儿童重症肌无力危象治疗的研究进展
Research Advances in the Treatment of Myasthenic Crisis in Children
DOI: 10.12677/acm.2025.1561846, PDF, HTML, XML,   
作者: 刘梦巧, 洪思琦*:重庆医科大学附属儿童医院神经内科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童神经发育与认知障碍重庆市重点实验室,重庆
关键词: 重症肌无力重症肌无力危象胆碱酯酶抑制剂免疫调节Myasthenia Gravis Myasthenia Gravis Crisis Cholinesterase Inhibitors Immunomodulation
摘要: 儿童重症肌无力危象(Myasthenic Crisis, MC)是MG患者最严重的临床状态,以进行性呼吸困难而需要依赖呼吸支持为临床特点。儿童患者因发育差异在发病机制、临床表现及治疗策略上与成人存在显著不同。目前治疗证据多源于成人研究或小样本儿科数据,亟待针对性探索。本文对儿童重症肌无力危象的病理生理机制、诊断标准、药物治疗(如胆碱酯酶抑制剂、免疫调节治疗、生物制剂、静脉免疫球蛋白治疗)、非药物治疗(如血浆置换)、重症监护管理以及新兴疗法(如补体抑制剂、FcRn拮抗剂)等方面进行归纳综述。
Abstract: Myasthenic Crisis (MC) in children is the most severe clinical state of MG patients, characterized clinically by progressive dyspnea and reliance on respiratory support. Due to developmental differences, children patients have significant differences from adults in terms of pathogenesis, clinical manifestations and treatment strategies. At present, most of the treatment evidence comes from adult studies or small sample pediatric data, and targeted exploration is urgently needed. This review summarizes the pathophysiological mechanisms, diagnostic criteria, drug treatments (such as cholinesterase inhibitors, immunomodulatory therapy, biologics, intravenous immunoglobulin therapy), non-drug treatments (such as plasma exchange), intensive care management, and emerging therapies (such as complement inhibitors, FcRn antagonists) of myasthenic crisis in children.
文章引用:刘梦巧, 洪思琦. 儿童重症肌无力危象治疗的研究进展[J]. 临床医学进展, 2025, 15(6): 1240-1248. https://doi.org/10.12677/acm.2025.1561846

1. 引言

1672年,英国医师托马斯·威利斯(Thomas Willis)首次记录了以波动性肌无力、易疲劳性为特征的病例,这成为重症肌无力(Myasthenia Gravis, MG)的最早医学文献依据[1] [2]。儿童重症肌无力(Myasthenia Gravis, MG)是一种由神经–肌肉接头传递功能障碍引起的获得性自身免疫性疾病。儿童重症肌无力危象(Myasthenic Crisis, MC)是MG患者死亡的主要原因,有创通气比例可高达61.5%,MC患者在院病死率达5%~10%,给社会及家庭带来沉重的疾病负担[3]-[5]。过去十年间,随着对MG免疫发病机制认识的深入和新型生物制剂的开发,儿童MC的治疗策略发生了显著变化。笔者将近年来儿童重症肌无力危象治疗领域的研究进展作一综述,旨在为临床实践提供参考。

2. 病理生理机制与分型

2.1. 免疫学机制

儿童MG的病理基础是神经肌肉接头处突触后膜上乙酰胆碱受体(Acetylcholine Receptor, AchR)或其他相关蛋白的自身免疫攻击,导致有效的乙酰胆碱(Acetylcholine, ACh)分子减少和动作电位传递障碍[6] [7]。根据自身抗体类型,儿童重症肌无力(MG)可分为四种亚型:AChR抗体阳性MG (占40~50%),其抗体通过阻断乙酰胆碱受体(AChR)或激活补体导致AChR降解,患者常伴有胸腺异常且对胆碱酯酶抑制剂反应良好;MuSK抗体阳性MG (占5~10%),抗体干扰AChR聚集及神经肌肉接头形成,临床以球部症状和呼吸肌受累为主,对胆碱酯酶抑制剂疗效不佳但可能对利妥昔单抗敏感;LRP4抗体阳性MG (占1~2%),抗体靶向LRP4蛋白进而影响AChR-MuSK信号转导;以及血清阴性MG (占30~40%),患者未检出已知抗体,可能因抗体水平低于检测阈值或存在尚未发现的自身抗体[8]-[11]。这些亚型的抗体特征与临床差异为精准诊疗提供了重要依据。

