[1]
|
Xie, Y., Hu, H., Liu, M., Zhou, T., Cheng, X., Huang, W., et al. (2022) The Role and Mechanism of Histone Lactylation in Health and Diseases. Frontiers in Genetics, 13, Article 949252. https://doi.org/10.3389/fgene.2022.949252
|
[2]
|
Park, I., Larson, P.E.Z., Zierhut, M.L., Hu, S., Bok, R., Ozawa, T., et al. (2010) Hyperpolarized 13C Magnetic Resonance Metabolic Imaging: Application to Brain Tumors. Neuro-Oncology, 12, 133-144. https://doi.org/10.1093/neuonc/nop043
|
[3]
|
Deng, H., Kan, A., Lyu, N., He, M., Huang, X., Qiao, S., et al. (2021) Tumor-Derived Lactate Inhibit the Efficacy of Lenvatinib through Regulating PD-L1 Expression on Neutrophil in Hepatocellular Carcinoma. Journal for ImmunoTherapy of Cancer, 9, e002305. https://doi.org/10.1136/jitc-2020-002305
|
[4]
|
Brooks, G.A. (2002) Lactate Shuttles in Nature. Biochemical Society Transactions, 30, 258-264. https://doi.org/10.1042/bst0300258
|
[5]
|
Pérez-Tomás, R. and Pérez-Guillén, I. (2020) Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment. Cancers, 12, Article 3244. https://doi.org/10.3390/cancers12113244
|
[6]
|
Wang, T., Ye, Z., Li, Z., Jing, D., Fan, G., Liu, M., et al. (2023) Lactate‐Induced Protein Lactylation: A Bridge between Epigenetics and Metabolic Reprogramming in Cancer. Cell Proliferation, 56, e13478. https://doi.org/10.1111/cpr.13478
|
[7]
|
Lv, X., Lv, Y. and Dai, X. (2023) Lactate, Histone Lactylation and Cancer Hallmarks. Expert Reviews in Molecular Medicine, 25, e7. https://doi.org/10.1017/erm.2022.42
|
[8]
|
Wang, G., Zou, X., Chen, Q., Nong, W., Miao, W., Luo, H., et al. (2024) The Relationship and Clinical Significance of Lactylation Modification in Digestive System Tumors. Cancer Cell International, 24, Article No. 246. https://doi.org/10.1186/s12935-024-03429-8
|
[9]
|
Li, X., Yang, Y., Zhang, B., Lin, X., Fu, X., An, Y., et al. (2022) Lactate Metabolism in Human Health and Disease. Signal Transduction and Targeted Therapy, 7, Article No. 305. https://doi.org/10.1038/s41392-022-01151-3
|
[10]
|
Brooks, G.A. (2009) Cell-Cell and Intracellular Lactate Shuttles. The Journal of Physiology, 587, 5591-5600. https://doi.org/10.1113/jphysiol.2009.178350
|
[11]
|
Kobayashi, M., Narumi, K., Furugen, A. and Iseki, K. (2021) Transport Function, Regulation, and Biology of Human Monocarboxylate Transporter 1 (hMCT1) and 4 (hMCT4). Pharmacology & Therapeutics, 226, Article ID: 107862. https://doi.org/10.1016/j.pharmthera.2021.107862
|
[12]
|
Liu, T., Han, S., Yao, Y. and Zhang, G. (2023) Role of Human Monocarboxylate Transporter 1 (hMCT1) and 4 (hMCT4) in Tumor Cells and the Tumor Microenvironment. Cancer Management and Research, 15, 957-975. https://doi.org/10.2147/cmar.s421771
|
[13]
|
Payen, V.L., Mina, E., Van Hée, V.F., Porporato, P.E. and Sonveaux, P. (2020) Monocarboxylate Transporters in Cancer. Molecular Metabolism, 33, 48-66. https://doi.org/10.1016/j.molmet.2019.07.006
|
[14]
|
Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., et al. (2019) Metabolic Regulation of Gene Expression by Histone Lactylation. Nature, 574, 575-580. https://doi.org/10.1038/s41586-019-1678-1
|
[15]
|
Wang, J., Mao, L., Wang, J., Zhang, X., Wu, M., Wen, Q., et al. (2023) Beyond Metabolic Waste: Lysine Lactylation and Its Potential Roles in Cancer Progression and Cell Fate Determination. Cellular Oncology, 46, 465-480. https://doi.org/10.1007/s13402-023-00775-z
