[1]
|
Tan, S., Yuan, D., Su, H., Chen, W., Zhu, S., Yan, B., et al. (2023) Prevalence of Urolithiasis in China: A Systematic Review and Meta‐Analysis. BJU International, 133, 34-43. https://doi.org/10.1111/bju.16179
|
[2]
|
Wang, K., Ge, J., Han, W., Wang, D., Zhao, Y., Shen, Y., et al. (2022) Risk Factors for Kidney Stone Disease Recurrence: A Comprehensive Meta-Analysis. BMC Urology, 22, Article No. 62. https://doi.org/10.1186/s12894-022-01017-4
|
[3]
|
Siener, R., Herwig, H., Rüdy, J., Schaefer, R.M., Lossin, P. and Hesse, A. (2022) Urinary Stone Composition in Germany: Results from 45,783 Stone Analyses. World Journal of Urology, 40, 1813-1820. https://doi.org/10.1007/s00345-022-04060-w
|
[4]
|
Courbebaisse, M., Travers, S., Bouderlique, E., Michon-Colin, A., Daudon, M., De Mul, A., et al. (2023) Hydration for Adult Patients with Nephrolithiasis: Specificities and Current Recommendations. Nutrients, 15, Article 4885. https://doi.org/10.3390/nu15234885
|
[5]
|
Lotan, Y., Antonelli, J., Jiménez, I.B., Gharbi, H., Herring, R., Beaver, A., et al. (2017) The Kidney Stone and Increased Water Intake Trial in Steel Workers: Results from a Pilot Study. Urolithiasis, 45, 177-183. https://doi.org/10.1007/s00240-016-0892-7
|
[6]
|
Malieckal, D.A. and Goldfarb, D.S. (2020) Occupational Kidney Stones. Current Opinion in Nephrology and Hypertension, 29, 232-236. https://doi.org/10.1097/MNH.0000000000000581
|
[7]
|
Collingridge, A. and O’Callaghan, M. (2024) Seminal Papers in Urology: Urinary Volume, Water and Recurrences in Idiopathic Calcium Nephrolithiasis: A 5-Year Randomized Prospective Study. BMC Urology, 24, Article No. 30. https://doi.org/10.1186/s12894-024-01416-9
|
[8]
|
Siener, R., Bitterlich, N., Birwé, H. and Hesse, A. (2021) The Impact of Diet on Urinary Risk Factors for Cystine Stone Formation. Nutrients, 13, Article 528. https://doi.org/10.3390/nu13020528
|
[9]
|
Lu, Y., Sundaram, P., Li, H. and Chong, T.W. (2022) The Effects of Drinking Bicarbonate-Rich Mineral Water in Calcium Oxalate Stone Formers: An Open Label Prospective Randomized Controlled Study in an Asian Cohort. International Urology and Nephrology, 54, 2133-2140. https://doi.org/10.1007/s11255-022-03256-8
|
[10]
|
Solak, V., Gökce, M.İ. and Yaman, Ö. (2021) Potassium Citrate Vs. Hydrochlorothiazide to Reduce Urinary Calcium Excretion in Calcium Oxalate Stone Patients with Hypercalciuria: A Prospective Randomized Study. International Urology and Nephrology, 53, 1791-1796. https://doi.org/10.1007/s11255-021-02879-7
|
[11]
|
Barghouthy, Y. and Somani, B.K. (2021) Role of Citrus Fruit Juices in Prevention of Kidney Stone Disease (KSD): A Narrative Review. Nutrients, 13, Article 4117. https://doi.org/10.3390/nu13114117
|
[12]
|
Ferraro, P.M., Taylor, E.N., Gambaro, G. and Curhan, G.C. (2013) Soda and Other Beverages and the Risk of Kidney Stones. Clinical Journal of the American Society of Nephrology, 8, 1389-1395. https://doi.org/10.2215/cjn.11661112
|
[13]
|
Siener, R. (2021) Nutrition and Kidney Stone Disease. Nutrients, 13, Article 1917. https://doi.org/10.3390/nu13061917
|
[14]
|
Barghouthy, Y., Corrales, M., Doizi, S., Somani, B.K. and Traxer, O. (2021) Tea and Coffee Consumption and Pathophysiology Related to Kidney Stone Formation: A Systematic Review. World Journal of Urology, 39, 2417-2426. https://doi.org/10.1007/s00345-020-03466-8
|
[15]
|
