早产儿脑损伤产前影响因素统计
Statistics of Prenatal Influencing Factors of Brain Injury in Premature Infants
DOI: 10.12677/acm.2025.1561861, PDF, HTML, XML,    科研立项经费支持
作者: 王妮娜, 雷 哲, 王 银*:宁夏医科大学基础医学院,宁夏 银川;董奕辰:中国医科大学附属第四医院儿科,辽宁 沈阳;马乾凤*:宁夏医科大学总医院超声科,宁夏 银川
关键词: 早产儿脑损伤产前因素Brain Injury in Premature Infants Prenatal Factors
摘要: 目的:本研究旨在统计临床早产儿脑损伤现状及母亲产前影响因素。方法:收集住院治疗的133例早产儿病例,对早产儿一般资料、床旁超声表现及分级、复查超声表现及分级、母亲产前因素进行分析。结果:133例早产儿病例中,初次床旁超声提示单纯脑白质回声增强78.9%,单纯脑室周围–脑室内出血2.4%。脑白质回声增强伴脑室周围–脑室内出血18.8%。复查超声提示脑损伤82例,其中单纯脑白质回声增强65.9%,单纯脑室周围–脑室内出血12.2%,进展为脑室周围白质软化2.4%,脑室周围白质软化合并脑室周围–脑室内出血19.5%。早产儿母亲产前因素中,妊娠期高血压42.9%、妊娠期糖尿病24.1%、妊娠期贫血14.3%、先天性心脏病29.1%、未足月胎膜早破32.3%、脐绕颈29.3%、羊水污染16.5%、胎盘早剥12.8%。结论:早产儿脑损伤的主要诱因是缺血缺氧及感染。
Abstract: Objective: This study aims to statistically analyze the current status of brain injury in clinical preterm infants and the maternal prenatal influencing factors. Methods: A total of 133 cases of premature infants hospitalized for treatment were collected, including general information, bedside ultrasound findings and grades of brain injury, follow-up ultrasound findings and grades of brain injury, and maternal prenatal factors. Results: Among the 133 preterm infants, 78.9% had simple cerebral white matter echogenicity on initial bedside ultrasound, 2.4% had simple intraventricular hemorrhage. 18.8% had simple cerebral white matter echogenicity with intraventricular hemorrhage. 82 of the infants had brain injury on follow-up ultrasound, with 65.9% having simple cerebral white matter echogenicity, 12.2% having simple intraventricular hemorrhage, 2.4% having progressive white matter softening around the ventricles, and 19.5% having ventricular white matter softening with intraventricular hemorrhage. Among the maternal prenatal factors, 42.9% had gestational hypertension, 24.1% had gestational diabetes, 14.3% had maternal anemia, 29.1% had congenital heart disease, 32.3% had premature rupture of membranes, 29.3% had umbilical cord entanglement, 16.5% had fetal membrane contamination, and 12.8% had placental abruption. Conclusion: The main inducing factors of brain injury in preterm infants are hypoxia and ischemia and infection.
文章引用:王妮娜, 董奕辰, 雷哲, 王银, 马乾凤. 早产儿脑损伤产前影响因素统计[J]. 临床医学进展, 2025, 15(6): 1368-1377. https://doi.org/10.12677/acm.2025.1561861

1. 引言

临床研究发现,增加早产风险的因素有很多,比如吸烟[1]或感染性疾病(如尿路感染、细菌性阴道病、沙眼衣原体感染、绒毛膜羊膜炎、HBV、HIV、疟疾和梅毒) [2]-[9]。妊娠期母体疾病包括妊娠期高血压、糖尿病、宫颈病变,及妇产科之外的疾病如贫血、肥胖、母体Vit D低等[10]-[17]。系统性红斑狼疮、多囊卵巢综合征、癫痫、双相情感障碍等问题也会增加早产的可能性[18]-[22]。胎儿附属结构包括胎盘、羊水状况也与早产相关[23] [24]。有研究表明,室外空气污染(PM ≥ 2.5 µm)与早产增加相关[25]