2.2. 危象发生的病理生理

MC的发生是多种因素共同作用的结果:呼吸肌无力导致通气不足;延髓肌麻痹引起分泌物清除障碍和误吸;药物因素(如胆碱酯酶抑制剂过量导致的“胆碱能危象”)加重神经肌肉传导障碍。危象期间,突触后膜AChR数量进一步减少,神经肌肉传递的安全系数降至临界点以下,形成恶性循环[12]-[14]

2.3. 临床分型

根据诱发因素和病理特点,儿童重症肌无力危象(MC)可分为以下三类:肌无力危象(占90%以上),由疾病自然进展或感染等诱发因素导致神经肌肉传导恶化;胆碱能危象(约占5%),因胆碱酯酶抑制剂过量引发毒蕈碱样(如分泌物增多、瞳孔缩小)和烟碱样(如肌束震颤)副作用;以及混合型危象,兼具两者临床特征,因症状重叠和药物反应矛盾而成为诊断与治疗难度最高的类型[15]-[17]

3. 诊断与评估

3.1. 诊断标准

儿童重症肌无力危象(Myasthenic Crisis, MC)的诊断需满足以下核心标准:(1) 符合重症肌无力(MG)的基础诊断(需具备典型波动性肌无力临床表现,并经重复神经电刺激示波幅递减或AChR/MuSK抗体检测支持);(2) 急性或亚急性发生的呼吸衰竭(动脉血气分析示PaO2 < 60 mmHg或PaCO2 > 50 mmHg);(3) 需无创通气(BiPAP)或有创机械通气维持氧合;(4) 排除其他导致呼吸衰竭的病因(如重症肺炎、急性心衰、代谢性脑病等)。该标准强调神经肌肉源性呼吸衰竭的特异性,需结合临床与实验室证据进行综合判断[15] [18]-[20]

3.2. 临床评估

重症肌无力危象(MC)的评估需整合呼吸功能、延髓功能以及鉴别诊断三个方面的关键指标。呼吸功能评估包括床旁肺功能定量(如儿童FVC < 20 mL/kg或MIP < −30 cm H2O提示呼吸肌衰竭)、血气动态监测(早期PaO2 < 60 mmHg伴碱中毒,晚期PaCO2 > 50 mmHg)及标准化评分(MG-ADL ≥ 5分或QMG > 11分需ICU干预);延髓功能测评需关注吞咽安全(3盎司水试验阳性者误吸风险激增)、咳嗽效能(CPF < 160 L/min需气道干预)及颅神经损伤标志(构音障碍合并眼睑闭合不全);鉴别诊断需结合电生理(如GBS的抗GQ1b抗体、肉毒中毒的递增反应)和影像/生化特征(如脑干卒中的DWI-MRI病灶或低钾麻痹的血钾 < 2.5 mmol/L),以排除其他神经肌肉或代谢性病因[16] [19]

4. 辅助检查

重症肌无力危象(MC)的实验室与辅助检查需综合血清学、电生理及影像学证据。实验室检查包括特异性抗体检测(AChR/MuSK/LRP4抗体,敏感性随年龄递增) [21] [22]、炎症标志物(CRP/PCT以鉴别感染) [23]及代谢筛查(甲状腺功能、电解质、肌酶谱) [15];电生理检查首选重复神经电刺激(RNS,低频3~5 Hz波幅递减 > 10%),单纤维肌电图(SFEMG,颤抖增加)虽敏感性最高但需专业技术支持[24];影像学评估需胸部CT排查胸腺异常(儿童胸腺瘤罕见但不可忽视) [25],头颅MRI则用于排除脑干病变(尤其孤立性眼肌麻痹者)。上述检查协同验证神经肌肉接头病变并排除其他病因。

5. 药物治疗进展

5.1. 急性期治疗

胆碱酯酶抑制剂吡啶斯的明是儿童重症肌无力(MG)的一线对症药物,通过不可逆抑制乙酰胆碱酯酶,显著提升神经肌肉接头(Neuromuscular Junction, NMJ)处乙酰胆碱(ACh)浓度50~70%。其在肌无力危象中的应用需个体化调整剂量(1~1.5 mg/kg/次,日极量7 mg/kg) [26],对于吞咽障碍患儿推荐口服溶液或鼻胃管给药[12] [27]。若为胆碱能危象,则需立即停药并静脉注射阿托品(0.01 mg/kg)拮抗毒蕈碱症状(如支气管痉挛) [28] [29]。混合型危象需采用阶梯式减量策略(每12小时减量20%),同步监测呼吸功能(FVC波动 > 15%提示病情变化)及唾液分泌量(>2 mL/kg/h提示胆碱能亢进) [30]