Ma, Y., Cheng, C., Jian, Z., Wen, J., Xiang, L., Li, H., et al. (2024) Risk Factors for Nephrolithiasis Formation: An Umbrella Review. International Journal of Surgery, 110, 5733-5744. https://doi.org/10.1097/js9.0000000000001719
|
[16]
|
Richter, M., Baerlocher, K., Bauer, J.M., Elmadfa, I., Heseker, H., Leschik-Bonnet, E., et al. (2019) Revised Reference Values for the Intake of Protein. Annals of Nutrition and Metabolism, 74, 242-250. https://doi.org/10.1159/000499374
|
[17]
|
Asoudeh, F., Talebi, S., Jayedi, A., Marx, W., Najafi, M.T. and Mohammadi, H. (2022) Associations of Total Protein or Animal Protein Intake and Animal Protein Sources with Risk of Kidney Stones: A Systematic Review and Dose-Response Meta-Analysis. Advances in Nutrition, 13, 821-832. https://doi.org/10.1093/advances/nmac013
|
[18]
|
Giannini, S., Nobile, M., Sartori, L., Carbonare, L.D., Ciuffreda, M., Corrò, P., et al. (1999) Acute Effects of Moderate Dietary Protein Restriction in Patients with Idiopathic Hypercalciuria and Calcium Nephrolithiasis. The American Journal of Clinical Nutrition, 69, 267-271. https://doi.org/10.1093/ajcn/69.2.267
|
[19]
|
Barghouthy, Y., Corrales, M. and Somani, B. (2021) The Relationship between Modern Fad Diets and Kidney Stone Disease: A Systematic Review of Literature. Nutrients, 13, Article 4270. https://doi.org/10.3390/nu13124270
|
[20]
|
Shu, X., Calvert, J.K., Cai, H., Xiang, Y., Li, H., Zheng, W., et al. (2019) Plant and Animal Protein Intake and Risk of Incident Kidney Stones: Results from the Shanghai Men’s and Women’s Health Studies. Journal of Urology, 202, 1217-1223. https://doi.org/10.1097/ju.0000000000000493
|
[21]
|
Balawender, K., Łuszczki, E., Mazur, A. and Wyszyńska, J. (2024) The Multidisciplinary Approach in the Management of Patients with Kidney Stone Disease—A State-of-the-Art Review. Nutrients, 16, Article 1932. https://doi.org/10.3390/nu16121932
|
[22]
|
Cheraghian, B., Meysam, A., Hashemi, S.J., et al. (2024) Kidney Stones and Dietary Intake in Adults: A Population-Based Study in Southwest Iran. BMC Public Health, 24, Article No. 955. https://doi.org/10.1186/s12889-024-18393-1
|
[23]
|
Ferraro, P.M., Taylor, E.N. and Curhan, G.C. (2024) 24-Hour Urinary Chemistries and Kidney Stone Risk. American Journal of Kidney Diseases, 84, 164-169. https://doi.org/10.1053/j.ajkd.2024.02.010
|
[24]
|
von Unruh, G.E., Voss, S., Sauerbruch, T., et al. (2004) Dependence of Oxalate Absorption on the Daily Calcium Intake. Journal of the American Society of Nephrology, 15, 1567-1573. https://doi.org/10.1097/01.ASN.0000127864.26968.7F
|
[25]
|
Chewcharat, A., Thongprayoon, C., Vaughan, L.E., Mehta, R.A., Schulte, P.J., O’Connor, H.M., et al. (2022) Dietary Risk Factors for Incident and Recurrent Symptomatic Kidney Stones. Mayo Clinic Proceedings, 97, 1437-1448. https://doi.org/10.1016/j.mayocp.2022.04.016
|
[26]
|
Bargagli, M., Ferraro, P.M., Vittori, M., Lombardi, G., Gambaro, G. and Somani, B. (2021) Calcium and Vitamin D Supplementation and Their Association with Kidney Stone Disease: A Narrative Review. Nutrients, 13, Article 4363. https://doi.org/10.3390/nu13124363
|
[27]
|
Curhan, G.C., Willett, W.C., Speizer, F.E., Spiegelman, D. and Stampfer, M.J. (1997) Comparison of Dietary Calcium with Supplemental Calcium and Other Nutrients as Factors Affecting the Risk for Kidney Stones in Women. Annals of Internal Medicine, 126, 497-504. https://doi.org/10.7326/0003-4819-126-7-199704010-00001
|
[28]
|
