[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Pinsky, P.F. and Doroudi, M. (2016) Colorectal Cancer Screening. JAMA, 316, Article No. 1715. https://doi.org/10.1001/jama.2016.13849
|
[3]
|
Edwards, B.K., Ward, E., Kohler, B.A., Eheman, C., Zauber, A.G., Anderson, R.N., et al. (2009) Annual Report to the Nation on the Status of Cancer, 1975‐2006, Featuring Colorectal Cancer Trends and Impact of Interventions (Risk Factors, Screening, and Treatment) to Reduce Future Rates. Cancer, 116, 544-573. https://doi.org/10.1002/cncr.24760
|
[4]
|
Sargent, D., Sobrero, A., Grothey, A., O’Connell, M.J., Buyse, M., Andre, T., et al. (2009) Evidence for Cure by Adjuvant Therapy in Colon Cancer: Observations Based on Individual Patient Data from 20,898 Patients on 18 Randomized Trials. Journal of Clinical Oncology, 27, 872-877. https://doi.org/10.1200/jco.2008.19.5362
|
[5]
|
Li, G. (2007) Mechanisms and Functions of DNA Mismatch Repair. Cell Research, 18, 85-98. https://doi.org/10.1038/cr.2007.115
|
[6]
|
Ganesh, K., Stadler, Z.K., Cercek, A., Mendelsohn, R.B., Shia, J., Segal, N.H., et al. (2019) Immunotherapy in Colorectal Cancer: Rationale, Challenges and Potential. Nature Reviews Gastroenterology & Hepatology, 16, 361-375. https://doi.org/10.1038/s41575-019-0126-x
|
[7]
|
Lavin, Y., Kobayashi, S., Leader, A., Amir, E.D., Elefant, N., Bigenwald, C., et al. (2017) Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell, 169, 750-765.e17. https://doi.org/10.1016/j.cell.2017.04.014
|
[8]
|
Havel, J.J., Chowell, D. and Chan, T.A. (2019) The Evolving Landscape of Biomarkers for Checkpoint Inhibitor Immunotherapy. Nature Reviews Cancer, 19, 133-150. https://doi.org/10.1038/s41568-019-0116-x
|
[9]
|
Dosset, M., Vargas, T.R., Lagrange, A., Boidot, R., Végran, F., Roussey, A., et al. (2018) PD-1/PD-L1 Pathway: An Adaptive Immune Resistance Mechanism to Immunogenic Chemotherapy in Colorectal Cancer. OncoImmunology, 7, e1433981. https://doi.org/10.1080/2162402x.2018.1433981
|
[10]
|
Di Blasio, S., Wortel, I.M.N., van Bladel, D.A.G., de Vries, L.E., Duiveman-de Boer, T., Worah, K., et al. (2016) Human CD1c(+) DCs Are Critical Cellular Mediators of Immune Responses Induced by Immunogenic Cell Death. OncoImmunology, 5, e1192739. https://doi.org/10.1080/2162402x.2016.1192739
|
[11]
|
Limagne, E., Euvrard, R., Thibaudin, M., Rébé, C., Derangère, V., Chevriaux, A., et al. (2016) Accumulation of MDSC and Th17 Cells in Patients with Metastatic Colorectal Cancer Predicts the Efficacy of a Folfox-Bevacizumab Drug Treatment Regimen. Cancer Research, 76, 5241-5252. https://doi.org/10.1158/0008-5472.can-15-3164
|
[12]
|
Gavalas, N.G., Tsiatas, M., Tsitsilonis, O., Politi, E., Ioannou, K., Ziogas, A.C., et al. (2012) VEGF Directly Suppresses Activation of T Cells from Ascites Secondary to Ovarian Cancer via VEGF Receptor Type 2. British Journal of Cancer, 107, 1869-1875. https://doi.org/10.1038/bjc.2012.468
|
[13]
|
Baraibar, I., Mirallas, O., Saoudi, N., Ros, J., Salvà, F., Tabernero, J., et al. (2021) Combined Treatment with Immunotherapy-Based Strategies for MSS Metastatic Colorectal Cancer. Cancers, 13, Article No. 6311. https://doi.org/10.3390/cancers13246311
|
[14]
|
Cremolini, C., Rossini, D., Dell’Aquila, E., Lonardi, S., Conca, E., Del Re, M., et al. (2019) Rechallenge for Patients with ras and braf Wild-Type Metastatic Colorectal Cancer with Acquired Resistance to First-Line Cetuximab and Irinotecan. JAMA Oncology, 5, Article No. 343. https://doi.org/10.1001/jamaoncol.2018.5080