患有早产儿脑白质损伤(preterm white matter injury, PWMI)的婴儿因弥漫性白质损伤和局灶性囊性坏死病变所致的全能性髓鞘退化有长期神经功能缺陷的风险,包括脑瘫、认知和视觉缺陷以及学习障碍[26] [27]。目前还没有针对PWMI的具体治疗方法。

2. 材料与方法

2.1. 研究对象

宁夏医科大学总医院新生儿科2023年11月~2024年6月收入院的早产儿133例。所有操作规程均按照相关指南进行。临床数据已获得参与者和/或其监护人知情同意,并获得宁夏医科大学总医院伦理审批(伦理编号:KYLL-2022-0649)。

2.2. 纳排标准及资料收集

纳入标准:(1) 出生胎龄 < 258日;(2) 住院期间行床旁颅脑超声且报告完整。排除标准:(1) 患有先天性神经系统发育畸形;(2) 非本院出生,孕产史不全;(3) 缺少超声复查报告。资料收集:胎龄、性别、出生时体重、单/双胎、妊娠期合并症、床旁超声表现。

2.3. 诊断标准

脑室周围脑白质回声增强(PVE分级及超声表现),见表1

Table 1. PVE graded ultrasound manifestations

1. PVE分级超声表现

类型

分级

超声表现

PVE

I

脑室旁脑白质回声增强,比正常脉络丛稍低

II

脑室旁脑白质会将较强,与正常脉络丛相仿

III

脑室周围白质回声比正常脉络丛回声强

依据Papile分级法对PIVH进行分级,见表2

Table 2. Papile graded ultrasound manifestations

2. Papile分级法超声表现

类型

分级

超声表现

PIVH

I

单侧/双侧室管膜下出血

II

脑室内出血但无脑室增大

III

脑室内出血伴脑室增大

IV

脑室内出血伴脑室周围出血性梗死

2.4. 研究定义

参照人民卫生出版社第10版《妇产科学》相关定义。

(1) 早产:妊娠达到28周但早于37周的分娩者娩出的新生儿成为早产儿。

(2) 妊娠期高血压:是妊娠与血压升高并存的一组疾病。

(3) HELLP:是在子痫前期–子痫基础上发生的以溶血、转氨酶升高以及血小板减少为特点的一组综合征。

(4) 妊娠期糖尿病:指妊娠前血糖正常,妊娠期才出现的糖代谢异常。

(5) 妊娠合并心脏病:包括妊娠前已患心脏病以及妊娠后新发生的心脏病。

(6) 病毒性肝炎:由肝炎病毒引起的以肝脏病变为主的传染性疾病。

(7) TORCH综合征:T是弓形虫,O指其他如梅毒螺旋体,R指风疹病毒,C指巨细胞病毒,H指单纯疱疹病毒。

(8) 贫血:外周血血红蛋白 < 110 g/L及血细胞比容 < 0.33为妊娠期贫血。

(9) 甲状腺疾病:妊娠合并甲状腺功能亢进和甲状腺功能减退。

(10) 未足月胎膜早破:<37周发生胎膜自然破裂。

(11) 胎盘早剥:妊娠满20周位置正常的胎盘在胎儿娩出前部分/全部剥离。

(12) 羊水过多/过少:妊娠期间羊水量超过2000 mL/少于300 mL。

(13) 脐带过短/单脐动脉:脐带短于30 cm/脐带内只有1条动脉。

(14) 脐带扭转:胎儿活动可使脐带顺其纵轴扭转呈螺旋状。可引起血管闭塞或伴血栓形成。

(15) 前置胎盘:胎盘位置低于胎先露部位。

(16) 脐带帆状附着:脐带附着于胎膜上,脐血管通过羊膜与绒毛膜间进入胎盘。

(17) 球拍状胎盘:脐带附着于胎盘边缘。

(18) 绒毛膜羊膜炎:① 母体体温 ≥ 38℃;② 阴道分泌物异味;③ 胎心率增快(胎心率基线 ≥ 160次/分)或母体心率增快(心率 ≥ 100次/分);④ 母体外周血白细胞计数 ≥ 15 × 109/L;⑤ 子宫呈激惹状态、宫体有压痛。母体体温升高的同时伴有上述②~⑤任何一项表现可考虑绒毛膜羊膜炎,并排除其他感染性疾病。