|
[16]
|
Chen, Y., Wu, J., Zhai, L., Zhang, T., Yin, H., Gao, H., et al. (2024) Metabolic Regulation of Homologous Recombination Repair by MRE11 Lactylation. Cell, 187, 294-311.e21. https://doi.org/10.1016/j.cell.2023.11.022
|
[17]
|
Wang, N., Wang, W., Wang, X., Mang, G., Chen, J., Yan, X., et al. (2022) Histone Lactylation Boosts Reparative Gene Activation Post-Myocardial Infarction. Circulation Research, 131, 893-908. https://doi.org/10.1161/circresaha.122.320488
|
[18]
|
Niu, Z., Chen, C., Wang, S., Lu, C., Wu, Z., Wang, A., et al. (2024) HBO1 Catalyzes Lysine Lactylation and Mediates Histone H3K9la to Regulate Gene Transcription. Nature Communications, 15, Article No. 3561. https://doi.org/10.1038/s41467-024-47900-6
|
[19]
|
Niu, K., Chen, Z., Li, M., Ma, G., Deng, Y., Zhang, J., et al. (2025) NSUN2 Lactylation Drives Cancer Cell Resistance to Ferroptosis through Enhancing Gclc-Dependent Glutathione Synthesis. Redox Biology, 79, Article ID: 103479. https://doi.org/10.1016/j.redox.2024.103479
|
[20]
|
Ju, J., Zhang, H., Lin, M., Yan, Z., An, L., Cao, Z., et al. (2024) The Alanyl-tRNA Synthetase AARS1 Moonlights as a Lactyltransferase to Promote YAP Signaling in Gastric Cancer. Journal of Clinical Investigation, 134, e174587. https://doi.org/10.1172/jci174587
|
[21]
|
Yang, Z., Yan, C., Ma, J., Peng, P., Ren, X., Cai, S., et al. (2023) Lactylome Analysis Suggests Lactylation-Dependent Mechanisms of Metabolic Adaptation in Hepatocellular Carcinoma. Nature Metabolism, 5, 61-79. https://doi.org/10.1038/s42255-022-00710-w
|
[22]
|
Chen, J., Zhao, D., Wang, Y., Liu, M., Zhang, Y., Feng, T., et al. (2024) Lactylated Apolipoprotein C‐II Induces Immunotherapy Resistance by Promoting Extracellular Lipolysis (Adv. Sci. 38/2024). Advanced Science, 11, e2406333. https://doi.org/10.1002/advs.202470226
|
[23]
|
Wang, D., Li, G., Jiang, T. and Zhang, W. (2024) Targeting the Lysine Lactylome for the Treatment of Glioma. Cancer Biology & Medicine, 21, 1095-1099. https://doi.org/10.20892/j.issn.2095-3941.2024.0461
|
[24]
|
Luo, Y., Yang, Z., Yu, Y. and Zhang, P. (2022) Hif1α Lactylation Enhances KIAA1199 Transcription to Promote Angiogenesis and Vasculogenic Mimicry in Prostate Cancer. International Journal of Biological Macromolecules, 222, 2225-2243. https://doi.org/10.1016/j.ijbiomac.2022.10.014
|
[25]
|
Tu, C., Hu, Y., Zhou, P., Guo, X., Gu, C., Zhang, Y., et al. (2020) Lactate and TGF‐β Antagonistically Regulate Inflammasome Activation in the Tumor Microenvironment. Journal of Cellular Physiology, 236, 4528-4537. https://doi.org/10.1002/jcp.30169
|
[26]
|
Irizarry-Caro, R.A., McDaniel, M.M., Overcast, G.R., Jain, V.G., Troutman, T.D. and Pasare, C. (2020) TLR Signaling Adapter BCAP Regulates Inflammatory to Reparatory Macrophage Transition by Promoting Histone Lactylation. Proceedings of the National Academy of Sciences of the United States of America, 117, 30628-30638. https://doi.org/10.1073/pnas.2009778117
|
[27]
|
Xu, B., Liu, Y., Li, N. and Geng, Q. (2024) Lactate and Lactylation in Macrophage Metabolic Reprogramming: Current Progress and Outstanding Issues. Frontiers in Immunology, 15, Article 1395786. https://doi.org/10.3389/fimmu.2024.1395786
|
[28]
|
Yu, J., Chai, P., Xie, M., Ge, S., Ruan, J., Fan, X., et al. (2021) Histone Lactylation Drives Oncogenesis by Facilitating m6A Reader Protein YTHDF2 Expression in Ocular Melanoma. Genome Biology, 22, Article No. 85. https://doi.org/10.1186/s13059-021-02308-z
