Controlled, Double-Blind PRESTO Trial. The Journal of Headache and Pain, 20, Article No. 1.
https://doi.org/10.1186/s10194-018-0948-x
[35] Diener, H., Goadsby, P.J., Ashina, M., Al-Karagholi, M.A., Sinclair, A., Mitsikostas, D., et al. (2019) Non-Invasive Vagus Nerve Stimulation (nVNS) for the Preventive Treatment of Episodic Migraine: The Multicentre, Double-Blind, Randomised, Sham-Controlled PREMIUM Trial. Cephalalgia, 39, 1475-1487.
https://doi.org/10.1177/0333102419876920
[36] Straube, A., Ellrich, J., Eren, O., Blum, B. and Ruscheweyh, R. (2015) Treatment of Chronic Migraine with Transcutaneous Stimulation of the Auricular Branch of the Vagal Nerve (Auricular t-VNS): A Randomized, Monocentric Clinical Trial. The Journal of Headache and Pain, 16, Article No. 543.
https://doi.org/10.1186/s10194-015-0543-3
[37] Rapoport, A.M., Lin, T. and Tepper, S.J. (2019) Remote Electrical Neuromodulation (REN) for the Acute Treatment of Migraine. Headache: The Journal of Head and Face Pain, 60, 229-234.
https://doi.org/10.1111/head.13669
[38] Yarnitsky, D., Volokh, L., Ironi, A., Weller, B., Shor, M., Shifrin, A., et al. (2017) Nonpainful Remote Electrical Stimulation Alleviates Episodic Migraine Pain. Neurology, 88, 1250-1255.
https://doi.org/10.1212/wnl.0000000000003760
[39] Yarnitsky, D., Dodick, D.W., Grosberg, B.M., Burstein, R., Ironi, A., Harris, D., et al. (2019) Remote Electrical Neuromodulation (REN) Relieves Acute Migraine: A Randomized, Double‐Blind, Placebo‐Controlled, Multicenter Trial. Headache: The Journal of Head and Face Pain, 59, 1240-1252.
https://doi.org/10.1111/head.13551
[40] Esparham, A., Stark-Inbar, A., Jekel, L., Tamir, S., Rabany, L., Ironi, A., et al. (2023) Acute Treatment of Migraine in Adolescents: Real-World Analysis of Remote Electrical Neuromodulation (REN). Pediatric Neurology, 142, 51-55.
https://doi.org/10.1016/j.pediatrneurol.2023.02.008
[41] Hershey, A.D., Lin, T., Gruper, Y., Harris, D., Ironi, A., Berk, T., et al. (2020) Remote Electrical Neuromodulation for Acute Treatment of Migraine in Adolescents. Headache: The Journal of Head and Face Pain, 61, 310-317.
https://doi.org/10.1111/head.14042
[42] Peretz, A., Stark‐Inbar, A., Harris, D., Tamir, S., Shmuely, S., Ironi, A., et al. (2023) Safety of Remote Electrical Neuromodulation for Acute Migraine Treatment in Pregnant Women: A Retrospective Controlled Survey‐Study. Headache: The Journal of Head and Face Pain, 63, 968-970.
https://doi.org/10.1111/head.14586
[43] Tepper, S.J., Rabany, L., Cowan, R.P., Smith, T.R., Grosberg, B.M., Torphy, B.D., et al. (2023) Remote Electrical Neuromodulation for Migraine Prevention: A Double‐Blind, Randomized, Placebo‐Controlled Clinical Trial. Headache: The Journal of Head and Face Pain, 63, 377-389.
https://doi.org/10.1111/head.14469
[44] Golanov, E.V. and Reis, D.J. (1999) Neuroprotective Electrical Stimulation of Cerebellar Fastigial Nucleus Attenuates Expression of Periinfarction Depolarizing Waves (PIDs) and Inhibits Cortical Spreading Depression. Brain Research, 818, 304-315.
https://doi.org/10.1016/s0006-8993(98)01169-x
[45] Reis, D.J., Kobylarz, K., Yamamoto, S. and Golanov, E.V. (1998) Brief Electrical Stimulation of Cerebellar Fastigial Nucleus Conditions Long-Lasting Salvage from Focal Cerebral Ischemia: Conditioned Central Neurogenic Neuroprotection. Brain Research, 780, 161-165.