3. 结果

3.1. 早产儿出生时胎龄(日)、体重较足月儿下降

本研究共纳入早产儿133人,其中男婴73例(54.9%),女婴60例(45.1%)。单胎92例(69.2%),双胎41例(30.1%)。出生时平均胎龄(211.7 ± 18.9)日(见图1(A)),其中极早产儿(<223日) 110例(82.7%),中度早产儿(224~237日) 13例(9.8%),晚期早产儿(238~258日) 7例(5.34%)。出生时体重男婴(1338.7 ± 420.9) g,女婴(1393.4 ± 432.7) g。其中极低出生体重儿(<1500 g) 92例(69.2%),低出生体重儿(1500~2499 g) 38例(28.6%),正常体重出生儿(2500~4000 g) 3例(2.2%),平均体重明显低于足月儿(见图1(B))。参照人民卫生出版社《儿科学(第十版)》,足月儿出生时体重男婴(3380 ± 400) g,女婴(3260 ± 400) g (见表3)。

Table 3. General clinical information

3. 临床一般信息

基本信息

例数(例)

构成比(%)

胎儿数

单胎

92

69.2

双胎

41

30.1

性别

男婴

73

54.9

女婴

60

45.1

出生时胎龄

极早产儿(<223日)

110

82.7

中度早产儿(224~237日)

13

9.8

晚期早产儿(238~258日)

7

5.34

出生时体重

极低出生体重儿(<1500 g)

92

69.2

低出生体重儿(1500~2499 g)

38

28.6

正常体重儿(2500~4000 g)

3

2.2

Figure 1. The gestational age (days) and weight of premature infants at birth are lower than those of full-term infants. (A) Average gestational age at birth of premature infants; (B) The birth weight of premature infants is significantly lower than that of full-term infants

1. 早产儿出生时胎龄(日)、体重较足月儿下降。(A) 早产儿平均出生胎龄;(B) 早产儿出生时体重明显低于足月儿

3.2. 早产儿脑损伤发生率及分级

本研究纳入的早产儿床旁超声提示出现脑损伤共133例,其中单纯PVE105例78.9%,单纯PIVH 3例2.3%,PVE-PIVH 25例18.8% (见表4图2)。

Table 4. Brain injury of infants

4. 早产儿脑损伤

类型

例数(例)

构成比(%)

PVE

I

105

78.9

PIVH

I

1

0.8

II

1

0.8

III

0

0

IV

1

0.8

PVE-PIVH

25

18.8

Figure 2. Composition ratio of pathological injury type

2. 病理损伤类型构成比

3.3. 超声复查早产儿损伤发生率级分级

本研究纳入的早产儿床旁超声复查提示出现脑损伤共82例,其中单纯PVE 54例(65.9%),单纯PIVH 10例(12.2%),PVL2例(2.4%),PVL-PIVH 16例(19.5%) (见表5图3)。

Table 5. Ultrasound reexamination of brain injury in premature infants

5. 早产儿超声复查脑损伤

类型

例数(例)

构成比(%)

PVE

I

54

65.9

PIVH

I

9

11.0

II

0

0

III

0

0

IV

1

1.2

PVL

2

2.4

PVL-PIVH

16

19.5

Figure 3. Ultrasound reexamination of the composition ratio of pathological injury types