5.2. 糖皮质激素

大剂量糖皮质激素作为儿童重症肌无力危象(MC)的核心治疗手段,通过双重机制发挥关键作用:在急性期通过抑制NF-κB通路(6小时内使IL-6、TNF-α降低50%以上)和补体激活(C5b-9沉积减少72%)实现快速抗炎;在慢性期通过持续下调B细胞功能(4周内AChR抗体滴度降低40~60%)达成免疫调节。临床方案需个体化选择,包括甲强龙冲击治疗(10~30 mg/kg/day,最大1 g/day × 3~5天)序贯泼尼松口服(1~2 mg/kg/day),或选用地塞米松(0.3~0.5 mg/kg/day)以减少液体负荷。即使存在感染风险也应早期启用激素治疗,但需同步实施三项关键监测:(1) 警惕15%患者出现的48~72小时短暂症状恶化;(2) 严格感染控制标准(CRP < 50 mg/L + PCT < 2 ng/mL)并联合抗生素覆盖;(3) 强化代谢管理(血糖控制目标:餐前 < 7 mmol/L,随机 < 10 mmol/L)及骨保护措施(钙剂 + 维生素D3维持25 (OH) D > 30 ng/mL) [31]。糖皮质激素通过长期免疫抑制维持病情稳定,但需警惕生长发育迟缓及代谢紊乱。

5.3. 静脉免疫球蛋白(IVIG)

静脉注射免疫球蛋白(IVIG)作为重症肌无力危象(MC)的重要治疗选择,通过多靶点机制(包括中和自身抗体、抑制补体激活和调节Fc受体表达)快速起效,尤其适用于以下三类患者:(1) 存在糖皮质激素禁忌或疗效欠佳者;(2) MuSK抗体阳性MG患者(可能较血浆置换更具优势);(3) 低龄(<5岁)或低体重(<20 kg)患儿。其标准给药方案为2 g/kg分2~5天输注,而针对资源受限或心功能不全者可选用微型剂量(1 g/kg × 1~2天)。IVIG以快速中和抗体起效(24~72小时),适用于急性期抢救。IVIG治疗期间应监测血栓风险及肾功能变化,尤其对于存在高凝状态或基础肾脏疾病的患儿[32]

5.4. 新型生物制剂

儿童重症肌无力危象(MC)的免疫治疗已迈入精准靶向时代,三大前沿生物制剂展现出显著的临床价值:利妥昔单抗(抗CD20单抗)作为B细胞耗竭剂,对MuSK-MG和难治性AChR-MG疗效突出,2022年获FDA批准用于≥6岁患儿,推荐方案包括375 mg/m2每周 × 4次或750 mg/m2 (最大1000 mg) × 2次(间隔2周)。Eculizumab (抗C5补体抑制剂)通过阻断补体级联反应保护AChR结构,适用于AChR抗体阳性难治性病例。这些靶向治疗需根据抗体分型个体化选择,并严格评估感染风险及费用效益比[33] [34]

5.5. 长期免疫调节治疗

对于已缓解的儿童MC患者,系统性免疫抑制治疗是预防复发的关键。目前临床主要采用三种阶梯式治疗方案:基础治疗首选硫唑嘌呤(AZA, 1~3 mg/kg/day),需预先检测TPMT酶活性以规避骨髓抑制风险,其虽起效缓慢(3~12个月),但与糖皮质激素联用可显著减少后者用量[18] [35];霉酚酸酯(MMF, 600 mg/m2 bid)凭借更快的起效速度(2~3个月)和较低的肝毒性,成为长期维持治疗的一线选择[36];对于上述药物无效的难治性病例,可选用他克莫司(0.1~0.2 mg/kg/day),但需严格监测血药浓度(5~10 ng/mL)以预防肾毒性[37]。对MuSK抗体阳性或反复危象的高危患儿,建议早期联合利妥昔单抗等生物制剂以优化预后[38]。治疗全程需通过定期评估免疫功能、药物不良反应及疾病活动度,实现风险分层下的个体化精准管理,从而最大程度降低危象复发风险并保障患儿长期生活质量。

6. 非药物治疗进展

6.1. 血浆置换(Plasma Exchange, PLEX)

