pMMR-MSS/MSI-L结直肠癌:免疫治疗的最新进展与未来方向——综述
pMMR-MSS/MSI-L Colorectal Cancer: Latest Advances and Future Directions in Immunotherapy—A Review
DOI: 10.12677/acm.2025.1561848, PDF, HTML, XML,    科研立项经费支持
作者: 商 洲, 陈悦之*:山东第一医科大学附属山东省立医院胃肠外科,山东 济南
关键词: 结直肠癌免疫检查点抑制剂错配修复微卫星不稳定性联合治疗Colorectal Cancer Immune Checkpoint Inhibitors Mismatch Repair Microsatellite Instability Combination Therapy
摘要: 免疫检查点抑制剂(ICIs)在治疗多种晚期实体肿瘤中的成功,引发了其在结直肠癌(CRC)治疗中的广泛关注。ICIs在具有错配修复缺陷(dMMR)和微卫星高度不稳定(MSI-H) CRC患者中表现出一定疗效。因此FDA加速批准了两种PD-1抑制抗体(anti-PD-1),帕博利珠单抗(Pembrolizumab)和纳武立珠单抗(Nivolumab)用于dMMR/MSI-H CRC的治疗。相反,具有错配修复正常(pMMR)和微卫星稳定/微卫星低度不稳定(MSS/MSI-L)的患者通常表现出较少的肿瘤浸润淋巴细胞(TILs),对免疫治疗的反应较差。这些不同的肿瘤微环境突显了肿瘤–免疫相互作用的复杂性,以及将ICIs的效果扩展到大多数CRC患者的挑战。最近的研究表明,ICIs在CRC患者中可能具有潜在获益,这提示了ICIs在CRC领域更广泛的应用前景。本文介绍了这些进展,并探讨了pMMR-MSS/MSI-L CRC中ICIs的未来发展方向。
Abstract: The success of immune checkpoint inhibitors (ICIs) in treating various advanced solid tumors has spurred considerable interest in their application for colorectal cancer (CRC) therapy. ICIs have demonstrated clinical efficacy in CRC patients with deficient mismatch repair (dMMR) and high microsatellite instability (MSI-H). Consequently, the FDA granted accelerated approval to two anti-PD-1 antibodies—pembrolizumab and nivolumab—for treating dMMR/MSI-H CRC. In contrast, patients with proficient mismatch repair (pMMR) and microsatellite stable/low instability (MSS/MSI-L) tumors typically exhibit fewer tumor-infiltrating lymphocytes (TILs) and demonstrate poorer responses to immunotherapy. These distinct tumor microenvironments highlight the complexity of tumor-immune interactions and the challenges in extending ICI benefits to the majority of CRC patients. Recent studies suggest potential therapeutic benefits of ICIs in CRC, indicating broader clinical applications. This article reviews these advances and explores future directions for ICI therapy in pMMR-MSS/MSI-L CRC.
文章引用:商洲, 陈悦之. pMMR-MSS/MSI-L结直肠癌:免疫治疗的最新进展与未来方向——综述[J]. 临床医学进展, 2025, 15(6): 1259-1269. https://doi.org/10.12677/acm.2025.1561848

1. 引言

结直肠癌(CRC)是全球第三大常见恶性肿瘤,也是癌症相关死亡的第二大原因[1]。尽管筛查工作的开展已使发病率和死亡率有所下降,但约25%的CRC患者在确诊时已处于疾病晚期。此外,在早期确诊的患者中,仍有约25%~50%会出现转移性进展[2]-[4]。随着传统化疗和靶向药物的疗效提升已进入平台期,开发新型有效治疗策略以改善患者生存结局已成为当前迫切的临床需求。免疫治疗旨在通过激活人体免疫系统来对抗肿瘤。免疫检查点抑制剂(ICIs)通过调控T细胞、抗原呈递细胞(APCs)与肿瘤细胞间的相互作用,解除被抑制的免疫应答。目前,ICIs已成为治疗错配修复缺陷(dMMR)或微卫星高度不稳定(MSI-H) CRC的有效手段。然而,错配修复正常且微卫星稳定/低度不稳定(pMMR-MSS/MSI-L)的患者通常表现为肿瘤浸润淋巴细胞数量稀少,对免疫检查点抑制剂的应答欠佳。因此,如何让占CRC大多数的pMMR-MSS/MSI-L型患者从免疫治疗中获益,成为当前面临的主要挑战。基于此,本综述重点探讨了免疫疗法在pMMR-MSS/MSI-L CRC中的进展和未来方向。

2. pMMR-MSS/MSI-L CRC癌症免疫治疗的探索

错配修复(MMR)系统在维持DNA稳定性中发挥关键作用[5]。通过免疫组化检测MMR蛋白(MLH1、MSH2、MSH6或PMS2)的表达状态,可将CRC分为错配修复缺陷型(dMMR)和错配修复正常型(pMMR) [6]。与占CRC总数5%的dMMR-MSI-H亚型不同,pMMR-MSS/MSI-L肿瘤占全部CRC病例的95%。这类肿瘤突变负荷显著较低且免疫细胞浸润不足,导致对ICIs应答不佳。总体而言,pMMR-MSS/MSI-L肿瘤具有更低的肿瘤突变负荷(TMB)和更少的肿瘤浸润淋巴细胞(TILs)。越来越多的证据表明,TMB水平与TILs浸润程度与ICIs疗效相关[7] [8]。随着对CRC肿瘤微环境认知的深入,免疫调节治疗策略正在探索中。针对pMMR-MSS/MSI-L CRC患者原发性ICIs耐药的问题,新的治疗发现和策略正在临床试验中进行验证。本综述涉及了近年来CRC新辅助免疫治疗试验的研究报道(见表1)。