3. 超声复查病理损伤类型构成比

3.4. 产前因素统计

超声提示脑损伤的早产儿中,母亲患妊娠期高血压疾病的有38例、妊娠期糖尿病14例、妊娠期甲状腺疾病9例、先天性心脏病4例、免疫系统疾病3例、贫血16例、感染性疾病7例、脐带异常22例、胎盘异常21例、羊水异常30例、胎膜早破20例、宫内窘迫21例、其他因素9例(包括子宫肌瘤、双角子宫、纵膈子宫、染色体异常等)。在早产儿的母亲产前因素中,同时合并两种及以上的有69例(见表6)。

Table 6. Statistics of prenatal factors

6. 产前因素统计

产前因素

例数(例)

构成比(%)

产前因素

例数(例)

构成比(%)

妊娠期高血压疾病

57

42.9

单脐动脉

2

1.5

HELLP

3

2.3

脐带扭曲

11

8.3

妊娠期甲状腺疾病

11

8.3

胶质脐带

5

3.8

妊娠期糖尿病

32

24.1

脐绕颈

39

29.3

妊娠期贫血

19

14.3

脐带过短

1

0.8

先天性心脏病

28

21.1

羊水过多

8

6.0

病毒性肝炎

9

6.8

羊水过少

16

12.0

上呼吸道感染

11

8.3

羊水污染

22

16.5

肥胖

10

7.5

血性羊水

7

5.2

盆腔炎

2

1.5

无羊水

2

1.5

阴道炎

5

3.8

脐带帆状附着

8

6.0

人乳头瘤病毒

2

1.5

球拍状胎盘

7

5.2

TORCH

1

0.8

胎盘梗死

1

0.8

未足月胎膜早破

43

32.3

胎盘血池

2

1.5

先兆子宫破裂

2

1.2

胎盘早剥

17

12.8

宫腔感染

4

3.0

绒毛膜羊膜炎

4

3.0

过敏性哮喘

1

0.8

前置胎盘

8

6.0

3.5. 早产儿脑损伤超声表现

在新生儿出生后行颅脑超声。正常超声提示:脑实质回声未见明显增强,脑内结构清晰;脑室脑池系统未见扩张,中线结构无移位(见图4(A))。早产儿床旁超声提示:脑实质回声增强。超声下显示PVE提示早产儿发生脑白质损伤,并可发展为PVL (见图4(B))。

Figure 4. Ultrasound manifestations of brain injury in premature infants. (A) Normal cranial ultrasound; (B) Brain injury cranial ultrasound (coronal position)

4. 早产儿脑损伤超声表现。(A) 正常颅脑超声;(B) 脑损伤颅脑超声(冠状位)

3.6. 早产儿脑损伤诱因分析

通过对超声表现有脑损伤的133例早产儿母亲进行产前因素总结归纳,发现主要有两大重要影响因素,一个是缺血缺氧,另一个是感染。其中可导致胎儿急性缺氧的因素包括:胎盘异常(前置胎盘、胎盘早剥);脐带异常(脐带扭转、脐带脱垂);母体严重血液循环障碍导致胎盘灌注急剧减少(失血性休克)。可致胎儿发生慢性缺氧的因素包括:母体血氧量不足(先天性心脏病/心功能不全、呼吸道感染、哮喘、贫血);子宫胎盘血管硬化,狭窄,梗死,绒毛间隙血液灌注不足(妊娠期高血压疾病、慢性肾炎、糖尿病、过期妊娠);胎儿运输及利用氧能力弱等。可导致胎儿发生感染的因素包括:羊水污染、胎膜早破等。综合以上因素分析导致早产儿发生脑损伤的主要原因是缺血缺氧及感染。