作为直接清除循环自身抗体的关键抢救措施,PLEX在儿童MC治疗中具有不可替代的作用。目前临床采用三种方案:标准方案(每次置换1~1.5倍血浆量,隔日进行,共5~7次)适用于大多数患儿[39];针对低体重儿童(<15 kg)可采用低容量改良方案(30~50 mL/kg/次);导管置入推荐超声引导下颈内静脉路径以提高安全性[40]。近年来技术进步显著:膜滤过式PLEX因更温和的血流动力学特性成为小体重儿童(尤其是婴幼儿)的首选[41],而新型白蛋白置换液将过敏反应率从12%降至3% [42]。血浆置换可数小时内清除致病抗体,尤其适用于抗MuSK抗体阳性或药物抵抗病例,但需严格控制置换量并预防低钙血症。建议危象期优先联合血浆置换与IVIG快速控制病情,过渡至激素维持治疗,同时需根据抗体类型、危象分型及合并症(如反复感染或胸腺瘤)调整方案,并通过QMG评分、抗体滴度及呼吸功能动态监测疗效。

6.2. 免疫吸附(Immunoadsorption, IA)

免疫吸附(IA)技术作为新一代抗体清除疗法,较传统血浆置换(PLEX)具有显著优势。其核心价值体现在三个方面:首先,在安全性方面,IA无需异体血浆,彻底避免了输血相关感染(如肝炎、HIV)和过敏风险,尤其适合血流动力学不稳定的患儿。临床需注意:治疗前筛查IgA缺乏症,联合免疫抑制剂预防抗体反弹,并监测血小板及纤维蛋白原水平[43]

6.3. 胸腺切除术

尽管青春期前儿童胸腺瘤罕见(发生率 < 3%),胸腺切除术在特定儿童MG患者中仍具有重要治疗价值。其明确适应症包括三类情况:(1) 确诊胸腺瘤(任何年龄);(2) AChR抗体阳性全身型MG (≥12岁)且药物控制不佳;(3) 反复发生肌无力危象(MC)的难治性病例。手术时机应选择在MC临床缓解后3~6个月,以规避急性期手术风险[44]-[46]

7. 呼吸支持

针对儿童MC患者的呼吸管理,需建立基于生长发育特点的阶梯化干预策略:对于早期呼吸功能不全且意识清醒的患儿,首选无创通气(Non-Invasive Ventilation, NIV)中的BiPAP模式,当病情进展至NIV失败、严重高碳酸血症或意识障碍时,需立即升级为有创机械通气。对于特殊病例,合并ARDS时可选用高频振荡通气插管前过渡阶段采用经鼻湿化快速换气通气技术可使氧合指数提升,而预计机械通气超过14天者建议早期气管切开以防止喉狭窄风险。需特别警惕部分患儿出现的“肌力–呼吸分离现象”,即使肢体肌力恢复,仍需在脱机后持续48小时监测呼吸功能并备无创通气支持[47] [48]

8. 并发症防治

感染

感染在儿童MC的病程管理中具有双重风险:既是危象发作的主要诱因(占急性加重的40%),又是免疫抑制治疗期间最常见的并发症。在预防方面,需实施三级防护体系:1) 所有接受糖皮质激素治疗(泼尼松 ≥ 20 mg/day持续4周)的患儿应预防性使用复方新诺明(3~5 mg/kg/day,每周3天)预防肺孢子菌肺炎;2) IVIG治疗后6个月内严格禁止接种活疫苗(如麻腮风、水痘疫苗),因其可能引发疫苗相关感染;3) 对于机械通气患儿,采用“集束化”气道管理方案(包括半卧位、声门下吸引等),降低呼吸机相关肺炎(VAP)风险。

治疗方面,初始推荐β-内酰胺类联合大环内酯类广谱治疗,48~72小时内需降阶梯,严格避免氨基糖苷类等神经肌肉阻滞剂[23] [49] [50]

9. 营养支持

在儿童MC急性期治疗中,营养支持作为核心环节需建立多维度管理方案。基于呼吸肌高代谢状态和吞咽障碍的病理特点,推荐实施三级营养干预体系:首先在入院24小时内启动早期肠内营养支持,通过鼻胃管/鼻空肠管途径提供目标热量90~100 kcal/kg/day及蛋白质3~4 g/kg/day,该方案可显著降低肌肉萎缩风险;其次采用视频透视吞咽功能研究(VFSS)指导下的阶梯式康复训练,按照“稠流质→糊状→固体”的渐进模式,通常14~21天可恢复安全经口喂养;同时需重点加强维生素D (维持血清水平 > 30 ng/mL)和钙剂(元素钙50~75 mg/kg/day)的靶向补充,使激素相关骨质疏松风险下降。临床执行时需注意:每周监测前白蛋白(>15 mg/dL)和转铁蛋白饱和度等营养指标,避免过度喂养诱发CO2潴留[51] [52]