|
[29]
|
Zhou, J., Ma, X., Liu, X., Liu, Y., Fu, J., Qi, Y., et al. (2024) The Impact of Histone Lactylation on the Tumor Microenvironment and Metabolic Pathways and Its Potential in Cancer Therapy. Genes & Genomics, 46, 991-1011. https://doi.org/10.1007/s13258-024-01554-2
|
[30]
|
Li, T., Hu, C., Huang, T., Zhou, Y., Tian, Q., Chen, H., et al. (2025) Cancer-Associated Fibroblasts Foster a High-Lactate Microenvironment to Drive Perineural Invasion in Pancreatic Cancer. Cancer Research. https://doi.org/10.1158/0008-5472.can-24-3173
|
[31]
|
Deng, J., Li, Y., Yin, L., Liu, S., Li, Y., Liao, W., et al. (2025) Histone Lactylation Enhances GCLC Expression and Thus Promotes Chemoresistance of Colorectal Cancer Stem Cells through Inhibiting Ferroptosis. Cell Death & Disease, 16, Article No. 193. https://doi.org/10.1038/s41419-025-07498-z
|
[32]
|
Zhao, Y., Jiang, J., Zhou, P., Deng, K., Liu, Z., Yang, M., et al. (2024) H3K18 Lactylation-Mediated VCAM1 Expression Promotes Gastric Cancer Progression and Metastasis via AKT-mTOR-CXCL1 Axis. Biochemical Pharmacology, 222, Article ID: 116120. https://doi.org/10.1016/j.bcp.2024.116120
|
[33]
|
Xiang, T., Wang, X., Huang, S., Zhou, K., Fei, S., Zhou, B., et al. (2025) Inhibition of PKM2 by Shikonin Impedes TGF-β1 Expression by Repressing Histone Lactylation to Alleviate Renal Fibrosis. Phytomedicine, 136, Article ID: 156324. https://doi.org/10.1016/j.phymed.2024.156324
|
[34]
|
Li, F., Si, W., Xia, L., Yin, D., Wei, T., Tao, M., et al. (2024) Positive Feedback Regulation between Glycolysis and Histone Lactylation Drives Oncogenesis in Pancreatic Ductal Adenocarcinoma. Molecular Cancer, 23, Article No. 90. https://doi.org/10.1186/s12943-024-02008-9
|
[35]
|
Wu, Z., Peng, Y., Chen, W., Xia, F., Song, T. and Ke, Q. (2025) Lactylation-Driven Transcriptional Activation of FBXO33 Promotes Gallbladder Cancer Metastasis by Regulating p53 Polyubiquitination. Cell Death & Disease, 16, Article No. 144. https://doi.org/10.1038/s41419-025-07372-y
|
[36]
|
Dong, F., Yin, H. and Zheng, Z. (2025) Hypoxia‐Inducible Factor‐1α Regulates BNIP3‐dependent Mitophagy and Mediates Metabolic Reprogramming through Histone Lysine Lactylation Modification to Affect Glioma Proliferation and Invasion. Journal of Biochemical and Molecular Toxicology, 39, e70069. https://doi.org/10.1002/jbt.70069
|
[37]
|
Shi, L., Li, B., Tan, J., Zhu, L., Zhang, S., Zhang, Y., et al. (2025) Exosomal LncRNA Mir100hg from Lung Cancer Stem Cells Activates H3K14 Lactylation to Enhance Metastatic Activity in Non-Stem Lung Cancer Cells. Journal of Nanobiotechnology, 23, Article No. 156. https://doi.org/10.1186/s12951-025-03198-0
|
[38]
|
Zhao, P., Qiao, C., Wang, J., Zhou, Y. and Zhang, C. (2024) Histone Lactylation Facilitates Hepatocellular Carcinoma Progression by Upregulating Endothelial Cell‐Specific Molecule 1 Expression. Molecular Carcinogenesis, 63, 2078-2089. https://doi.org/10.1002/mc.23794
|
[39]
|
Wang, H., Xu, M., Zhang, T., Pan, J., Li, C., Pan, B., et al. (2024) PYCR1 Promotes Liver Cancer Cell Growth and Metastasis by Regulating IRS1 Expression through Lactylation Modification. Clinical and Translational Medicine, 14, e70045. https://doi.org/10.1002/ctm2.70045
|
[40]
|