4. 讨论

在统计临床早产儿母亲产前产时影响因素时发现,早产儿的母亲大多患有一种或多种妊娠合并症。在本研究的统计结果中,超过40%的早产儿母亲患有妊娠期高血压疾病,其中最常见的是慢性高血压合并子痫前期重度和早发子痫前期重度。发病机制可能是与子宫螺旋动脉重塑不足有关,子宫螺旋动脉重塑不足会导致胎盘灌注减少,从而使胎儿发生慢性缺氧。还有少数母亲患有先天性心脏病。多数先天性心脏病有遗传因素,除能增加胎儿患先天性心脏病的风险外,孕期母亲心功能异常也会增加胎儿缺血缺氧的风险。妊娠期糖尿病在早产儿母亲产前疾病当中占比较高,约有24.1%,胎儿长期处于高胰岛素血中增加发展为巨大儿的风险,且易导致羊水过多而发生胎膜早破,另外可使胎儿宫内耗氧量增加,发生慢性缺氧。孕期贫血也是早产儿母亲常见的合并症,不管是中度还是重度的贫血,都可导致胎盘供养不足,胎儿在宫内出现慢性缺氧状态,提高了早产的发生率。胎盘和脐带在整个妊娠期发挥重要作用。而胎盘和脐带疾病也常常发生。胎盘早剥在统计中占比12.8%,胎盘早剥常会引发胎儿缺氧,而隐形胎盘早剥极易并发胎儿窘迫并导致产妇失血性休克。在脐带疾病当中有导致急性缺氧的脐带扭转、脐绕颈,也有不常见的单脐动脉和脐血管断裂。

除可导致急/慢性缺血缺氧的因素外,感染也是诱发早产的重要原因。在早产儿母亲的常见合并症中,感染性疾病,包括HBV、梅毒,都可通过垂直传播导致胎儿发生宫内感染。另外生殖道感染是常见胎膜早破的病因,也是早产的主要原因之一,而随着胎膜早破时间的延长,宫内感染风险也增加,易诱发早产,并可能出现羊水污染。胎儿宫内缺氧可促使胎儿排出胎粪从而出现羊水胎粪污染。

围产期脑白质损伤指多相的、普遍的脑白质损伤,包括灶性坏死(囊性和非囊性PVL)与弥漫性损伤。弥漫性脑白质损伤主要分布于脑白质,累及少突胶质细胞及其前体细胞(oligodendrocyte precursor cell, OPC)。若不及时干预,最终将发展为髓鞘化障碍与脑室扩大,是导致认知障碍、癫痫、智力低下等神经功能障碍的基础。白质病变以髓鞘减少和成熟OLs数量不足为主要特征,可通过再髓鞘化加以干预[26]。目前,弥漫性白质损伤在早产儿脑损伤中最为常见。皮质髓鞘化大约在妊娠34周开始,并以尾端到头端的方式进展[27] [28]。因此,若出生时间小于34周,早产破坏了重要的子宫内脑成熟[29] [30],则会出现明显髓鞘化不足。通过调查临床早产儿的出生胎龄和体重,发现早产儿的体重明显低于足月儿,意味着其器官系统及各项功能的发育较足月儿也会有差异。

目前中重度缺血缺氧性脑病足月儿的标准治疗以低温治疗为主。临床指南建议在出生后6小时内尽早开始低温治疗,并持续72小时,目标脑温为33.5 ± 0.5℃ [31]。治疗性低温与免疫抑制性改变相关[32]。但对于早产儿的治疗暂无相关指南。

OPC出生前位于神经管的脑室下区,在整个大脑和脊髓中迁移,并分化为OL,直至出生后发育[33]。尽管OL的产生率随着大脑的成熟而大幅下降,但在7月龄小鼠(相当于人类的40岁)的脑内通过免疫荧光进行PDGFRa染色,发现大量OPC的存在。OPC极易受到氧化损伤,当OPC因氧化损伤出现死亡时,周边的OPC便可进行增殖和迁移,以保证OPC池的相对稳定。值得注意的是,白质损伤区域OPC增殖有所增加,但是这些OPC却停滞于分化成熟前[34],这可能是由于其损伤后的抑制性环境所致。因此,如何促进损伤后OPC的正常分化,对于白质修复至关重要。目前对此类疾病常见的治疗方法包括基因疗法、药理学干预、干细胞移植等,主要聚焦于Notch、Wnt/β-catenin和乙酰透明质酸介导的信号通路。但是到目前为止,所有在动物实验中尝试的损伤疗法均未能实现临床转化,仅低温治疗可用[35]。因此,对此类疾病的预防干预成为围产医学的重中之重。