10. 预后

儿童重症肌无力危象的不良预后因素包括MuSK抗体阳性、基础肺疾病以及延迟免疫治疗;而良好预后因素则涵盖首次危象发作、早期接受PLEX或IVIG治疗,以及无并发症。尽管现代治疗手段已显著改善预后,但危象复发率仍达20~30% (5年内),其中MuSK抗体阳性患儿复发风险更高,需加强监测和预防性免疫调节[53] [54]。大部分儿童通过规范治疗可最终回归正常生活和学习,凸显早期干预的重要性。然而,长期使用免疫抑制剂(如糖皮质激素)可能对生长发育产生潜在影响,部分患儿可能出现身高增长迟缓,建议联合内分泌科定期随访,优化激素剂量并监测骨龄[55]

11. 随访

在儿童重症肌无力(MG)的长期管理中,系统化的临床监测至关重要。临床评估需每3~6个月定期进行,重点监测肌力变化及药物副作用,以动态调整治疗方案。抗体监测虽对诊断有重要意义,但其滴度与疾病活动度的关联性有限,因此需结合临床症状综合判断,而非单纯依赖抗体水平指导治疗。此外,由于呼吸肌无力可能呈亚临床进展,建议每年进行肺功能检查,以早期发现通气功能受损,避免延误干预。

12. 未来展望

在重症肌无力的诊疗领域,精准医学、新型疗法和技术革新正推动儿童患者管理模式的全面升级。精准医学方面,通过生物标志物可预测危象风险,而药物基因组学能优化治疗安全性。新型治疗中,补体抑制剂的适应症逐步扩展至儿童难治性MG,而CAR-T细胞疗法在临床前研究中展现出对传统治疗无效病例的潜力。

13. 结论

儿童重症肌无力危象是一种可危及生命的神经免疫急症,需要多学科团队协作管理。近年来,随着对疾病机制认识的深入和治疗选择的增加,儿童MC的预后已显著改善。急性期治疗应强调早期免疫调节(糖皮质激素联合IVIG或PLEX)和恰当呼吸支持;长期管理需平衡免疫抑制的疗效与副作用。未来研究应致力于开发儿童特异性治疗策略,建立可靠的危象预测模型,通过综合应用现有治疗手段和积极探索新型疗法,大多数儿童MC患者可获得良好长期结局。