Yang, H., Yang, S., He, J., Li, W., Zhang, A., Li, N., et al. (2023) Glucose Transporter 3 (GLUT3) Promotes Lactylation Modifications by Regulating Lactate Dehydrogenase a (LDHA) in Gastric Cancer. Cancer Cell International, 23, Article No. 303. https://doi.org/10.1186/s12935-023-03162-8
|
[41]
|
Cai, J., Song, L., Zhang, F., Wu, S., Zhu, G., Zhang, P., et al. (2024) Targeting SRSF10 Might Inhibit M2 Macrophage Polarization and Potentiate Anti‐PD‐1 Therapy in Hepatocellular Carcinoma. Cancer Communications, 44, 1231-1260. https://doi.org/10.1002/cac2.12607
|
[42]
|
Xue, Q., Peng, W., Zhang, S., Wei, X., Ye, L., Wang, Z., et al. (2024) Lactylation-Driven TNFR2 Expression in Regulatory T Cells Promotes the Progression of Malignant Pleural Effusion. Journal for ImmunoTherapy of Cancer, 12, e010040. https://doi.org/10.1136/jitc-2024-010040
|
[43]
|
Zhang, C., Zhou, L., Zhang, M., Du, Y., Li, C., Ren, H., et al. (2024) H3K18 Lactylation Potentiates Immune Escape of Non-Small Cell Lung Cancer. Cancer Research, 84, 3589-3601. https://doi.org/10.1158/0008-5472.can-23-3513
|
[44]
|
Raychaudhuri, D., Singh, P., Chakraborty, B., Hennessey, M., Tannir, A.J., Byregowda, S., et al. (2024) Histone Lactylation Drives CD8+ T Cell Metabolism and Function. Nature Immunology, 25, 2140-2151. https://doi.org/10.1038/s41590-024-01985-9
|
[45]
|
Ding, C., Yan, F., Xu, B., Qian, H., Hong, X., Liu, S., et al. (2025) PRMT3 Drives PD-L1-Mediated Immune Escape through Activating Pdhk1-Regulated Glycolysis in Hepatocellular Carcinoma. Cell Death & Disease, 16, Article No. 158. https://doi.org/10.1038/s41419-025-07482-7
|
[46]
|
Ma, Z., Yang, J., Jia, W., Li, L., Li, Y., Hu, J., et al. (2025) Histone Lactylation-Driven B7-H3 Expression Promotes Tumor Immune Evasion. Theranostics, 15, 2338-2359. https://doi.org/10.7150/thno.105947
|
[47]
|
Chen, H., Li, Y., Li, H., Chen, X., Fu, H., Mao, D., et al. (2024) NBS1 Lactylation Is Required for Efficient DNA Repair and Chemotherapy Resistance. Nature, 631, 663-669. https://doi.org/10.1038/s41586-024-07620-9
|
[48]
|
Yue, Q., Wang, Z., Shen, Y., Lan, Y., Zhong, X., Luo, X., et al. (2024) Histone H3K9 Lactylation Confers Temozolomide Resistance in Glioblastoma via LUC7L2‐mediated MLH1 Intron Retention. Advanced Science, 11, Article ID: 2309290. https://doi.org/10.1002/advs.202309290
|
[49]
|
Dai, J., Lu, X., Zhang, C., Qu, T., Li, W., Su, J., et al. (2025) NNMT Promotes Acquired EGFR-TKI Resistance by Forming EGR1 and Lactate-Mediated Double Positive Feedback Loops in Non-Small Cell Lung Cancer. Molecular Cancer, 24, Article No. 79. https://doi.org/10.1186/s12943-025-02285-y
|
[50]
|
Lu, B., Chen, S., Guan, X., Chen, X., Du, Y., Yuan, J., et al. (2025) Lactate Accumulation Induces H4K12la to Activate Super-Enhancer-Driven RAD23A Expression and Promote Niraparib Resistance in Ovarian Cancer. Molecular Cancer, 24, Article No. 83. https://doi.org/10.1186/s12943-025-02295-w
|
[51]
|
Sun, C., Li, X., Teng, Q., Liu, X., Song, L., Schiöth, H.B., et al. (2025) Targeting Platinum-Resistant Ovarian Cancer by Disrupting Histone and RAD51 Lactylation. Theranostics, 15, 3055-3075. https://doi.org/10.7150/thno.104858
|
[52]
|
Pajak, B., Siwiak, E., Sołtyka, M., Priebe, A., Zieliński, R., Fokt, I., et al. (2019) 2-Deoxy-D-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents. International Journal of Molecular Sciences, 21, Article 234. https://doi.org/10.3390/ijms21010234
|