Table 1. Summary of recent clinical trials on neoadjuvant immunotherapy in CRC

1. 最新CRC新辅助免疫治疗试验的研究报道

研究

治疗方案

样本数

中位生存期(月)

总生存期(月)

MODULE

5-FU vs.Atezolizumab

NA

NA

NA

AtezoTRIBE

FOLFOXIRI + Bevacizumab + Atezolizumab vs. FOLFOXIRI + Bevacizumab

218

12.9 vs. 11.4

NA

NCT03414983

FOLFOXIRI + Bevacizumab + Nivolumab vs. FOLFOXIRI + Nevacizumab

Recruiting

NA

NA

COLUMBIA-1

FOLFOX + Bevacizumab vs. Durvalumab + tremelimumab

Recruiting

NA

NA

NCT04266287

CAPOX + Bevacizumab + Pembrolizumab

Recruiting

NA

NA

AVETUX

Avelumab + FOLFOX + Cetuximab

NA

12

NA

MACBETH

VOLFI

FOLFOXIRI + Cetuximab or Panitumumab

NA

NA

NA

CAVE-Colon

Avelumab + Cetuximab

NA

3.6

11.6

NCT01633970

Atezolizumab + Bevacizumab

14

NA

NA

NCT03406871

Nivolumab + Regorafenib

25

7.9

NA

NCT03797326

Pembrolizumab + Lenvatinib

32

2.3

7.5

NCT03442569

Nivolumab + Ipilimumab + Panitumumab

49

5.7

NA

NCT02324257

CEA-CD3

NA

NA

NA

NCT02650713

CEA-DC3 + Atezolizumab

NA

NA

NA

NA

CEA-TCB + Atezolizumab

NA

NA

NA

NCT04137289

TRAILR2-CDH17

NA

NA

NA

NCT01988896

Cobimetinib + Atezolizumab

23

NA

NA

NCT02788279

AtezolizumabRegorafenib vs. Atezolizumab + Cobimetinib + Regorafenib

NA

NA

NA

NCT03104439

Nivolumab + Ipilimumab + Hypofractionated radiotherapy

40

NA

15.8

NCT02437071

Pembrolizumab + External beam radiation therapy

22

NA

NA

NCT02948348

CRT + Nivolumab

37

NA

NA

NA

Fruquintinib + Sintilimab + Radiotherapy vs. Fruquintinib + Sintilimab

25 vs. 30

6.05 vs.2.6

NA

CCTG CO.26

Durvalumab + Tremlimumab vs.BSC

NA

NA

6.6 vs. 4.1

NCT03026140

Ipilimumab + Nivolumab

15

NA

NA

NCT02981524

GVAX colon vaccine + Pembrolizumab

17

NA

NA

NCT02636036

Malignant tumor adenovirus + Cetuximab

NA

NA

NA

NA

FMT + Radiotherapy vs. FMT + Non-radiotherapy

NA

6.1 vs. 3.1

NA

3. ICIs的联合治疗

3.1. ICIs联合化疗及抗VEGF药物

多数研究表明,氟尿嘧啶类(如5-FU)、铂类、烷化剂及紫杉烷类化疗药物可通过多种机制改善肿瘤免疫微环境。这些机制包括:诱导免疫原性细胞死亡、上调主要组织相容性复合体I类(MHC-I)分子表达、释放肿瘤新抗原、调节免疫抑制细胞群,以及增加肿瘤细胞程序性死亡配体1 (PD-L1)的表达(见图1)。其中奥沙利铂能诱导CRC细胞系发生免疫原性细胞死亡,其机制是通过将内质网分子伴侣钙网蛋白转运至细胞表面,使肿瘤特异性抗原被免疫系统识别[9] [10]

Figure 1. Schematic diagram of immune checkpoint inhibitors (ICIs) in cancer immunotherapy

1. ICIs对癌症的免疫治疗的示意图

作为一线治疗广泛应用的抗血管生成药物,贝伐利珠单抗常与化疗联用。该药物通过结合血管内皮生长因子A(VEGF-A)抑制VEGF/VEGFR通路,从而实现:① 血管正常化;② 促进T细胞向肿瘤浸润;③ 通过树突状细胞(DC)成熟激活效应免疫细胞;④ 减少调节性T细胞(Tregs)和髓源性抑制细胞(MDSCs)的扩增[11] [12]。这些发现为化疗联合抗血管生成药物与免疫治疗的临床应用提供了理论依据。