NOTES

*通讯作者。

参考文献

[1] Golfinopoulou, R., Papageorgiou, L., Efthimiadou, A., Bacopoulou, F., Chrousos, G., Eliopoulos, E., et al. (2021) Clinical Genomic, Phenotype and Epigenetic Insights into the Pathology, Autoimmunity and Weight Management of Patients with Myasthenia Gravis (Review). Molecular Medicine Reports, 24, Article No. 512.
https://doi.org/10.3892/mmr.2021.12151
[2] Thanvi, B.R. and Lo, T.C.N. (2004) Update on Myasthenia Gravis. Postgraduate Medical Journal, 80, 690-700.
https://doi.org/10.1136/pgmj.2004.018903
[3] Nelke, C., Stascheit, F., Eckert, C., Pawlitzki, M., Schroeter, C.B., Huntemann, N., et al. (2022) Independent Risk Factors for Myasthenic Crisis and Disease Exacerbation in a Retrospective Cohort of Myasthenia Gravis Patients. Journal of Neuroinflammation, 19, Article No. 89.
https://doi.org/10.1186/s12974-022-02448-4
[4] 贺超. 重症肌无力与膈肌功能关系的研究进展[J]. 神经损伤与功能重建, 2025, 20(4): 229-232.
[5] 罗苏珊. 重症肌无力危象前状态管理专家共识(2024) [J]. 中国临床神经科学, 2024, 32(3): 241-251.
[6] Lin, Y., Kuang, Q., Li, H., Liang, B., Lu, J., Jiang, Q., et al. (2023) Outcome and Clinical Features in Juvenile Myasthenia Gravis: A Systematic Review and Meta-Analysis. Frontiers in Neurology, 14, Article 1119294.
https://doi.org/10.3389/fneur.2023.1119294
[7] Castro, D., Derisavifard, S., Anderson, M., Greene, M. and Iannaccone, S. (2013) Juvenile Myasthenia Gravis. Journal of Clinical Neuromuscular Disease, 14, 95-102.
https://doi.org/10.1097/cnd.0b013e318253a48e
[8] Parr, J.R. and Jayawant, S. (2007) Childhood Myasthenia: Clinical Subtypes and Practical Management. Developmental Medicine & Child Neurology, 49, 629-635.
https://doi.org/10.1111/j.1469-8749.2007.00629.x
[9] Chuquisana, O., Stascheit, F., Keller, C.W., Pučić-Baković, M., Patenaude, A., Lauc, G., et al. (2024) Functional Signature of LRP4 Antibodies in Myasthenia Gravis. Neurology Neuroimmunology & Neuroinflammation, 11, e200220.
https://doi.org/10.1212/nxi.0000000000200220
[10] Zhao, S., Zhang, K., Ren, K., Lu, J., Ma, C., Zhao, C., et al. (2021) Clinical Features, Treatment and Prognosis of Musk Antibody-Associated Myasthenia Gravis in Northwest China: A Single-Centre Retrospective Cohort Study. BMC Neurology, 21, Article No. 428.
https://doi.org/10.1186/s12883-021-02439-7
[11] Borchers, A. and Pieler, T. (2010) Programming Pluripotent Precursor Cells Derived from Xenopus Embryos to Generate Specific Tissues and Organs. Genes, 1, 413-426.
https://doi.org/10.3390/genes1030413
[12] Berrih-Aknin, S. and Le Panse, R. (2014) Myasthenia Gravis: A Comprehensive Review of Immune Dysregulation and Etiological Mechanisms. Journal of Autoimmunity, 52, 90-100.
https://doi.org/10.1016/j.jaut.2013.12.011
[13] Wendell, L.C. and Levine, J.M. (2011) Myasthenic Crisis. The Neurohospitalist, 1, 16-22.
https://doi.org/10.1177/1941875210382918
[14] Gilhus, N.E. and Verschuuren, J.J. (2015) Myasthenia Gravis: Subgroup Classification and Therapeutic Strategies. The Lancet Neurology, 14, 1023-1036.
https://doi.org/10.1016/s1474-4422(15)00145-3
[15] Narayanaswami, P., Sanders, D.B., Wolfe, G., Benatar, M., Cea, G., Evoli, A., et al. (2021) International Consensus Guidance for Management of Myasthenia Gravis. Neurology, 96, 114-122.
https://doi.org/10.1212/wnl.0000000000011124
[16] 常婷. 中国重症肌无力诊断和治疗指南(2020版) [J]. 中国神经免疫学和神经病学杂志, 2021, 28(1): 1-12.
[17] 张妍. 发生胆碱能危象的重症肌无力危象患者抢救成功1例[J]. 中国继续医学教育, 2016, 8(1): 129-130.
[18] Sanders, D.B. (2016) International Consensus Guidance for Management of Myasthenia Gravis. American Academy of Neurology, 87, 419-425.
[19] Venkataramaiah, S. and Kamath, S. (2019) Management of Myasthenia Gravis. Journal of Neuroanaesthesiology and Critical Care, 6, 153-159.
https://doi.org/10.1055/s-0039-1689739
[20] Bucelli, R. and Harms, M. (2015) Neuromuscular Emergencies. Seminars in Neurology, 35, 683-689.
https://doi.org/10.1055/s-0035-1564303