[53]
|
Raez, L.E., Papadopoulos, K., Ricart, A.D., Chiorean, E.G., DiPaola, R.S., Stein, M.N., et al. (2012) A Phase I Dose-Escalation Trial of 2-Deoxy-D-Glucose Alone or Combined with Docetaxel in Patients with Advanced Solid Tumors. Cancer Chemotherapy and Pharmacology, 71, 523-530. https://doi.org/10.1007/s00280-012-2045-1
|
[54]
|
Guo, Z., Tang, Y., Wang, S., Huang, Y., Chi, Q., Xu, K., et al. (2023) Natural Product Fargesin Interferes with H3 Histone Lactylation via Targeting PKM2 to Inhibit Non‐Small Cell Lung Cancer Tumorigenesis. BioFactors, 50, 592-607. https://doi.org/10.1002/biof.2031
|
[55]
|
Park, W., Han, J.H., Wei, S., Yang, E., Cheon, S., Bae, S., et al. (2024) Natural Product-Based Glycolysis Inhibitors as a Therapeutic Strategy for Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 25, Article 807. https://doi.org/10.3390/ijms25020807
|
[56]
|
Zhang, R., Mao, G., Tang, Y., Li, C., Gao, Y., Nie, W., et al. (2024) Correction to: Inhibition of Glycolysis Enhances the Efficacy of Immunotherapy via PDK-Mediated Upregulation of PD-L1. Cancer Immunology, Immunotherapy, 73, Article No. 236. https://doi.org/10.1007/s00262-024-03811-5
|
[57]
|
Xu, Y., Hao, X., Ren, Y., Xu, Q., Liu, X., Song, S., et al. (2023) Research Progress of Abnormal Lactate Metabolism and Lactate Modification in Immunotherapy of Hepatocellular Carcinoma. Frontiers in Oncology, 12, Article 1063423. https://doi.org/10.3389/fonc.2022.1063423
|
[58]
|
Yuan, X., Hao, X., Chan, H.L., Zhao, N., Pedroza, D.A., Liu, F., et al. (2024) CREB-Binding Protein/p300 Bromodomain Inhibition Reduces Neutrophil Accumulation and Activates Antitumor Immunity in Triple-Negative Breast Cancer. JCI Insight, 9, e182621. https://doi.org/10.1172/jci.insight.182621
|
[59]
|
Wang, Y., Li, P., Xu, Y., Feng, L., Fang, Y., Song, G., et al. (2024) Lactate Metabolism and Histone Lactylation in the Central Nervous System Disorders: Impacts and Molecular Mechanisms. Journal of Neuroinflammation, 21, Article No. 308. https://doi.org/10.1186/s12974-024-03303-4
|
[60]
|
Huang, T., Feng, Q., Wang, Z., Li, W., Sun, Z., Wilhelm, J., et al. (2020) Tumor‐Targeted Inhibition of Monocarboxylate Transporter 1 Improves T‐Cell Immunotherapy of Solid Tumors. Advanced Healthcare Materials, 10, Article ID: 2000549. https://doi.org/10.1002/adhm.202000549
|
[61]
|
Guan, X., Rodriguez-Cruz, V. and Morris, M.E. (2019) Cellular Uptake of MCT1 Inhibitors AR-C155858 and AZD3965 and Their Effects on MCT-Mediated Transport of L-Lactate in Murine 4T1 Breast Tumor Cancer Cells. The AAPS Journal, 21, Article No. 13. https://doi.org/10.1208/s12248-018-0279-5
|
[62]
|
Kumagai, S., Koyama, S., Itahashi, K., et al. (2022) Lactic Acid Promotes PD-1 Expression in Regulatory T Cells in Highly Glycolytic Tumor Microenvironments. Cancer Cell, 40, 201-218.e209.
|
[63]
|
Patel, S.A., Nilsson, M.B., Le, X., Cascone, T., Jain, R.K. and Heymach, J.V. (2022) Molecular Mechanisms and Future Implications of VEGF/VEGFR in Cancer Therapy. Clinical Cancer Research, 29, 30-39. https://doi.org/10.1158/1078-0432.ccr-22-1366
|
[64]
|
Garcia, J., Hurwitz, H.I., Sandler, A.B., Miles, D., Coleman, R.L., Deurloo, R., et al. (2020) Bevacizumab (Avastin®) in Cancer Treatment: A Review of 15 Years of Clinical Experience and Future Outlook. Cancer Treatment Reviews, 86, Article ID: 102017. https://doi.org/10.1016/j.ctrv.2020.102017
|