然而,在评估5-FU联合阿替利珠单抗作为转移性BRAF野生型CRC患者FOLFOX一线诱导治疗后维持治疗的MODUL试验中,该方案并未显示出无进展生存期(PFS)或总生存期(OS)的显著差异,因此,后续的研究重点又放在了同时联合抗VEGF药物上面。近期公布的AtezoTRIBE研究比较了FOLFOXIRI联合贝伐珠单抗及阿替利珠单抗对比单纯化疗(FOLFOXIRI + 贝伐利珠单抗)一线治疗的疗效[13]。在218例入组患者中,199例确诊为晚期MSS型CRC。该亚组分析显示,联合治疗组患者中位PFS为12.9个月,对照组为11.4个月(p = 0.07)。这仍然没有得出ICIs联合化疗及抗VEGF药物具有确切疗效的结论,但是目前仍然有多项临床试验正在评估化疗联合免疫疗法的一线治疗方案:CA2099X8试验(NCT03414983)比较FOLFOX联合贝伐利珠单抗及纳武利尤单抗与FOLFOX联合贝伐珠单抗的疗效[14];COLUMBIA-1试验(NCT04068610)则对比FOLFOX联合贝伐利珠单抗与度伐利尤单抗和替西木单抗方案的差异[15],这些试验结果尚未公布。我们期待这些实验结果能为ICIs的联合治疗的效果提供确切的证据。此外,POCHI试验(NCT04262687)正在探索CAPOX联合贝伐利珠单抗和帕博利珠单抗作为MSS型转移性CRC一线治疗的潜力,但目前尚未建立基于生物标志物的患者筛选策略以优化该联合疗法的适用人群[16]

3.2. ICIs联合化疗及抗EGFR药物

转移性RAS/BRAF野生型CRC的标准治疗方案为表皮生长因子受体(EGFR)靶向药物联合化疗。西妥昔单抗作为一种嵌合型IgG1抗体,可通过免疫细胞表面的Fcγ受体介导抗体依赖性细胞毒性(ADCC),并促进树突细胞(DC)表达MHC-II分子[17],目前已获批用于CRC治疗。在一线治疗中,AVETUX临床试验(不考虑微卫星状态)探索了在FOLFOX联合西妥昔单抗基础上加用阿维单抗的方案。ORR达79.5%,12个月PFS为40%,未能达到将12个月PFS率从40%提升至57%的主要研究终点[18]。但这仍然为ICIs联合化疗及抗EGFR药物的临床疗效提供了确切的临床依据。基于既往抗EGFR治疗获益后又在含EGFR方案中复发的患者群体报告。II期单臂CAVE-Colon试验探索了三线治疗中阿维单抗联合西妥昔单抗的潜在获益[19]。该试验结果显示OS达11.6个月,PFS为3.6个月,显示出了较好的疗效,但后续仍然需要进一步的研究以探索ICIs联合化疗及抗EGFR药物的疗效。

帕尼单抗是另外一种靶向EGFR的单克隆抗体,是KRAS/NRAS/BRAF野生型转移性CRC的标准治疗。对帕尼单抗的耐药性与CTLA-4和PD-L1表达的增加有关[20]。LCCC1632试验(NCT03442569)是一项单臂II期临床研究,正在调查纳武利珠单抗和伊匹单抗与帕尼单抗联合治疗KRAS/NRAS/BRAF野生型MSS难治性CRC患者的安全性和疗效。在49名可评估患者中,12周的反应率为35%,PFS为5.7个月[21]。这些结果表明,ICIs联合抗EGFR治疗对于MSS CRC是安全有效的,值得进一步研究。亟需更大规模的研究来验证这些结果。

3.3. ICIs联合双特异性抗体

双特异性抗体是一类新型靶向治疗药物,其设计可同时结合一个抗原的两个不同表位或两种不同抗原。通过双重靶向作用,这类抗体能够在肿瘤细胞与T细胞之间形成桥梁,增强T细胞在肿瘤组织中的浸润与活化。在MSS CRC治疗中,CEA-CD3是首个显示显著疗效的双特异性抗体。临床试验(NCT02650713)显示,CEA-CD3联合阿替利珠单抗治疗转移性MSS CRC的临床活性优于CEA-CD3单药治疗(NCT02324257)。联合治疗组部分缓解(PR)率达18% (2/11),疾病控制率(DCR)达82% (9/11) [22]

癌胚抗原T细胞双特异性抗体(CEA-TCB)是另一种靶向肿瘤细胞CEA和T细胞CD3的双特异性抗体,其作用机制不依赖其他免疫系统相关相互作用即可促使T细胞与肿瘤细胞结合[23]。目前CEA-TCB正在进行单药及联合阿替利珠单抗的I期临床试验[24],在实体瘤及微卫星稳定型结直肠癌中已显示一定疗效[25]。另有三种新型双特异性抗体在CRC临床前试验中展现出强效的T细胞介导抗肿瘤活性:TRAILR2-CDH17 (BI 905711)、GCC-CD3 (PF-07062119)及CD137-PD-L1 (FS222) [26]-[28]。但是作为一种创新治疗策略,双特异性抗体仍需进一步研究探索。

3.4. ICIs联合MEK抑制剂

临床前研究表明,抑制RAS-MAPK通路下游效应分子MEK可提升肿瘤组织MHC-I和PD-L1表达水平,促进肿瘤周围T细胞克隆性扩增,并增强ICIs的抗肿瘤活性[29] [30]。基于此,研究者在一项Ib期研究(NCT01988896)中评估了MEK抑制剂考比替尼联合PD-L1抑制剂阿替利珠单抗的治疗策略[31]。数据显示,23例CRC患者中有4例达到部分缓解(17%,其中3例为pMMR-MSI-L型,1例分型不明)。随访结果显示,84例转移性CRC患者中7例获得部分缓解(8%,其中6例为MSS/MSI-L型,1例为MSI-H型),且不良事件可控。