https://doi.org/10.1016/s0006-8993(97)01017-2
[46] Wang, J., Dong, W., Zhang, W., Zheng, J. and Wang, X. (2014) Electrical Stimulation of Cerebellar Fastigial Nucleus: Mechanism of Neuroprotection and Prospects for Clinical Application against Cerebral Ischemia. CNS Neuroscience & Therapeutics, 20, 710-716.
https://doi.org/10.1111/cns.12288
[47] Yang, J., et al. (2016) Migraine Prevention with Percutaneous Mastoid Electrical Stimulator: A Randomized Double-Blind Controlled Trial. Cephalalgia, 37, 1248-1256.
https://doi.org/10.1177/0333102416678623
[48] Deng, Y., Zheng, M., He, L., Yang, J., Yu, G. and Wang, J. (2020) A Head-to-Head Comparison of Percutaneous Mastoid Electrical Stimulator and Supraorbital Transcutaneous Stimulator in the Prevention of Migraine: A Prospective, Randomized Controlled Study. Neuromodulation: Technology at the Neural Interface, 23, 770-777.
https://doi.org/10.1111/ner.13127
[49] Moreno-Ajona, D., Hoffmann, J. and Akerman, S. (2022) Devices for Episodic Migraine: Past, Present, and Future. Current Pain and Headache Reports, 26, 259-265.
https://doi.org/10.1007/s11916-022-01024-y
[50] Feng, Y., Zhang, B., Zhang, J. and Yin, Y. (2019) Effects of Non‐Invasive Brain Stimulation on Headache Intensity and Frequency of Headache Attacks in Patients with Migraine: A Systematic Review and Meta‐Analysis. Headache: The Journal of Head and Face Pain, 59, 1436-1447.
https://doi.org/10.1111/head.13645
[51] Dawood Rahimi, M., Taghi Kheirkhah, M. and Salehi Fadardi, J. (2023) Efficacy of tDCS in Chronic Migraine: A Multiprotocol Randomized Controlled Trial. Clinical Neurophysiology, 150, 119-130.
https://doi.org/10.1016/j.clinph.2023.03.013
[52] Liu, Y., Dong, Z., Wang, R., Ao, R., Han, X., Tang, W., et al. (2017) Migraine Prevention Using Different Frequencies of Transcutaneous Occipital Nerve Stimulation: A Randomized Controlled Trial. The Journal of Pain, 18, 1006-1015.
https://doi.org/10.1016/j.jpain.2017.03.012
[53] Tepper, S.J., Grosberg, B., Daniel, O., Kuruvilla, D.E., Vainstein, G., Deutsch, L., et al. (2022) Migraine Treatment with External Concurrent Occipital and Trigeminal Neurostimulation—A Randomized Controlled Trial. Headache: The Journal of Head and Face Pain, 62, 989-1001.
https://doi.org/10.1111/head.14350
[54] Daniel, O., Tepper, S.J., Deutsch, L. and Sharon, R. (2022) External Concurrent Occipital and Trigeminal Neurostimulation Relieves Migraine Headache: A Prospective, Randomized, Double-Blind, Sham-Controlled Trial. Pain and Therapy, 11, 907-922.
https://doi.org/10.1007/s40122-022-00394-w
[55] Black, R.D., Rogers, L.L., Ade, K.K., Nicoletto, H.A., Adkins, H.D. and Laskowitz, D.T. (2016) Non-Invasive Neuromodulation Using Time-Varying Caloric Vestibular Stimulation. IEEE Journal of Translational Engineering in Health and Medicine, 4, Article ID: 2000310.
https://doi.org/10.1109/jtehm.2016.2615899
[56] Dieterich, M. and Brandt, T. (2008) Functional Brain Imaging of Peripheral and Central Vestibular Disorders. Brain, 131, 2538-2552.
https://doi.org/10.1093/brain/awn042
[57] Wilkinson, D., Ade, K.K., Rogers, L.L., Attix, D.K., Kuchibhatla, M., Slade, M.D., et al. (2017) Preventing Episodic Migraine with Caloric Vestibular Stimulation: A Randomized Controlled Trial. Headache: The Journal of Head and Face Pain, 57, 1065-1087.
https://doi.org/10.1111/head.13120
[58] Perdecioğlu, G.R.G., Ateş, M.P., Yürük, D., Can, E., Yıldız, G. and Akkaya, Ö.T. (2023) A New Neuromodulation Method in Chronic Migraine; Non-Invasive Pulsed Radiofrequency, a Single-Blinded, Randomised, Controlled Trial. Irish Journal of Medical Science (1971-), 193, 1487-1493.
https://doi.org/10.1007/s11845-023-03598-x