|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Pinsky, P.F. and Doroudi, M. (2016) Colorectal Cancer Screening. JAMA, 316, Article No. 1715. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Edwards, B.K., Ward, E., Kohler, B.A., Eheman, C., Zauber, A.G., Anderson, R.N., et al. (2009) Annual Report to the Nation on the Status of Cancer, 1975‐2006, Featuring Colorectal Cancer Trends and Impact of Interventions (Risk Factors, Screening, and Treatment) to Reduce Future Rates. Cancer, 116, 544-573. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sargent, D., Sobrero, A., Grothey, A., O’Connell, M.J., Buyse, M., Andre, T., et al. (2009) Evidence for Cure by Adjuvant Therapy in Colon Cancer: Observations Based on Individual Patient Data from 20,898 Patients on 18 Randomized Trials. Journal of Clinical Oncology, 27, 872-877. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Li, G. (2007) Mechanisms and Functions of DNA Mismatch Repair. Cell Research, 18, 85-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ganesh, K., Stadler, Z.K., Cercek, A., Mendelsohn, R.B., Shia, J., Segal, N.H., et al. (2019) Immunotherapy in Colorectal Cancer: Rationale, Challenges and Potential. Nature Reviews Gastroenterology & Hepatology, 16, 361-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lavin, Y., Kobayashi, S., Leader, A., Amir, E.D., Elefant, N., Bigenwald, C., et al. (2017) Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell, 169, 750-765.e17. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Havel, J.J., Chowell, D. and Chan, T.A. (2019) The Evolving Landscape of Biomarkers for Checkpoint Inhibitor Immunotherapy. Nature Reviews Cancer, 19, 133-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Dosset, M., Vargas, T.R., Lagrange, A., Boidot, R., Végran, F., Roussey, A., et al. (2018) PD-1/PD-L1 Pathway: An Adaptive Immune Resistance Mechanism to Immunogenic Chemotherapy in Colorectal Cancer. OncoImmunology, 7, e1433981. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Di Blasio, S., Wortel, I.M.N., van Bladel, D.A.G., de Vries, L.E., Duiveman-de Boer, T., Worah, K., et al. (2016) Human CD1c(+) DCs Are Critical Cellular Mediators of Immune Responses Induced by Immunogenic Cell Death. OncoImmunology, 5, e1192739. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Limagne, E., Euvrard, R., Thibaudin, M., Rébé, C., Derangère, V., Chevriaux, A., et al. (2016) Accumulation of MDSC and Th17 Cells in Patients with Metastatic Colorectal Cancer Predicts the Efficacy of a Folfox-Bevacizumab Drug Treatment Regimen. Cancer Research, 76, 5241-5252. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gavalas, N.G., Tsiatas, M., Tsitsilonis, O., Politi, E., Ioannou, K., Ziogas, A.C., et al. (2012) VEGF Directly Suppresses Activation of T Cells from Ascites Secondary to Ovarian Cancer via VEGF Receptor Type 2. British Journal of Cancer, 107, 1869-1875. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Baraibar, I., Mirallas, O., Saoudi, N., Ros, J., Salvà, F., Tabernero, J., et al. (2021) Combined Treatment with Immunotherapy-Based Strategies for MSS Metastatic Colorectal Cancer. Cancers, 13, Article No. 6311. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cremolini, C., Rossini, D., Dell’Aquila, E., Lonardi, S., Conca, E., Del Re, M., et al. (2019) Rechallenge for Patients with ras and braf Wild-Type Metastatic Colorectal Cancer with Acquired Resistance to First-Line Cetuximab and Irinotecan. JAMA Oncology, 5, Article No. 343. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Martinelli, E., Martini, G., Famiglietti, V., Troiani, T., Napolitano, S., Pietrantonio, F., et al. (2021) Cetuximab Rechallenge Plus Avelumab in Pretreated Patients with ras Wild-Type Metastatic Colorectal Cancer. JAMA Oncology, 7, Article No. 1529. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hodi, F.S., Lawrence, D., Lezcano, C., Wu, X., Zhou, J., Sasada, T., et al. (2014) Bevacizumab plus Ipilimumab in Patients with Metastatic Melanoma. Cancer Immunology Research, 2, 632-642. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Martin-Romano, P., Ammari, S., El-Dakdoukti, Y., Baldini, C., Varga, A., Vuagnat, P., et al. (2020) Chemotherapy Beyond Immune Checkpoint Inhibitors in Patients with Metastatic Colorectal Cancer. European Journal of Cancer, 137, 117-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Fukuoka, S., Hara, H., Takahashi, N., Kojima, T., Kawazoe, A., Asayama, M., et al. (2020) Regorafenib plus Nivolumab in Patients with Advanced Gastric or Colorectal Cancer: An Open-Label, Dose-Escalation, and Dose-Expansion Phase Ib Trial (REGONIVO, Epoc1603). Journal of Clinical Oncology, 38, 2053-2061. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Taylor, M.H., Schmidt, E.V., Dutcus, C., Pinheiro, E.M., Funahashi, Y., Lubiniecki, G., et al. (2020) The LEAP Program: Lenvatinib plus Pembrolizumab for the Treatment of Advanced Solid Tumors. Future Oncology, 17, 637-648. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Gajewski, T.F., Schreiber, H. and Fu, Y. (2013) Innate and Adaptive Immune Cells in the Tumor Microenvironment. Nature Immunology, 14, 1014-1022. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zaanan, A., Shi, Q., Taieb, J., Alberts, S.R., Meyers, J.P., Smyrk, T.C., et al. (2018) Role of Deficient DNA Mismatch Repair Status in Patients with Stage III Colon Cancer Treated with FOLFOX Adjuvant Chemotherapy: A Pooled Analysis From 2 Randomized Clinical Trials. JAMA Oncology, 4, Article No. 379. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Vétizou, M., Pitt, J.M., Daillère, R., Lepage, P., Waldschmitt, N., Flament, C., et al. (2015) Anticancer Immunotherapy by CTLA-4 Blockade Relies on the Gut Microbiota. Science, 350, 1079-1084. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bacac, M., Klein, C. and Umana, P. (2016) CEA TCB: A Novel Head-to-Tail 2:1 T Cell Bispecific Antibody for Treatment of Cea-Positive Solid Tumors. OncoImmunology, 5, e1203498. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Barroso-Sousa, R. and Ott, P.A. (2017) PD-1 Inhibitors in Endometrial Cancer. Oncotarget, 8, 106169-106170. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Argiles, G. (2018) Initial Experience with the Bispecific Anti-Cea Anti-CD3 Antibody and Its Expected Impact on Future Treatment for Patients with Colorectal Cancer. ESMO Open, 3, e000377. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lakins, M.A., Koers, A., Giambalvo, R., Munoz-Olaya, J., Hughes, R., Goodman, E., et al. (2020) FS222, a CD137/PD-L1 Tetravalent Bispecific Antibody, Exhibits Low Toxicity and Antitumor Activity in Colorectal Cancer Models. Clinical Cancer Research, 26, 4154-4167. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Mathur, D., Root, A.R., Bugaj-Gaweda, B., Bisulco, S., Tan, X., Fang, W., et al. (2020) A Novel GUCY2C-CD3 T-Cell Engaging Bispecific Construct (PF-07062119) for the Treatment of Gastrointestinal Cancers. Clinical Cancer Research, 26, 2188-2202. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
García-Martínez, J.M., Wang, S., Weishaeupl, C., Wernitznig, A., Chetta, P., Pinto, C., et al. (2021) Selective Tumor Cell Apoptosis and Tumor Regression in CDH17-Positive Colorectal Cancer Models Using BI 905711, a Novel Liver-Sparing TRAILR2 Agonist. Molecular Cancer Therapeutics, 20, 96-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Rosen, L.S., LoRusso, P., Ma, W.W., Goldman, J.W., Weise, A., Colevas, A.D., et al. (2016) A First-in-Human Phase I Study to Evaluate the MEK1/2 Inhibitor, Cobimetinib, Administered Daily in Patients with Advanced Solid Tumors. Investigational New Drugs, 34, 604-613. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ebert, P.J.R., Cheung, J., Yang, Y., McNamara, E., Hong, R., Moskalenko, M., et al. (2016) MAP Kinase Inhibition Promotes T Cell and Anti-Tumor Activity in Combination with PD-L1 Checkpoint Blockade. Immunity, 44, 609-621. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Nanda, V.G.Y., Peng, W., Hwu, P., Davies, M.A., Ciliberto, G., Fattore, L., et al. (2016) Melanoma and Immunotherapy Bridge 2015. Journal of Translational Medicine, 14, Article No. 65. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Eng, C., Kim, T.W., Bendell, J., Argilés, G., Tebbutt, N.C., Di Bartolomeo, M., et al. (2019) Atezolizumab with or without Cobimetinib versus Regorafenib in Previously Treated Metastatic Colorectal Cancer (imblaze370): A Multicentre, Open-Label, Phase 3, Randomised, Controlled Trial. The Lancet Oncology, 20, 849-861. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Sclafani, F. (2019) MEK and PD-L1 Inhibition in Colorectal Cancer: A Burning Blaze Turning into a Flash in the Pan. The Lancet Oncology, 20, 752-753. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Forrester, K., Almoguera, C., Han, K., Grizzle, W.E. and Perucho, M. (1987) Detection of High Incidence of K-Ras Oncogenes during Human Colon Tumorigenesis. Nature, 327, 298-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Fang, J.Y. and Richardson, B.C. (2005) The MAPK Signalling Pathways and Colorectal Cancer. The Lancet Oncology, 6, 322-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kumar, S., Principe, D.R., Singh, S.K., Viswakarma, N., Sondarva, G., Rana, B., et al. (2020) Mitogen-Activated Protein Kinase Inhibitors and T-Cell-Dependent Immunotherapy in Cancer. Pharmaceuticals, 13, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Vella, L.J., Pasam, A., Dimopoulos, N., Andrews, M., Knights, A., Puaux, A., et al. (2014) MEK Inhibition, Alone or in Combination with BRAF Inhibition, Affects Multiple Functions of Isolated Normal Human Lymphocytes and Dendritic Cells. Cancer Immunology Research, 2, 351-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