尽管该联合方案显示出潜在协同效应,但随后的III期IMblaze370研究(NCT02788279)未能证实这一效果。这项随机对照试验对比了阿替利珠单抗(单药或联合考比替尼)与瑞戈非尼在pMMR-MSI-L型难治性CRC患者中的疗效[32]。为解释这一意外失败,研究者正考虑调整联合方案的给药细节和治疗策略。ICIs联合MEK抑制剂的临床效果差异较大,多项临床试验仍在探索MEK抑制剂联合抗PD-1抗体及其他化疗药物的方案(NCT02484404、NCT03122509) [33]

3.5. ICIs联合MAPK信号抑制剂

RAS/BRAF/MEK/ERK通路的过度表达与激活在CRC中较为常见[34] [35]。越来越多的证据表明,MAPK通路失调与免疫抑制表型相关。既往研究证实,MAPK信号对T细胞的发育、活化、增殖及存活至关重要,并可能调控PD-L1和CTLA-4的表达[36] [37]。这为探索免疫治疗药物与选择性抑制剂在pMMR-MSS/MSI-L CRC中的协同效应提供了生物学基础。但是目前仍然没有确切的证据表明ICIs联合MAPK信号抑制剂具有良好的临床疗效。展望未来,通过进一步探索化疗、靶向治疗与免疫治疗的三联疗法,或其他基于免疫治疗的联合治疗方案,有望改善pMMR-MSS/MSI-L CRC患者的临床预后。

3.6. ICIs联合放疗

早期研究表明,放疗(RT)可通过诱导免疫原性细胞死亡(ICD)释放损伤相关分子模式(DAMPs),增强抗原呈递细胞(APCs)的抗原呈递功能,激活T细胞,并产生远端抗肿瘤效应[38] (见图2)。作为ICD的标志,DAMPs包括肿瘤相关新抗原的上调、炎性细胞因子以及肿瘤细胞和基质表面免疫原性标志物的表达。

Figure 2. Schematic diagram of the mechanisms by which radiotherapy enhances the efficacy of ICIs

2. 放疗增强ICIs疗效的机制示意图

基于此,Ting等开展的一项单臂、非随机II期临床试验(NCT03104439)采用纳武利尤单抗 + 伊匹木单抗 + 放疗治疗40例MSS型转移性CRC患者[39]。研究结果表明,放疗联合免疫治疗可延长MSS型CRC患者的OS并增强ICIs疗效,这为该类患者提供了新的治疗策略。除此之外,单臂II期研究(NCT02437071)的中期结果显示,22例pMMR-MSI-L CRC患者中仅有1例对帕博利珠单抗联合外照射放疗有反应[40],但后续研究报道了更令人鼓舞的结果。在II期临床试验(NCT03104439)中,CTLA-4与PD-1双重阻断联合放疗的DCR为29.2% (7/24),客观缓解率(ORR)为12.5% (3/24)。ICIs联合放疗具有显著的临床疗效。

另外一项Ib/II期VOLTAGE-A研究(NCT02948348)的短期结果显示,新辅助放化疗(CRT)后序贯纳武利尤单抗及根治性手术可有效治疗局部进展期MSS型CRC患者[41]。37例患者中,1例(3%)经上述治疗后获得临床完全缓解并拒绝根治手术,11例(30%)达到病理完全缓解(AJCC 0期),主要病理缓解率(AJCC 0 + 1期)达38% (14/37)。

美国癌症研究协会(AACR)年会公布的一项前瞻性队列研究评估了呋喹替尼联合信迪利单抗治疗pMMR/MSS CRC患者的疗效[42]。本研究共纳入55例患者,其中25例接受过放疗,30例未接受放疗。总体人群的ORR、DCR和PFS分别为16.4%、56.3%和3.58个月。但放疗组与非放疗组存在显著差异:放疗组ORR为28.0% vs 6.7% (OR = 7.344, P = 0.039),DCR为80.0% vs 36.7% (OR = 7.991, P = 0.010),PFS为6.05个月vs 2.60个月(HR = 0.286, P < 0.001)。多变量Cox回归分析显示,放疗是影响PFS的独立因素。接受放疗的pMMR/MSS CRC患者从呋喹替尼联合信迪利单抗治疗中获益更显著。这些有力数据证实了ICIs联合放疗治疗策略的巨大潜力。

4. 其他免疫疗法

4.1. 癌症疫苗

免疫调节领域还存在若干备受期待的新型治疗策略。其中,免疫治疗联合肿瘤疫苗的组合方案显示出增强宿主抗肿瘤免疫应答的潜力[43]。一项II期研究(NCT02981524)采用GVAX结肠癌疫苗联合帕博利珠单抗,虽未达到主要终点,但在pMMR CRC患者中观察到生化应答(CEA下降 ≥ 30%),17例患者中有7例(41%)出现生化应答[44]。目前该研究正在进行队列扩展,预计将获得更具说服力的数据。

4.2. 溶瘤病毒

溶瘤病毒(OVs)能够通过直接裂解肿瘤细胞并诱导免疫原性细胞死亡,从而促进抗肿瘤免疫应答(48)。由于OVs感染可使肿瘤由“冷”转“热”,这一特性显著增强了ICIs的抗肿瘤能力。OVs联合ICIs的疗效已在多项实体瘤临床试验中得到初步验证[45] [46]。目前一项I期临床试验(NCT02636036)正在评估恶性腺病毒(一种嵌合型腺病毒)联合西妥昔单抗在包括CRC在内的实体瘤中的疗效[47]