Hong, Y., Zhang, Z., Ye, H., An, L., Huang, X. and Xu, Q. (2021) Effects of High-Sodium Diet on Lithogenesis in a Rat Experimental Model of Calcium Oxalate Stones. Translational Andrology and Urology, 10, 636-642. https://doi.org/10.21037/tau-20-1226
|
[29]
|
Sorensen, M.D., Kahn, A.J., Reiner, A.P., Tseng, T.Y., Shikany, J.M., Wallace, R.B., et al. (2012) Impact of Nutritional Factors on Incident Kidney Stone Formation: A Report from the WHI OS. Journal of Urology, 187, 1645-1650. https://doi.org/10.1016/j.juro.2011.12.077
|
[30]
|
Tang, J., Sammartino, C. and Chonchol, M. (2024) Dietary Sodium and Potassium Intakes and Kidney Stone Prevalence: The National Health and Nutrition Examination Survey 2011-2018. Nutrients, 16, Article 2198. https://doi.org/10.3390/nu16142198
|
[31]
|
Wang, M., Cuevas, C.A., Su, X., Wu, P., Gao, Z., Lin, D., et al. (2018) Potassium Intake Modulates the Thiazide-Sensitive Sodium-Chloride Cotransporter (NCC) Activity via the Kir4.1 Potassium Channel. Kidney International, 93, 893-902. https://doi.org/10.1016/j.kint.2017.10.023
|
[32]
|
Vieira, M.S., de C. Francisco, P., Hallal, A.L.L.C., Penido, M.G.M.G. and Bresolin, N.L. (2020) Association between Dietary Pattern and Metabolic Disorders in Children and Adolescents with Urolithiasis. Jornal de Pediatria, 96, 333-340. https://doi.org/10.1016/j.jped.2018.11.008
|
[33]
|
Crivelli, J.J., Mitchell, T., Knight, J., Wood, K.D., Assimos, D.G., Holmes, R.P., et al. (2020) Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion. Nutrients, 13, Article 62. https://doi.org/10.3390/nu13010062
|
[34]
|
Huang, A., Huang, W., Ye, Y., Liu, L., Wang, H., Bian, X., et al. (2024) High Composite Dietary Antioxidant Index Is Associated with Reduced Risk of Kidney Stones: A Cross-Sectional Analysis of NHANES 2007-2020. Nutrition Research, 128, 60-69. https://doi.org/10.1016/j.nutres.2024.06.006
|
[35]
|
Mitchell, T., Kumar, P., Reddy, T., Wood, K.D., Knight, J., Assimos, D.G., et al. (2019) Dietary Oxalate and Kidney Stone Formation. American Journal of Physiology-Renal Physiology, 316, F409-F413. https://doi.org/10.1152/ajprenal.00373.2018
|
[36]
|
Arvans, D., Chang, C., Alshaikh, A., Tesar, C., Babnigg, G., Wolfgeher, D., et al. (2023) Sel1-Like Proteins and Peptides Are the Major Oxalobacter formigenes-Derived Factors Stimulating Oxalate Transport by Human Intestinal Epithelial Cells. American Journal of Physiology-Cell Physiology, 325, C344-C361. https://doi.org/10.1152/ajpcell.00466.2021
|
[37]
|
Hoppe, B. and Martin-Higueras, C. (2022) Improving Treatment Options for Primary Hyperoxaluria. Drugs, 82, 1077-1094. https://doi.org/10.1007/s40265-022-01735-x
|
[38]
|
Langman, C.B., Grujic, D., Pease, R.M., Easter, L., Nezzer, J., Margolin, A., et al. (2016) A Double-Blind, Placebo Controlled, Randomized Phase 1 Cross-Over Study with ALLN-177, an Orally Administered Oxalate Degrading Enzyme. American Journal of Nephrology, 44, 150-158. https://doi.org/10.1159/000448766
|
[39]
|
Gridley, C.M., Sourial, M.W., Lehman, A. and Knudsen, B.E. (2019) Medical Dissolution Therapy for the Treatment of Uric Acid Nephrolithiasis. World Journal of Urology, 37, 2509-2515. https://doi.org/10.1007/s00345-019-02688-9
|
[40]
|
Abhishek, A., Benita, S., Kumari, M., Ganesan, D., Paul, E., Sasikumar, P., et al. (2017) Molecular Analysis of Oxalate-Induced Endoplasmic Reticulum Stress Mediated Apoptosis in the Pathogenesis of Kidney Stone Disease. Journal of Physiology and Biochemistry, 73, 561-573. https://doi.org/10.1007/s13105-017-0587-8
|
[41]
|