|
[15]
|
Martinelli, E., Martini, G., Famiglietti, V., Troiani, T., Napolitano, S., Pietrantonio, F., et al. (2021) Cetuximab Rechallenge Plus Avelumab in Pretreated Patients with ras Wild-Type Metastatic Colorectal Cancer. JAMA Oncology, 7, Article No. 1529. https://doi.org/10.1001/jamaoncol.2021.2915
|
[16]
|
Hodi, F.S., Lawrence, D., Lezcano, C., Wu, X., Zhou, J., Sasada, T., et al. (2014) Bevacizumab plus Ipilimumab in Patients with Metastatic Melanoma. Cancer Immunology Research, 2, 632-642. https://doi.org/10.1158/2326-6066.cir-14-0053
|
[17]
|
Martin-Romano, P., Ammari, S., El-Dakdoukti, Y., Baldini, C., Varga, A., Vuagnat, P., et al. (2020) Chemotherapy Beyond Immune Checkpoint Inhibitors in Patients with Metastatic Colorectal Cancer. European Journal of Cancer, 137, 117-126. https://doi.org/10.1016/j.ejca.2020.06.030
|
[18]
|
Fukuoka, S., Hara, H., Takahashi, N., Kojima, T., Kawazoe, A., Asayama, M., et al. (2020) Regorafenib plus Nivolumab in Patients with Advanced Gastric or Colorectal Cancer: An Open-Label, Dose-Escalation, and Dose-Expansion Phase Ib Trial (REGONIVO, Epoc1603). Journal of Clinical Oncology, 38, 2053-2061. https://doi.org/10.1200/jco.19.03296
|
[19]
|
Taylor, M.H., Schmidt, E.V., Dutcus, C., Pinheiro, E.M., Funahashi, Y., Lubiniecki, G., et al. (2020) The LEAP Program: Lenvatinib plus Pembrolizumab for the Treatment of Advanced Solid Tumors. Future Oncology, 17, 637-648. https://doi.org/10.2217/fon-2020-0937
|
[20]
|
Gajewski, T.F., Schreiber, H. and Fu, Y. (2013) Innate and Adaptive Immune Cells in the Tumor Microenvironment. Nature Immunology, 14, 1014-1022. https://doi.org/10.1038/ni.2703
|
[21]
|
Zaanan, A., Shi, Q., Taieb, J., Alberts, S.R., Meyers, J.P., Smyrk, T.C., et al. (2018) Role of Deficient DNA Mismatch Repair Status in Patients with Stage III Colon Cancer Treated with FOLFOX Adjuvant Chemotherapy: A Pooled Analysis From 2 Randomized Clinical Trials. JAMA Oncology, 4, Article No. 379. https://doi.org/10.1001/jamaoncol.2017.2899
|
[22]
|
Vétizou, M., Pitt, J.M., Daillère, R., Lepage, P., Waldschmitt, N., Flament, C., et al. (2015) Anticancer Immunotherapy by CTLA-4 Blockade Relies on the Gut Microbiota. Science, 350, 1079-1084. https://doi.org/10.1126/science.aad1329
|
[23]
|
Bacac, M., Klein, C. and Umana, P. (2016) CEA TCB: A Novel Head-to-Tail 2:1 T Cell Bispecific Antibody for Treatment of Cea-Positive Solid Tumors. OncoImmunology, 5, e1203498. https://doi.org/10.1080/2162402x.2016.1203498
|
[24]
|
Barroso-Sousa, R. and Ott, P.A. (2017) PD-1 Inhibitors in Endometrial Cancer. Oncotarget, 8, 106169-106170. https://doi.org/10.18632/oncotarget.22583
|
[25]
|
Argiles, G. (2018) Initial Experience with the Bispecific Anti-Cea Anti-CD3 Antibody and Its Expected Impact on Future Treatment for Patients with Colorectal Cancer. ESMO Open, 3, e000377. https://doi.org/10.1136/esmoopen-2018-000377
|
[26]
|
Lakins, M.A., Koers, A., Giambalvo, R., Munoz-Olaya, J., Hughes, R., Goodman, E., et al. (2020) FS222, a CD137/PD-L1 Tetravalent Bispecific Antibody, Exhibits Low Toxicity and Antitumor Activity in Colorectal Cancer Models. Clinical Cancer Research, 26, 4154-4167. https://doi.org/10.1158/1078-0432.ccr-19-2958
|
[27]
|
Mathur, D., Root, A.R., Bugaj-Gaweda, B., Bisulco, S., Tan, X., Fang, W., et al. (2020) A Novel GUCY2C-CD3 T-Cell Engaging Bispecific Construct (PF-07062119) for the Treatment of Gastrointestinal Cancers. Clinical Cancer Research, 26, 2188-2202. https://doi.org/10.1158/1078-0432.ccr-19-3275