通过对临床病例的分析,本研究总结早产儿发生脑白质损伤的主要诱因为缺血缺氧和感染。

基金项目

宁夏自然科学基金(2023AAC03238, 2023AAC03547)。

NOTES

*通讯作者。

参考文献

[1] Cnattingius, S. (2004) The Epidemiology of Smoking during Pregnancy: Smoking Prevalence, Maternal Characteristics, and Pregnancy Outcomes. Nicotine & Tobacco Research, 6, 125-140.
https://doi.org/10.1080/14622200410001669187
[2] Haahr, T., Ersbøll, A.S., Karlsen, M.A., Svare, J., Sneider, K., Hee, L., et al. (2016) Treatment of Bacterial Vaginosis in Pregnancy in Order to Reduce the Risk of Spontaneous Preterm Delivery—A Clinical Recommendation. Acta Obstetricia et Gynecologica Scandinavica, 95, 850-860.
https://doi.org/10.1111/aogs.12933
[3] Olson-Chen, C., Balaram, K. and Hackney, D.N. (2018) Chlamydia Trachomatis and Adverse Pregnancy Outcomes: Meta-Analysis of Patients with and without Infection. Maternal and Child Health Journal, 22, 812-821.
https://doi.org/10.1007/s10995-018-2451-z
[4] Galinsky, R., Polglase, G.R., Hooper, S.B., Black, M.J. and Moss, T.J.M. (2013) The Consequences of Chorioamnionitis: Preterm Birth and Effects on Development. Journal of Pregnancy, 2013, Article 412831.
https://doi.org/10.1155/2013/412831
[5] Cunnington, M., Kortsalioudaki, C. and Heath, P. (2013) Genitourinary Pathogens and Preterm Birth. Current Opinion in Infectious Diseases, 26, 219-230.
https://doi.org/10.1097/qco.0b013e328360dc31
[6] Xiao, P., Zhou, Y., Chen, Y., Yang, M., Song, X., Shi, Y., et al. (2015) Association between Maternal HIV Infection and Low Birth Weight and Prematurity: A Meta-Analysis of Cohort Studies. BMC Pregnancy and Childbirth, 15, Article No. 246.
https://doi.org/10.1186/s12884-015-0684-z
[7] Huang, Q.‐T., Huang, Q., Zhong, M., Wei, S.‐S., Luo, W., Li, F., et al. (2015) Chronic Hepatitis C Virus Infection Is Associated with Increased Risk of Preterm Birth: A Meta‐Analysis of Observational Studies. Journal of Viral Hepatitis, 22, 1033-1042.
https://doi.org/10.1111/jvh.12430
[8] Desai, M., ter Kuile, F.O., Nosten, F., McGready, R., Asamoa, K., Brabin, B., et al. (2007) Epidemiology and Burden of Malaria in Pregnancy. The Lancet Infectious Diseases, 7, 93-104.
https://doi.org/10.1016/s1473-3099(07)70021-x
[9] Qin, J., Yang, T., Xiao, S., Tan, H., Feng, T. and Fu, H. (2014) Reported Estimates of Adverse Pregnancy Outcomes among Women with and without Syphilis: A Systematic Review and Meta-Analysis. PLOS ONE, 9, e102203.
https://doi.org/10.1371/journal.pone.0102203
[10] Committee on Practice Bulletins Obstetrics ACOG (2012) Practice Bulletin No. 130: Prediction and Prevention of Preterm Birth. Obstetrics & Gynecology, 120, 964-973.
https://doi.org/10.1097/AOG.0b013e3182723b1b
[11] Mol, B.W.J., Roberts, C.T., Thangaratinam, S., Magee, L.A., de Groot, C.J.M. and Hofmeyr, G.J. (2016) Pre-Eclampsia. The Lancet, 387, 999-1011.
https://doi.org/10.1016/s0140-6736(15)00070-7
[12] Rahman, M.M., Abe, S.K., Rahman, M.S., Kanda, M., Narita, S., Bilano, V., et al. (2016) Maternal Anemia and Risk of Adverse Birth and Health Outcomes in Low-and Middle-Income Countries: Systematic Review and Meta-Analysis. The American Journal of Clinical Nutrition, 103, 495-504.