4.3. 肠道菌群

最新研究发现,假长双歧杆菌(Bifidobacterium pseudolongum)可通过释放黄嘌呤增强T细胞活性,从而显著影响ICIs的疗效[48]。一项I期临床试验(NCT03353402)已初步证实粪便微生物移植(FMT)联合ICIs治疗PD-1难治性转移性黑色素瘤的安全性和可行性。此外,AACR年会公布的一项前瞻性队列研究探讨了pMMR/MSS CRC患者肠道菌群特征与治疗反应的关系。在接受微生物组测序的20例患者中,放疗组与非放疗组的PFS存在显著差异(6.1个月 vs 3.1个月,P = 0.002)。在菌属水平上,双歧杆菌属(Bifidobacterium)和乳杆菌属(Lactobacillus)在放疗组显著富集,并显示出作为疗效预测生物标志物的潜力。其中,乳酸菌的高丰度与PFS延长具有强相关性。这些发现可能为pMMR/MSS CRC患者提供新的治疗策略。

4.4. NK细胞相关免疫疗法

近年来,NK细胞相关免疫治疗研究蓬勃发展。最新研究表明,细胞因子补充可促进NK细胞的发育及细胞毒性。在小鼠模型中发现,通过与邻近基质细胞膜结合型IL-15直接接触,可诱导NK细胞产生更强的细胞毒效应[49]。一项人类多中心I期研究显示,新型IL-2通路激动剂NKTR-214在经多线治疗的晚期患者中展现出临床活性,包括肿瘤缩小和持续疾病稳定[50]

NK细胞与CD8+ T细胞类似,也会受到免疫检查点分子的抑制。NKG2D作为NK细胞活化的关键受体,已被证实可被肿瘤细胞中多种配体上调[51]。Andrade等设计的靶向MICA α3结构域抗体不仅能阻止人类癌细胞表面MICA/MICB (NKG2D配体)的脱落,还在多种免疫功能正常的小鼠模型中抑制肿瘤生长,并在人源化小鼠模型中减少人类黑色素瘤转移[52]

目前临床应用的NKG2A靶向抗体Monalizumab可增强NK细胞功能,在提升抗PD-1疗法对MSS型转移性CRC疗效方面显示出潜力。其他NK细胞特异性抗体如利鲁单抗也正处于临床试验阶段。这些研究从多角度阐明了NK细胞的抗肿瘤机制,为基于NK细胞的癌症治疗临床研究奠定了重要基础。

5. 结论

近年来,CRC免疫治疗取得了显著进展,但仍面临重大挑战:如何克服大多数pMMR-MSS/MSI-L型CRC患者对免疫治疗的原发性耐药。为此,研究者已测试了多种ICI策略,旨在调节该亚型患者的免疫细胞并提升疗效。本综述通过探讨ICIs的联合治疗,总结归纳了免疫疗法在pMMR-MSS/MSI-L CRC的治疗进展,同时,我们还重点探讨了免疫疗法的未来方向。我们有理由相信,ICIs有望在不久的将来对CRC的治疗显示出更显著的临床效果。