Khan, S.R., Canales, B.K. and Dominguez-Gutierrez, P.R. (2021) Randall’s Plaque and Calcium Oxalate Stone Formation: Role for Immunity and Inflammation. Nature Reviews Nephrology, 17, 417-433. https://doi.org/10.1038/s41581-020-00392-1
|
[42]
|
He, J., Cao, Y., Zhu, Q., Wang, X., Cheng, G., Wang, Q., et al. (2024) Renal Macrophages Monitor and Remove Particles from Urine to Prevent Tubule Obstruction. Immunity, 57, 106-123.E7. https://doi.org/10.1016/j.immuni.2023.12.003
|
[43]
|
Song, Q., Song, C., Chen, X., Xiong, Y., Li, L., Liao, W., et al. (2023) FKBP5 Deficiency Attenuates Calcium Oxalate Kidney Stone Formation by Suppressing Cell-Crystal Adhesion, Apoptosis and Macrophage M1 Polarization via Inhibition of NF-κB Signaling. Cellular and Molecular Life Sciences, 80, Article No. 301. https://doi.org/10.1007/s00018-023-04958-7
|
[44]
|
Khan, S.R. (2013) Reactive Oxygen Species as the Molecular Modulators of Calcium Oxalate Kidney Stone Formation: Evidence from Clinical and Experimental Investigations. Journal of Urology, 189, 803-811. https://doi.org/10.1016/j.juro.2012.05.078
|
[45]
|
Song, Q., Liao, W., Chen, X., He, Z., Li, D., Li, B., et al. (2021) Oxalate Activates Autophagy to Induce Ferroptosis of Renal Tubular Epithelial Cells and Participates in the Formation of Kidney Stones. Oxidative Medicine and Cellular Longevity, 2021, Article 6630343. https://doi.org/10.1155/2021/6630343
|
[46]
|
Xie, J., Ye, Z., Li, L., Xia, Y., Yuan, R., Ruan, Y., et al. (2022) Ferrostatin-1 Alleviates Oxalate-Induced Renal Tubular Epithelial Cell Injury, Fibrosis and Calcium Oxalate Stone Formation by Inhibiting Ferroptosis. Molecular Medicine Reports, 26, Article No. 256. https://doi.org/10.3892/mmr.2022.12772
|
[47]
|
Hou, C., Zhong, B., Gu, S., Wang, Y. and Ji, L. (2024) Identification and Validation of the Biomarkers Related to Ferroptosis in Calcium Oxalate Nephrolithiasis. Aging, 16, 5987-6007. https://doi.org/10.18632/aging.205684
|
[48]
|
Yang, Y., Hong, S., Lu, Y., Wang, Q., Wang, S. and Xun, Y. (2022) CAV1 Alleviated CaOx Stones Formation via Suppressing Autophagy-Dependent Ferroptosis. PeerJ, 10, e14033. https://doi.org/10.7717/peerj.14033
|
[49]
|
Zhao, J., Wu, Y., Zhou, K., Huang, M., Sun, Y., Kang, J., et al. (2023) Ferroptosis in Calcium Oxalate Kidney Stone Formation and the Possible Regulatory Mechanism of ANKRD1. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1870, Article 119452. https://doi.org/10.1016/j.bbamcr.2023.119452
|
[50]
|
Zhou, J., Meng, L., He, Z., Song, Q., Liu, J., Su, X., et al. (2023) Melatonin Exerts a Protective Effect in Ameliorating Nephrolithiasis via Targeting AMPK/PINK1-Parkin Mediated Mitophagy and Inhibiting Ferroptosis in Vivo and in Vitro. International Immunopharmacology, 124, Article 110801. https://doi.org/10.1016/j.intimp.2023.110801
|
[51]
|
Dong, C., Song, C., He, Z., Song, Q., Song, T., Liu, J., et al. (2023) Protective Efficacy of Schizandrin B on Ameliorating Nephrolithiasis via Regulating GSK3β/Nrf2 Signaling-Mediated Ferroptosis in Vivo and in Vitro. International Immunopharmacology, 117, Article 110042. https://doi.org/10.1016/j.intimp.2023.110042
|
[52]
|
Yang, J., Wu, W., Amier, Y., Li, X., Wan, W., Xun, Y., et al. (2024) Ferroptosis and Its Emerging Role in Kidney Stone Formation. Molecular Biology Reports, 51, Article No. 2024. https://doi.org/10.1007/s11033-024-09259-1
|
[53]
|
Lee, Y., Huang, W., Chiang, H., Chen, M., Huang, J. and Chang, L.S. (1992) Determinant Role of Testosterone in the Pathogenesis of Urolithiasis in Rats. Journal of Urology, 147, 1134-1138. https://doi.org/10.1016/s0022-5347(17)37502-x