https://doi.org/10.3945/ajcn.115.107896
[13] Corbella, S., Taschieri, S., Francetti, L., De Siena, F. and Del Fabbro, M. (2012) Periodontal Disease as a Risk Factor for Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis of Case-Control Studies. Odontology, 100, 232-240.
https://doi.org/10.1007/s10266-011-0036-z
[14] Marchi, J., Berg, M., Dencker, A., Olander, E.K. and Begley, C. (2015) Risks Associated with Obesity in Pregnancy, for the Mother and Baby: A Systematic Review of Reviews. Obesity Reviews, 16, 621-638.
https://doi.org/10.1111/obr.12288
[15] Kozuki, N., Katz, J., Lee, A.C., Vogel, J.P., Silveira, M.F., Sania, A., et al. (2015) Short Maternal Stature Increases Risk of Small-for-Gestational-Age and Preterm Births in Low-and Middle-Income Countries: Individual Participant Data Meta-Analysis and Population Attributable Fraction. The Journal of Nutrition, 145, 2542-2550.
https://doi.org/10.3945/jn.115.216374
[16] Ray, J.G. (2001) Maternal and Neonatal Outcomes in Pregestational and Gestational Diabetes Mellitus, and the Influence of Maternal Obesity and Weight Gain: The Deposit Study. QJM: An International Journal of Medicine, 94, 347-356.
https://doi.org/10.1093/qjmed/94.7.347
[17] Wei, S., Qi, H., Luo, Z. and Fraser, W.D. (2013) Maternal Vitamin D Status and Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis. The Journal of Maternal-Fetal & Neonatal Medicine, 26, 889-899.
https://doi.org/10.3109/14767058.2013.765849
[18] Wei, S., Lai, K., Yang, Z. and Zeng, K. (2017) Systemic Lupus Erythematosus and Risk of Preterm Birth: A Systematic Review and Meta-Analysis of Observational Studies. Lupus, 26, 563-571.
https://doi.org/10.1177/0961203316686704
[19] Kjerulff, L.E., Sanchez-Ramos, L. and Duffy, D. (2011) Pregnancy Outcomes in Women with Polycystic Ovary Syndrome: A Metaanalysis. American Journal of Obstetrics and Gynecology, 204, 558.e1-558.E6.
https://doi.org/10.1016/j.ajog.2011.03.021
[20] Viale, L., Allotey, J., Cheong-See, F., Arroyo-Manzano, D., Mccorry, D., Bagary, M., et al. (2015) Epilepsy in Pregnancy and Reproductive Outcomes: A Systematic Review and Meta-Analysis. The Lancet, 386, 1845-1852.
https://doi.org/10.1016/s0140-6736(15)00045-8
[21] Boden, R., Lundgren, M., Brandt, L., Reutfors, J., Andersen, M. and Kieler, H. (2012) Risks of Adverse Pregnancy and Birth Outcomes in Women Treated or Not Treated with Mood Stabilisers for Bipolar Disorder: Population Based Cohort Study. BMJ, 345, e7085.
https://doi.org/10.1136/bmj.e7085
[22] Staneva, A., Bogossian, F., Pritchard, M. and Wittkowski, A. (2015) The Effects of Maternal Depression, Anxiety, and Perceived Stress during Pregnancy on Preterm Birth: A Systematic Review. Women and Birth, 28, 179-193.
https://doi.org/10.1016/j.wombi.2015.02.003
[23] Fox, N.S., Roman, A.S., Stern, E.M., Gerber, R.S., Saltzman, D.H. and Rebarber, A. (2013) Type of Congenital Uterine Anomaly and Adverse Pregnancy Outcomes. The Journal of Maternal-Fetal & Neonatal Medicine, 27, 949-953.