基金项目

本研究由[山东省自然科学基金]资助,项目编号[ZR2022MH085]。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Pinsky, P.F. and Doroudi, M. (2016) Colorectal Cancer Screening. JAMA, 316, Article No. 1715.
https://doi.org/10.1001/jama.2016.13849
[3] Edwards, B.K., Ward, E., Kohler, B.A., Eheman, C., Zauber, A.G., Anderson, R.N., et al. (2009) Annual Report to the Nation on the Status of Cancer, 1975‐2006, Featuring Colorectal Cancer Trends and Impact of Interventions (Risk Factors, Screening, and Treatment) to Reduce Future Rates. Cancer, 116, 544-573.
https://doi.org/10.1002/cncr.24760
[4] Sargent, D., Sobrero, A., Grothey, A., O’Connell, M.J., Buyse, M., Andre, T., et al. (2009) Evidence for Cure by Adjuvant Therapy in Colon Cancer: Observations Based on Individual Patient Data from 20,898 Patients on 18 Randomized Trials. Journal of Clinical Oncology, 27, 872-877.
https://doi.org/10.1200/jco.2008.19.5362
[5] Li, G. (2007) Mechanisms and Functions of DNA Mismatch Repair. Cell Research, 18, 85-98.
https://doi.org/10.1038/cr.2007.115
[6] Ganesh, K., Stadler, Z.K., Cercek, A., Mendelsohn, R.B., Shia, J., Segal, N.H., et al. (2019) Immunotherapy in Colorectal Cancer: Rationale, Challenges and Potential. Nature Reviews Gastroenterology & Hepatology, 16, 361-375.
https://doi.org/10.1038/s41575-019-0126-x
[7] Lavin, Y., Kobayashi, S., Leader, A., Amir, E.D., Elefant, N., Bigenwald, C., et al. (2017) Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell, 169, 750-765.e17.
https://doi.org/10.1016/j.cell.2017.04.014
[8] Havel, J.J., Chowell, D. and Chan, T.A. (2019) The Evolving Landscape of Biomarkers for Checkpoint Inhibitor Immunotherapy. Nature Reviews Cancer, 19, 133-150.
https://doi.org/10.1038/s41568-019-0116-x
[9] Dosset, M., Vargas, T.R., Lagrange, A., Boidot, R., Végran, F., Roussey, A., et al. (2018) PD-1/PD-L1 Pathway: An Adaptive Immune Resistance Mechanism to Immunogenic Chemotherapy in Colorectal Cancer. OncoImmunology, 7, e1433981.
https://doi.org/10.1080/2162402x.2018.1433981
[10] Di Blasio, S., Wortel, I.M.N., van Bladel, D.A.G., de Vries, L.E., Duiveman-de Boer, T., Worah, K., et al. (2016) Human CD1c(+) DCs Are Critical Cellular Mediators of Immune Responses Induced by Immunogenic Cell Death. OncoImmunology, 5, e1192739.
https://doi.org/10.1080/2162402x.2016.1192739
[11] Limagne, E., Euvrard, R., Thibaudin, M., Rébé, C., Derangère, V., Chevriaux, A., et al. (2016) Accumulation of MDSC and Th17 Cells in Patients with Metastatic Colorectal Cancer Predicts the Efficacy of a Folfox-Bevacizumab Drug Treatment Regimen. Cancer Research, 76, 5241-5252.
https://doi.org/10.1158/0008-5472.can-15-3164
[12] Gavalas, N.G., Tsiatas, M., Tsitsilonis, O., Politi, E., Ioannou, K., Ziogas, A.C., et al. (2012) VEGF Directly Suppresses Activation of T Cells from Ascites Secondary to Ovarian Cancer via VEGF Receptor Type 2. British Journal of Cancer, 107, 1869-1875.
https://doi.org/10.1038/bjc.2012.468
[13] Baraibar, I., Mirallas, O., Saoudi, N., Ros, J., Salvà, F., Tabernero, J., et al. (2021) Combined Treatment with Immunotherapy-Based Strategies for MSS Metastatic Colorectal Cancer. Cancers, 13, Article No. 6311.
https://doi.org/10.3390/cancers13246311
[14] Cremolini, C., Rossini, D., Dell’Aquila, E., Lonardi, S., Conca, E., Del Re, M., et al. (2019) Rechallenge for Patients with ras and braf Wild-Type Metastatic Colorectal Cancer with Acquired Resistance to First-Line Cetuximab and Irinotecan. JAMA Oncology, 5, Article No. 343.
https://doi.org/10.1001/jamaoncol.2018.5080
[15] Martinelli, E., Martini, G., Famiglietti, V., Troiani, T., Napolitano, S., Pietrantonio, F., et al. (2021) Cetuximab Rechallenge Plus Avelumab in Pretreated Patients with ras Wild-Type Metastatic Colorectal Cancer. JAMA Oncology, 7, Article No. 1529.
https://doi.org/10.1001/jamaoncol.2021.2915
[16] Hodi, F.S., Lawrence, D., Lezcano, C., Wu, X., Zhou, J., Sasada, T., et al. (2014) Bevacizumab plus Ipilimumab in Patients with Metastatic Melanoma. Cancer Immunology Research, 2, 632-642.
https://doi.org/10.1158/2326-6066.cir-14-0053
[17] Martin-Romano, P., Ammari, S., El-Dakdoukti, Y., Baldini, C., Varga, A., Vuagnat, P., et al. (2020) Chemotherapy Beyond Immune Checkpoint Inhibitors in Patients with Metastatic Colorectal Cancer. European Journal of Cancer, 137, 117-126.
https://doi.org/10.1016/j.ejca.2020.06.030
[18] Fukuoka, S., Hara, H., Takahashi, N., Kojima, T., Kawazoe, A., Asayama, M., et al. (2020) Regorafenib plus Nivolumab in Patients with Advanced Gastric or Colorectal Cancer: An Open-Label, Dose-Escalation, and Dose-Expansion Phase Ib Trial (REGONIVO, Epoc1603). Journal of Clinical Oncology, 38, 2053-2061.