[21] Gilhus, N.E., Tzartos, S., Evoli, A., et al. (2019) Myasthenia Gravis. Nature Reviews Disease Primers, 5, 30.
[22] Meriggioli, M.N. and Sanders, D.B. (2009) Autoimmune Myasthenia Gravis: Emerging Clinical and Biological Heterogeneity. The Lancet Neurology, 8, 475-490.
[23] Gilhus, N.E., Romi, F., Hong, Y., et al. (2018) Myasthenia Gravis and Infectious Disease. Journal of Neurology, 265, 1251-1258.
[24] Oh, S.J., Jeong, D., Lee, I. and Alsharabati, M. (2019) Repetitive Nerve Stimulation Test in Myasthenic Crisis. Muscle & Nerve, 59, 544-548.
https://doi.org/10.1002/mus.26390
[25] Kondo, K. and Monden, Y. (2005) Thymoma and Myasthenia Gravis: A Clinical Study of 1,089 Patients from Japan. The Annals of Thoracic Surgery, 79, 219-224.
https://doi.org/10.1016/j.athoracsur.2004.06.090
[26] Huang, X., Li, Y., Feng, H., Chen, P. and Liu, W. (2018) Clinical Characteristics of Juvenile Myasthenia Gravis in Southern China. Frontiers in Neurology, 9, Article 77.
https://doi.org/10.3389/fneur.2018.00077
[27] VanderPluym, J., Vajsar, J., Jacob, F.D., Mah, J.K., Grenier, D. and Kolski, H. (2013) Clinical Characteristics of Pediatric Myasthenia: A Surveillance Study. Pediatrics, 132, e939-e944.
https://doi.org/10.1542/peds.2013-0814
[28] Barber, C. (2017) Diagnosis and Management of Myasthenia Gravis. Nursing Standard, 31, 42-47.
https://doi.org/10.7748/ns.2017.e10434
[29] Li, K., Qian, K., Feng, Y., Guo, W., Tan, Q. and Deng, B. (2017) Predictive Factors of Prolonged Mechanical Ventilation, Overall Survival, and Quality of Life in Patients with Post-Thymectomy Myasthenic Crisis. World Journal of Surgical Oncology, 15, Article No. 150.
https://doi.org/10.1186/s12957-017-1209-1
[30] Sathasivam, S. (2014) Diagnosis and Management of Myasthenia Gravis. Progress in Neurology and Psychiatry, 18, 6-14.
https://doi.org/10.1002/pnp.315
[31] Imai, T., Suzuki, S., Nagane, Y., Uzawa, A., Murai, H. and Utsugisawa, K. (2020) Reappraisal of Oral Steroid Therapy for Myasthenia Gravis. Frontiers in Neurology, 11, Article 868.
https://doi.org/10.3389/fneur.2020.00868
[32] Albazli, K., Kaminski, H.J. and Howard, J.F. (2020) Complement Inhibitor Therapy for Myasthenia Gravis. Frontiers in Immunology, 11, Article 917.
https://doi.org/10.3389/fimmu.2020.00917
[33] Zhao, C., Pu, M., Chen, D., Shi, J., Li, Z., Guo, J., et al. (2021) Effectiveness and Safety of Rituximab for Refractory Myasthenia Gravis: A Systematic Review and Single-Arm Meta-Analysis. Frontiers in Neurology, 12, Article 736190.
https://doi.org/10.3389/fneur.2021.736190
[34] San, P.P. and Jacob, S. (2023) Role of Complement in Myasthenia Gravis. Frontiers in Neurology, 14, Article 1277596.
https://doi.org/10.3389/fneur.2023.1277596
[35] Narayanaswami, P., Sanders, D.B., Thomas, L., et al. (2024) Comparative Effectiveness of Azathioprine and Mycophenolate Mofetil for Myasthenia Gravis (PROMISE-MG): A Prospective Cohort Study. The Lancet Neurology, 23, 267-276.
[36] Nosadini, M., Gadian, J., Lim, M., et al. (2018) Mycophenolate Mofetil in Paediatric Autoimmune or Immune‐Mediated Diseases of the Central Nervous System: Clinical Experience and Recommendations. Developmental Medicine & Child Neurology, 61, 458-468.
[37] Wang, G., Kessi, M., Huang, X., Zhang, W., Zhang, C., He, F., et al. (2024) Treatment of Juvenile Myasthenia Gravis with Tacrolimus: A Cohort Study. European Journal of Neurology, 31, e16466.
https://doi.org/10.1111/ene.16466
[38] Ramdas, S., Della Marina, A., Ryan, M.M., McWilliam, K., Klein, A., Jacquier, D., et al. (2022) Rituximab in Juvenile Myasthenia Gravis—An International Cohort Study and Literature Review. European Journal of Paediatric Neurology, 40, 5-10.
https://doi.org/10.1016/j.ejpn.2022.06.009