|
[28]
|
García-Martínez, J.M., Wang, S., Weishaeupl, C., Wernitznig, A., Chetta, P., Pinto, C., et al. (2021) Selective Tumor Cell Apoptosis and Tumor Regression in CDH17-Positive Colorectal Cancer Models Using BI 905711, a Novel Liver-Sparing TRAILR2 Agonist. Molecular Cancer Therapeutics, 20, 96-108. https://doi.org/10.1158/1535-7163.mct-20-0253
|
[29]
|
Rosen, L.S., LoRusso, P., Ma, W.W., Goldman, J.W., Weise, A., Colevas, A.D., et al. (2016) A First-in-Human Phase I Study to Evaluate the MEK1/2 Inhibitor, Cobimetinib, Administered Daily in Patients with Advanced Solid Tumors. Investigational New Drugs, 34, 604-613. https://doi.org/10.1007/s10637-016-0374-3
|
[30]
|
Ebert, P.J.R., Cheung, J., Yang, Y., McNamara, E., Hong, R., Moskalenko, M., et al. (2016) MAP Kinase Inhibition Promotes T Cell and Anti-Tumor Activity in Combination with PD-L1 Checkpoint Blockade. Immunity, 44, 609-621. https://doi.org/10.1016/j.immuni.2016.01.024
|
[31]
|
Nanda, V.G.Y., Peng, W., Hwu, P., Davies, M.A., Ciliberto, G., Fattore, L., et al. (2016) Melanoma and Immunotherapy Bridge 2015. Journal of Translational Medicine, 14, Article No. 65. https://doi.org/10.1186/s12967-016-0791-2
|
[32]
|
Eng, C., Kim, T.W., Bendell, J., Argilés, G., Tebbutt, N.C., Di Bartolomeo, M., et al. (2019) Atezolizumab with or without Cobimetinib versus Regorafenib in Previously Treated Metastatic Colorectal Cancer (imblaze370): A Multicentre, Open-Label, Phase 3, Randomised, Controlled Trial. The Lancet Oncology, 20, 849-861. https://doi.org/10.1016/s1470-2045(19)30027-0
|
[33]
|
Sclafani, F. (2019) MEK and PD-L1 Inhibition in Colorectal Cancer: A Burning Blaze Turning into a Flash in the Pan. The Lancet Oncology, 20, 752-753. https://doi.org/10.1016/s1470-2045(19)30076-2
|
[34]
|
Forrester, K., Almoguera, C., Han, K., Grizzle, W.E. and Perucho, M. (1987) Detection of High Incidence of K-Ras Oncogenes during Human Colon Tumorigenesis. Nature, 327, 298-303. https://doi.org/10.1038/327298a0
|
[35]
|
Fang, J.Y. and Richardson, B.C. (2005) The MAPK Signalling Pathways and Colorectal Cancer. The Lancet Oncology, 6, 322-327. https://doi.org/10.1016/s1470-2045(05)70168-6
|
[36]
|
Kumar, S., Principe, D.R., Singh, S.K., Viswakarma, N., Sondarva, G., Rana, B., et al. (2020) Mitogen-Activated Protein Kinase Inhibitors and T-Cell-Dependent Immunotherapy in Cancer. Pharmaceuticals, 13, Article No. 9. https://doi.org/10.3390/ph13010009
|
[37]
|
Vella, L.J., Pasam, A., Dimopoulos, N., Andrews, M., Knights, A., Puaux, A., et al. (2014) MEK Inhibition, Alone or in Combination with BRAF Inhibition, Affects Multiple Functions of Isolated Normal Human Lymphocytes and Dendritic Cells. Cancer Immunology Research, 2, 351-360. https://doi.org/10.1158/2326-6066.cir-13-0181
|
[38]
|
McLaughlin, M., Patin, E.C., Pedersen, M., Wilkins, A., Dillon, M.T., Melcher, A.A., et al. (2020) Inflammatory Microenvironment Remodelling by Tumour Cells after Radiotherapy. Nature Reviews Cancer, 20, 203-217. https://doi.org/10.1038/s41568-020-0246-1
|
[39]
|
Parikh, A.R., Szabolcs, A., Allen, J.N., Clark, J.W., Wo, J.Y., Raabe, M., et al. (2021) Radiation Therapy Enhances Immunotherapy Response in Microsatellite Stable Colorectal and Pancreatic Adenocarcinoma in a Phase II Trial. Nature Cancer, 2, 1124-1135. https://doi.org/10.1038/s43018-021-00269-7
|
[40]
|