https://doi.org/10.1200/jco.19.03296
[19] Taylor, M.H., Schmidt, E.V., Dutcus, C., Pinheiro, E.M., Funahashi, Y., Lubiniecki, G., et al. (2020) The LEAP Program: Lenvatinib plus Pembrolizumab for the Treatment of Advanced Solid Tumors. Future Oncology, 17, 637-648.
https://doi.org/10.2217/fon-2020-0937
[20] Gajewski, T.F., Schreiber, H. and Fu, Y. (2013) Innate and Adaptive Immune Cells in the Tumor Microenvironment. Nature Immunology, 14, 1014-1022.
https://doi.org/10.1038/ni.2703
[21] Zaanan, A., Shi, Q., Taieb, J., Alberts, S.R., Meyers, J.P., Smyrk, T.C., et al. (2018) Role of Deficient DNA Mismatch Repair Status in Patients with Stage III Colon Cancer Treated with FOLFOX Adjuvant Chemotherapy: A Pooled Analysis From 2 Randomized Clinical Trials. JAMA Oncology, 4, Article No. 379.
https://doi.org/10.1001/jamaoncol.2017.2899
[22] Vétizou, M., Pitt, J.M., Daillère, R., Lepage, P., Waldschmitt, N., Flament, C., et al. (2015) Anticancer Immunotherapy by CTLA-4 Blockade Relies on the Gut Microbiota. Science, 350, 1079-1084.
https://doi.org/10.1126/science.aad1329
[23] Bacac, M., Klein, C. and Umana, P. (2016) CEA TCB: A Novel Head-to-Tail 2:1 T Cell Bispecific Antibody for Treatment of Cea-Positive Solid Tumors. OncoImmunology, 5, e1203498.
https://doi.org/10.1080/2162402x.2016.1203498
[24] Barroso-Sousa, R. and Ott, P.A. (2017) PD-1 Inhibitors in Endometrial Cancer. Oncotarget, 8, 106169-106170.
https://doi.org/10.18632/oncotarget.22583
[25] Argiles, G. (2018) Initial Experience with the Bispecific Anti-Cea Anti-CD3 Antibody and Its Expected Impact on Future Treatment for Patients with Colorectal Cancer. ESMO Open, 3, e000377.
https://doi.org/10.1136/esmoopen-2018-000377
[26] Lakins, M.A., Koers, A., Giambalvo, R., Munoz-Olaya, J., Hughes, R., Goodman, E., et al. (2020) FS222, a CD137/PD-L1 Tetravalent Bispecific Antibody, Exhibits Low Toxicity and Antitumor Activity in Colorectal Cancer Models. Clinical Cancer Research, 26, 4154-4167.
https://doi.org/10.1158/1078-0432.ccr-19-2958
[27] Mathur, D., Root, A.R., Bugaj-Gaweda, B., Bisulco, S., Tan, X., Fang, W., et al. (2020) A Novel GUCY2C-CD3 T-Cell Engaging Bispecific Construct (PF-07062119) for the Treatment of Gastrointestinal Cancers. Clinical Cancer Research, 26, 2188-2202.
https://doi.org/10.1158/1078-0432.ccr-19-3275
[28] García-Martínez, J.M., Wang, S., Weishaeupl, C., Wernitznig, A., Chetta, P., Pinto, C., et al. (2021) Selective Tumor Cell Apoptosis and Tumor Regression in CDH17-Positive Colorectal Cancer Models Using BI 905711, a Novel Liver-Sparing TRAILR2 Agonist. Molecular Cancer Therapeutics, 20, 96-108.
https://doi.org/10.1158/1535-7163.mct-20-0253
[29] Rosen, L.S., LoRusso, P., Ma, W.W., Goldman, J.W., Weise, A., Colevas, A.D., et al. (2016) A First-in-Human Phase I Study to Evaluate the MEK1/2 Inhibitor, Cobimetinib, Administered Daily in Patients with Advanced Solid Tumors. Investigational New Drugs, 34, 604-613.
https://doi.org/10.1007/s10637-016-0374-3
[30] Ebert, P.J.R., Cheung, J., Yang, Y., McNamara, E., Hong, R., Moskalenko, M., et al. (2016) MAP Kinase Inhibition Promotes T Cell and Anti-Tumor Activity in Combination with PD-L1 Checkpoint Blockade. Immunity, 44, 609-621.
https://doi.org/10.1016/j.immuni.2016.01.024
[31] Nanda, V.G.Y., Peng, W., Hwu, P., Davies, M.A., Ciliberto, G., Fattore, L., et al. (2016) Melanoma and Immunotherapy Bridge 2015. Journal of Translational Medicine, 14, Article No. 65.
https://doi.org/10.1186/s12967-016-0791-2
[32] Eng, C., Kim, T.W., Bendell, J., Argilés, G., Tebbutt, N.C., Di Bartolomeo, M., et al. (2019) Atezolizumab with or without Cobimetinib versus Regorafenib in Previously Treated Metastatic Colorectal Cancer (imblaze370): A Multicentre, Open-Label, Phase 3, Randomised, Controlled Trial. The Lancet Oncology, 20, 849-861.
https://doi.org/10.1016/s1470-2045(19)30027-0
[33] Sclafani, F. (2019) MEK and PD-L1 Inhibition in Colorectal Cancer: A Burning Blaze Turning into a Flash in the Pan. The Lancet Oncology, 20, 752-753.
https://doi.org/10.1016/s1470-2045(19)30076-2
[34] Forrester, K., Almoguera, C., Han, K., Grizzle, W.E. and Perucho, M. (1987) Detection of High Incidence of K-Ras Oncogenes during Human Colon Tumorigenesis. Nature, 327, 298-303.
https://doi.org/10.1038/327298a0
[35] Fang, J.Y. and Richardson, B.C. (2005) The MAPK Signalling Pathways and Colorectal Cancer. The Lancet Oncology, 6, 322-327.
https://doi.org/10.1016/s1470-2045(05)70168-6
[36] Kumar, S., Principe, D.R., Singh, S.K., Viswakarma, N., Sondarva, G., Rana, B., et al. (2020) Mitogen-Activated Protein Kinase Inhibitors and T-Cell-Dependent Immunotherapy in Cancer. Pharmaceuticals, 13, Article No. 9.