|
[54]
|
Zhu, W., Zhao, Z., Chou, F., Zuo, L., Liu, T., Yeh, S., et al. (2019) Loss of the Androgen Receptor Suppresses Intrarenal Calcium Oxalate Crystals Deposition via Altering Macrophage Recruitment/M2 Polarization with Change of the miR-185-5p/CSF-1 Signals. Cell Death & Disease, 10, Article No. 275. https://doi.org/10.1038/s41419-019-1358-y
|
[55]
|
Peng, Y., Fang, Z., Liu, M., Wang, Z., Li, L., Ming, S., et al. (2019) Testosterone Induces Renal Tubular Epithelial Cell Death through the HIF-1α/BNIP3 Pathway. Journal of Translational Medicine, 17, Article No. 62. https://doi.org/10.1186/s12967-019-1821-7
|
[56]
|
Sueksakit, K. and Thongboonkerd, V. (2019) Protective Effects of Finasteride against Testosterone-Induced Calcium Oxalate Crystallization and Crystal-Cell Adhesion. JBIC Journal of Biological Inorganic Chemistry, 24, 973-983. https://doi.org/10.1007/s00775-019-01692-z
|
[57]
|
Lin, C., Liu, J., Wu, C., Hsu, R. and Hsu, W. (2020) Decreased Risk of Renal Calculi in Patients Receiving Androgen Deprivation Therapy for Prostate Cancer. International Journal of Environmental Research and Public Health, 17, Article 1762. https://doi.org/10.3390/ijerph17051762
|
[58]
|
Gupta, K., Gill, G. and Mahajan, R. (2016) Possible Role of Elevated Serum Testosterone in Pathogenesis of Renal Stone Formation. International Journal of Applied and Basic Medical Research, 6, 241-244. https://doi.org/10.4103/2229-516x.192593
|
[59]
|
Nackeeran, S., Katz, J., Ramasamy, R. and Marcovich, R. (2021) Association between Sex Hormones and Kidney Stones: Analysis of the National Health and Nutrition Examination Survey. World Journal of Urology, 39, 1269-1275. https://doi.org/10.1007/s00345-020-03286-w
|
[60]
|
Huang, F., Li, Y., Cui, Y., Zhu, Z., Chen, J., Zeng, F., et al. (2022) Relationship between Serum Testosterone Levels and Kidney Stones Prevalence in Men. Frontiers in Endocrinology, 13, Article 863675. https://doi.org/10.3389/fendo.2022.863675
|
[61]
|
Thompson, A., Omil-Lima, D., Rhodes, S., Jevnikar, B., Obery, D., Kaelber, D., et al. (2024) Low Serum Testosterone Is Associated with an Increased Risk of First-Time Renal Calculi in Men without Testosterone Replacement Therapy. International Journal of Impotence Research, 1-6. https://doi.org/10.1038/s41443-024-00963-x
|
[62]
|
Elshal, A.M., Shamshoun, H., Awadalla, A., Elbaz, R., Ahmed, A.E., El-khawaga, O.Y., et al. (2023) Hormonal and Molecular Characterization of Calcium Oxalate Stone Formers Predicting Occurrence and Recurrence. Urolithiasis, 51, Article No. 76. https://doi.org/10.1007/s00240-023-01440-8
|
[63]
|
Changtong, C., Peerapen, P., Khamchun, S., Fong-ngern, K., Chutipongtanate, S. and Thongboonkerd, V. (2016) In Vitro Evidence of the Promoting Effect of Testosterone in Kidney Stone Disease: A Proteomics Approach and Functional Validation. Journal of Proteomics, 144, 11-22. https://doi.org/10.1016/j.jprot.2016.05.028
|
[64]
|
Su, L., Zhang, J., Gomez, H., Kellum, J.A. and Peng, Z. (2023) Mitochondria ROS and Mitophagy in Acute Kidney Injury. Autophagy, 19, 401-414. https://doi.org/10.1080/15548627.2022.2084862
|
[65]
|
Ming, S., Tian, J., Ma, K., Pei, C., Li, L., Wang, Z., et al. (2022) Oxalate-Induced Apoptosis through ERS-ROS-NF-κB Signalling Pathway in Renal Tubular Epithelial Cell. Molecular Medicine, 28, Article No. 88. Https://Doi.Org/10.1186/S10020-022-00494-5
|