Ding, Y., Weng, S., Zhu, N., Mi, M., Xu, Z., Zhong, L., et al. (2023) Immunotherapy Combined with Local Therapy in the Late-Line Treatment of Repair-Proficient (PMMR)/Microsatellite Stable (MSS) Metastatic Colorectal Cancer. Heliyon, 9, e22092. https://doi.org/10.1016/j.heliyon.2023.e22092
|
[41]
|
Tran, B., Kopetz, S., Tie, J., Gibbs, P., Jiang, Z., Lieu, C.H., et al. (2011) Impact of BRAF Mutation and Microsatellite Instability on the Pattern of Metastatic Spread and Prognosis in Metastatic Colorectal Cancer. Cancer, 117, 4623-4632. https://doi.org/10.1002/cncr.26086
|
[42]
|
Johnson, B.A., Yarchoan, M., Lee, V., Laheru, D.A. and Jaffee, E.M. (2017) Strategies for Increasing Pancreatic Tumor Immunogenicity. Clinical Cancer Research, 23, 1656-1669. https://doi.org/10.1158/1078-0432.ccr-16-2318
|
[43]
|
Yarchoan, M., Huang, C., Zhu, Q., Ferguson, A.K., Durham, J.N., Anders, R.A., et al. (2019) A Phase 2 Study of GVAX Colon Vaccine with Cyclophosphamide and Pembrolizumab in Patients with Mismatch Repair Proficient Advanced Colorectal Cancer. Cancer Medicine, 9, 1485-1494. https://doi.org/10.1002/cam4.2763
|
[44]
|
Ribas, A., Dummer, R., Puzanov, I., VanderWalde, A., Andtbacka, R.H.I., Michielin, O., et al. (2017) Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell, 170, 1109-1119.e10. https://doi.org/10.1016/j.cell.2017.08.027
|
[45]
|
Pearl, T.M., Markert, J.M., Cassady, K.A. and Ghonime, M.G. (2019) Oncolytic Virus-Based Cytokine Expression to Improve Immune Activity in Brain and Solid Tumors. Molecular Therapy-Oncolytics, 13, 14-21. https://doi.org/10.1016/j.omto.2019.03.001
|
[46]
|
Samson, A., Scott, K.J., Taggart, D., West, E.J., Wilson, E., Nuovo, G.J., et al. (2018) Intravenous Delivery of Oncolytic Reovirus to Brain Tumor Patients Immunologically Primes for Subsequent Checkpoint Blockade. Science Translational Medicine, 10, eaam7577.
|
[47]
|
Fakih, M., Harb, W., Mahadevan, D., Babiker, H., Berlin, J., Lillie, T., et al. (2023) Safety and Efficacy of the Tumor-Selective Adenovirus Enadenotucirev, in Combination with Nivolumab, in Patients with Advanced/metastatic Epithelial Cancer: A Phase I Clinical Trial (Spice). Journal for ImmunoTherapy of Cancer, 11, e006561. https://doi.org/10.1136/jitc-2022-006561
|
[48]
|
Sivan, A., Corrales, L., Hubert, N., Williams, J.B., Aquino-Michaels, K., Earley, Z.M., et al. (2015) Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti-PD-L1 Efficacy. Science, 350, 1084-1089. https://doi.org/10.1126/science.aac4255
|
[49]
|
Routy, B., Le Chatelier, E., Derosa, L., Duong, C.P.M., Alou, M.T., Daillère, R., et al. (2018) Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science, 359, 91-97. https://doi.org/10.1126/science.aan3706
|
[50]
|
Kobayashi, H., Dubois, S., Sato, N., Sabzevari, H., Sakai, Y., Waldmann, T.A., et al. (2005) Role of Trans-Cellular IL-15 Presentation in the Activation of NK Cell-Mediated Killing, Which Leads to Enhanced Tumor Immunosurveillance. Blood, 105, 721-727. https://doi.org/10.1182/blood-2003-12-4187
|
[51]
|
Bentebibel, S., Hurwitz, M.E., Bernatchez, C., Haymaker, C., Hudgens, C.W., Kluger, H.M., et al. (2019) A First-In-Human Study and Biomarker Analysis of NKTR-214, a Novel IL2Rβγ-Biased Cytokine, in Patients with Advanced or Metastatic Solid Tumors. Cancer Discovery, 9, 711-721. https://doi.org/10.1158/2159-8290.cd-18-1495
|
[52]
|
Ferrari de Andrade, L., Tay, R.E., Pan, D., Luoma, A.M., Ito, Y., Badrinath, S., et al. (2018) Antibody-Mediated Inhibition of MICA and MICB Shedding Promotes NK Cell-Driven Tumor Immunity. Science, 359, 1537-1542. https://doi.org/10.1126/science.aao0505
|