McLaughlin, M., Patin, E.C., Pedersen, M., Wilkins, A., Dillon, M.T., Melcher, A.A., et al. (2020) Inflammatory Microenvironment Remodelling by Tumour Cells after Radiotherapy. Nature Reviews Cancer, 20, 203-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Parikh, A.R., Szabolcs, A., Allen, J.N., Clark, J.W., Wo, J.Y., Raabe, M., et al. (2021) Radiation Therapy Enhances Immunotherapy Response in Microsatellite Stable Colorectal and Pancreatic Adenocarcinoma in a Phase II Trial. Nature Cancer, 2, 1124-1135. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ding, Y., Weng, S., Zhu, N., Mi, M., Xu, Z., Zhong, L., et al. (2023) Immunotherapy Combined with Local Therapy in the Late-Line Treatment of Repair-Proficient (PMMR)/Microsatellite Stable (MSS) Metastatic Colorectal Cancer. Heliyon, 9, e22092. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Tran, B., Kopetz, S., Tie, J., Gibbs, P., Jiang, Z., Lieu, C.H., et al. (2011) Impact of BRAF Mutation and Microsatellite Instability on the Pattern of Metastatic Spread and Prognosis in Metastatic Colorectal Cancer. Cancer, 117, 4623-4632. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Johnson, B.A., Yarchoan, M., Lee, V., Laheru, D.A. and Jaffee, E.M. (2017) Strategies for Increasing Pancreatic Tumor Immunogenicity. Clinical Cancer Research, 23, 1656-1669. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yarchoan, M., Huang, C., Zhu, Q., Ferguson, A.K., Durham, J.N., Anders, R.A., et al. (2019) A Phase 2 Study of GVAX Colon Vaccine with Cyclophosphamide and Pembrolizumab in Patients with Mismatch Repair Proficient Advanced Colorectal Cancer. Cancer Medicine, 9, 1485-1494. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ribas, A., Dummer, R., Puzanov, I., VanderWalde, A., Andtbacka, R.H.I., Michielin, O., et al. (2017) Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell, 170, 1109-1119.e10. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Pearl, T.M., Markert, J.M., Cassady, K.A. and Ghonime, M.G. (2019) Oncolytic Virus-Based Cytokine Expression to Improve Immune Activity in Brain and Solid Tumors. Molecular Therapy-Oncolytics, 13, 14-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Samson, A., Scott, K.J., Taggart, D., West, E.J., Wilson, E., Nuovo, G.J., et al. (2018) Intravenous Delivery of Oncolytic Reovirus to Brain Tumor Patients Immunologically Primes for Subsequent Checkpoint Blockade. Science Translational Medicine, 10, eaam7577.
|
|
[47]
|
Fakih, M., Harb, W., Mahadevan, D., Babiker, H., Berlin, J., Lillie, T., et al. (2023) Safety and Efficacy of the Tumor-Selective Adenovirus Enadenotucirev, in Combination with Nivolumab, in Patients with Advanced/metastatic Epithelial Cancer: A Phase I Clinical Trial (Spice). Journal for ImmunoTherapy of Cancer, 11, e006561. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Sivan, A., Corrales, L., Hubert, N., Williams, J.B., Aquino-Michaels, K., Earley, Z.M., et al. (2015) Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti-PD-L1 Efficacy. Science, 350, 1084-1089. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Routy, B., Le Chatelier, E., Derosa, L., Duong, C.P.M., Alou, M.T., Daillère, R., et al. (2018) Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science, 359, 91-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kobayashi, H., Dubois, S., Sato, N., Sabzevari, H., Sakai, Y., Waldmann, T.A., et al. (2005) Role of Trans-Cellular IL-15 Presentation in the Activation of NK Cell-Mediated Killing, Which Leads to Enhanced Tumor Immunosurveillance. Blood, 105, 721-727. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Bentebibel, S., Hurwitz, M.E., Bernatchez, C., Haymaker, C., Hudgens, C.W., Kluger, H.M., et al. (2019) A First-In-Human Study and Biomarker Analysis of NKTR-214, a Novel IL2Rβγ-Biased Cytokine, in Patients with Advanced or Metastatic Solid Tumors. Cancer Discovery, 9, 711-721. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Ferrari de Andrade, L., Tay, R.E., Pan, D., Luoma, A.M., Ito, Y., Badrinath, S., et al. (2018) Antibody-Mediated Inhibition of MICA and MICB Shedding Promotes NK Cell-Driven Tumor Immunity. Science, 359, 1537-1542. [Google Scholar] [CrossRef] [PubMed]
|