https://doi.org/10.3390/ph13010009
[37] Vella, L.J., Pasam, A., Dimopoulos, N., Andrews, M., Knights, A., Puaux, A., et al. (2014) MEK Inhibition, Alone or in Combination with BRAF Inhibition, Affects Multiple Functions of Isolated Normal Human Lymphocytes and Dendritic Cells. Cancer Immunology Research, 2, 351-360.
https://doi.org/10.1158/2326-6066.cir-13-0181
[38] McLaughlin, M., Patin, E.C., Pedersen, M., Wilkins, A., Dillon, M.T., Melcher, A.A., et al. (2020) Inflammatory Microenvironment Remodelling by Tumour Cells after Radiotherapy. Nature Reviews Cancer, 20, 203-217.
https://doi.org/10.1038/s41568-020-0246-1
[39] Parikh, A.R., Szabolcs, A., Allen, J.N., Clark, J.W., Wo, J.Y., Raabe, M., et al. (2021) Radiation Therapy Enhances Immunotherapy Response in Microsatellite Stable Colorectal and Pancreatic Adenocarcinoma in a Phase II Trial. Nature Cancer, 2, 1124-1135.
https://doi.org/10.1038/s43018-021-00269-7
[40] Ding, Y., Weng, S., Zhu, N., Mi, M., Xu, Z., Zhong, L., et al. (2023) Immunotherapy Combined with Local Therapy in the Late-Line Treatment of Repair-Proficient (PMMR)/Microsatellite Stable (MSS) Metastatic Colorectal Cancer. Heliyon, 9, e22092.
https://doi.org/10.1016/j.heliyon.2023.e22092
[41] Tran, B., Kopetz, S., Tie, J., Gibbs, P., Jiang, Z., Lieu, C.H., et al. (2011) Impact of BRAF Mutation and Microsatellite Instability on the Pattern of Metastatic Spread and Prognosis in Metastatic Colorectal Cancer. Cancer, 117, 4623-4632.
https://doi.org/10.1002/cncr.26086
[42] Johnson, B.A., Yarchoan, M., Lee, V., Laheru, D.A. and Jaffee, E.M. (2017) Strategies for Increasing Pancreatic Tumor Immunogenicity. Clinical Cancer Research, 23, 1656-1669.
https://doi.org/10.1158/1078-0432.ccr-16-2318
[43] Yarchoan, M., Huang, C., Zhu, Q., Ferguson, A.K., Durham, J.N., Anders, R.A., et al. (2019) A Phase 2 Study of GVAX Colon Vaccine with Cyclophosphamide and Pembrolizumab in Patients with Mismatch Repair Proficient Advanced Colorectal Cancer. Cancer Medicine, 9, 1485-1494.
https://doi.org/10.1002/cam4.2763
[44] Ribas, A., Dummer, R., Puzanov, I., VanderWalde, A., Andtbacka, R.H.I., Michielin, O., et al. (2017) Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell, 170, 1109-1119.e10.
https://doi.org/10.1016/j.cell.2017.08.027
[45] Pearl, T.M., Markert, J.M., Cassady, K.A. and Ghonime, M.G. (2019) Oncolytic Virus-Based Cytokine Expression to Improve Immune Activity in Brain and Solid Tumors. Molecular Therapy-Oncolytics, 13, 14-21.
https://doi.org/10.1016/j.omto.2019.03.001
[46] Samson, A., Scott, K.J., Taggart, D., West, E.J., Wilson, E., Nuovo, G.J., et al. (2018) Intravenous Delivery of Oncolytic Reovirus to Brain Tumor Patients Immunologically Primes for Subsequent Checkpoint Blockade. Science Translational Medicine, 10, eaam7577.
[47] Fakih, M., Harb, W., Mahadevan, D., Babiker, H., Berlin, J., Lillie, T., et al. (2023) Safety and Efficacy of the Tumor-Selective Adenovirus Enadenotucirev, in Combination with Nivolumab, in Patients with Advanced/metastatic Epithelial Cancer: A Phase I Clinical Trial (Spice). Journal for ImmunoTherapy of Cancer, 11, e006561.
https://doi.org/10.1136/jitc-2022-006561
[48] Sivan, A., Corrales, L., Hubert, N., Williams, J.B., Aquino-Michaels, K., Earley, Z.M., et al. (2015) Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti-PD-L1 Efficacy. Science, 350, 1084-1089.
https://doi.org/10.1126/science.aac4255
[49] Routy, B., Le Chatelier, E., Derosa, L., Duong, C.P.M., Alou, M.T., Daillère, R., et al. (2018) Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science, 359, 91-97.
https://doi.org/10.1126/science.aan3706
[50] Kobayashi, H., Dubois, S., Sato, N., Sabzevari, H., Sakai, Y., Waldmann, T.A., et al. (2005) Role of Trans-Cellular IL-15 Presentation in the Activation of NK Cell-Mediated Killing, Which Leads to Enhanced Tumor Immunosurveillance. Blood, 105, 721-727.
https://doi.org/10.1182/blood-2003-12-4187
[51] Bentebibel, S., Hurwitz, M.E., Bernatchez, C., Haymaker, C., Hudgens, C.W., Kluger, H.M., et al. (2019) A First-In-Human Study and Biomarker Analysis of NKTR-214, a Novel IL2Rβγ-Biased Cytokine, in Patients with Advanced or Metastatic Solid Tumors. Cancer Discovery, 9, 711-721.
https://doi.org/10.1158/2159-8290.cd-18-1495
[52] Ferrari de Andrade, L., Tay, R.E., Pan, D., Luoma, A.M., Ito, Y., Badrinath, S., et al. (2018) Antibody-Mediated Inhibition of MICA and MICB Shedding Promotes NK Cell-Driven Tumor Immunity. Science, 359, 1537-1542.
https://doi.org/10.1126/science.aao0505