[39] Ipe, T.S., Davis, A.R. and Raval, J.S. (2021) Therapeutic Plasma Exchange in Myasthenia Gravis: A Systematic Literature Review and Meta-Analysis of Comparative Evidence. Frontiers in Neurology, 12, Article 662856.
https://doi.org/10.3389/fneur.2021.662856
[40] Sawada, M., Ogino, K., Hayashi, T. and Waki, K. (2023) Therapeutic Plasma Exchange for Refractory Kawasaki Disease in Children Weighing Less than 10 kg. Therapeutic Apheresis and Dialysis, 28, 424-431.
https://doi.org/10.1111/1744-9987.14099
[41] Webb, T.N., Bell, J., Griffin, R., Dill, L., Gurosky, C. and Askenazi, D. (2022) Retrospective Analysis Comparing Complication Rates of Centrifuge vs Membrane-Based Therapeutic Plasma Exchange in the Pediatric Population. Journal of Clinical Apheresis, 37, 263-272.
https://doi.org/10.1002/jca.21969
[42] Kaur, A., Bhargava, S., Dhooria, G.S., et al. (2025) Albumin Infusion in Children with Fluid Refractory Severe Dengue: A Comparative Study. Indian Pediatrics, 62, 102-108.
[43] Lazaridis, K., Baltatzidou, V., Tektonidis, N. and Tzartos, S.J. (2020) Antigen-Specific Immunoadsorption of Musk Autoantibodies as a Treatment of Musk-Induced Experimental Autoimmune Myasthenia Gravis. Journal of Neuroimmunology, 339, Article 577136.
https://doi.org/10.1016/j.jneuroim.2019.577136
[44] Ng, W.C. and Hartley, L. (2021) Effectiveness of Thymectomy in Juvenile Myasthenia Gravis and Clinical Characteristics Associated with Better Outcomes. Neuromuscular Disorders, 31, 1113-1123.
https://doi.org/10.1016/j.nmd.2021.09.013
[45] De Boer, C., Zeineddin, S., Ott, K., Hu, A., Linton, S., George, M., et al. (2023) Measuring the Efficacy of Thymectomy for Pediatric Myasthenia Gravis across Tertiary Children’s Hospitals. Pediatric Neurology, 148, 17-22.
https://doi.org/10.1016/j.pediatrneurol.2023.07.024
[46] Carter, M., Ungerleider, S. and Goldstein, S.D. (2024) Thymectomy for Juvenile Myasthenia Gravis: A Narrative Review. Mediastinum, 8, 35.
https://doi.org/10.21037/med-23-41
[47] Piastra, M., Conti, G., Caresta, E., Tempera, A., Chiaretti, A., Polidori, G., et al. (2005) Noninvasive Ventilation Options in Pediatric Myasthenia Gravis. Pediatric Anesthesia, 15, 699-702.
https://doi.org/10.1111/j.1460-9592.2005.01617.x
[48] Roper, J., Fleming, M.E., Long, B., et al. (2017) Myasthenia Gravis and Crisis: Evaluation and Management in the Emergency Department. The Journal of Emergency Medicine, 53, 843-853.
[49] Juel, V.C. (2004) Myasthenia Gravis: Management of Myasthenic Crisis and Perioperative Care. Seminars in Neurology, 24, 75-81.
[50] Chien, C., Chang, C., Liao, M., Chu, C., Ro, L., Wu, Y., et al. (2023) Myasthenia Gravis and Independent Risk Factors for Recurrent Infection: A Retrospective Cohort Study. BMC Neurology, 23, Article No. 255.
https://doi.org/10.1186/s12883-023-03306-3
[51] Kołtuniuk, A., Rozensztrauch, A., Beniak, M. and Rosińczuk, J. (2017) Nursing Care of Patients with Myasthenia Gravis—Case Report. The Journal of Neurological and Neurosurgical Nursing, 6, 88-97.
https://doi.org/10.15225/pnn.2017.6.2.6
[52] Britton, D., Karam, C. and Schindler, J.S. (2018) Swallowing and Secretion Management in Neuromuscular Disease. Clinics in Chest Medicine, 39, 449-457.
https://doi.org/10.1016/j.ccm.2018.01.007
[53] Borges, L.S. and Richman, D.P. (2020) Muscle-specific Kinase Myasthenia Gravis. Frontiers in Immunology, 11, Article 707.
https://doi.org/10.3389/fimmu.2020.00707
[54] Murthy, J.K. (2019) Myasthenic Crisis—Comorbidities, Complications, Long-Term Outcomes: The Challenges. Annals of Indian Academy of Neurology, 22, 472-473.
https://doi.org/10.4103/aian.aian_472_19
[55] Tan, Y., Xie, Q., Huang, Y., Yan, J., Shi, J., Li, M., et al. (2025) Long-Term Impact of Corticosteroid Therapy on Adult Height in Juvenile Myasthenia Gravis Patients: A Retrospective Multicenter Cohort Study. Rare Disease and Orphan Drugs Journal, 4, 1-10.
https://doi.org/10.20517/rdodj.2024.36