https://doi.org/10.3109/14767058.2013.847082
[24] Chen, Y.-H., Lin, H.-C., Chen, S.-F. and Lin, H.-C. (2009) Increased Risk of Preterm Births among Women with Uterine Leiomyoma: A Nationwide Population-Based Study. Human Reproduction, 24, 3049-3056.
https://doi.org/10.1093/humrep/dep320
[25] Sapkota, A., Chelikowsky, A.P., Nachman, K.E., Cohen, A.J. and Ritz, B. (2012) Exposure to Particulate Matter and Adverse Birth Outcomes: A Comprehensive Review and Meta-Analysis. Air Quality, Atmosphere & Health, 5, 369-381.
https://doi.org/10.1007/s11869-010-0106-3
[26] Khwaja, O. and Volpe, J.J. (2007) Pathogenesis of Cerebral White Matter Injury of Prematurity. Archives of Disease in Childhood-Fetal and Neonatal Edition, 93, F153-F161.
https://doi.org/10.1136/adc.2006.108837
[27] Batalle, D., O’Muircheartaigh, J., Makropoulos, A., Kelly, C.J., Dimitrova, R., Hughes, E.J., et al. (2019) Different Patterns of Cortical Maturation before and after 38 Weeks Gestational Age Demonstrated by Diffusion MRI in Vivo. NeuroImage, 185, 764-775.
https://doi.org/10.1016/j.neuroimage.2018.05.046
[28] Jakovcevski, I. and Zecevic, N. (2004) Sequence of Oligodendrocyte Development in the Human Fetal Telencephalon. Glia, 49, 480-491.
https://doi.org/10.1002/glia.20134
[29] Borre, Y.E., O’Keeffe, G.W., Clarke, G., Stanton, C., Dinan, T.G. and Cryan, J.F. (2014) Microbiota and Neurodevelopmental Windows: Implications for Brain Disorders. Trends in Molecular Medicine, 20, 509-518.
https://doi.org/10.1016/j.molmed.2014.05.002
[30] Sharon, G., Sampson, T.R., Geschwind, D.H. and Mazmanian, S.K. (2016) The Central Nervous System and the Gut Microbiome. Cell, 167, 915-932.
https://doi.org/10.1016/j.cell.2016.10.027
[31] Davidson, J., Davies, A., Wassink, G., Bennet, L. and Gunn, A. (2019) Can We Further Optimize Therapeutic Hypothermia for Hypoxic-Ischemic Encephalopathy? Neural Regeneration Research, 14, 1678-1683.
https://doi.org/10.4103/1673-5374.257512
[32] Cho, K.H., Davidson, J.O., Dean, J.M., Bennet, L. and Gunn, A.J. (2020) Cooling and Immunomodulation for Treating Hypoxic‐Ischemic Brain Injury. Pediatrics International, 62, 770-778.
https://doi.org/10.1111/ped.14215
[33] Auguste, Y.S.S., Ferro, A., Kahng, J.A., Xavier, A.M., Dixon, J.R., Vrudhula, U., et al. (2022) Oligodendrocyte Precursor Cells Engulf Synapses during Circuit Remodeling in Mice. Nature Neuroscience, 25, 1273-1278.
https://doi.org/10.1038/s41593-022-01170-x
[34] Back, S.A. (2017) White Matter Injury in the Preterm Infant: Pathology and Mechanisms. Acta Neuropathologica, 134, 331-349.
https://doi.org/10.1007/s00401-017-1718-6
[35] Yu, S., Doycheva, D.M., Gamdzyk, M., Yang, Y., Lenahan, C., Li, G., et al. (2021) Activation of MC1R with BMS-470539 Attenuates Neuroinflammation via cAMP/PKA/Nurr1 Pathway after Neonatal Hypoxic-Ischemic Brain Injury in Rats. Journal of Neuroinflammation, 18, Article No. 26.
https://doi.org/10.1186/s12974-021-02078-2