[1]
|
Zhou, M., Wang, H., Zeng, X., Yin, P., Zhu, J., Chen, W., et al. (2019) Mortality, Morbidity, and Risk Factors in China and Its Provinces, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 394, 1145-1158. https://doi.org/10.1016/s0140-6736(19)30427-1
|
[2]
|
宋林阳, 胡依萌, 徐焱成, 等. 胰岛素抵抗的再认识[J]. 中华糖尿病杂志, 2022, 14(12): 1341-1347.
|
[3]
|
Leite, M.M., Dutra, M.T., da Costa, M.V.G., Funghetto, S.S., Silva, A.d.O., de Lima, L.R., et al. (2021) Comparative Evaluation of Inflammatory Parameters and Substitute Insulin Resistance Indices in Elderly Women with and without Type 2 Diabetes Mellitus. Experimental Gerontology, 150, Article 111389. https://doi.org/10.1016/j.exger.2021.111389
|
[4]
|
Gluvic, Z., Zaric, B., Resanovic, I., Obradovic, M., Mitrovic, A., Radak, D., et al. (2016) Link between Metabolic Syndrome and Insulin Resistance. Current Vascular Pharmacology, 15, 30-39. https://doi.org/10.2174/1570161114666161007164510
|
[5]
|
Pulakat, L., DeMarco, V.G., Ardhanari, S., Chockalingam, A., Gul, R., Whaley-Connell, A., et al. (2011) Adaptive Mechanisms to Compensate for Overnutrition-Induced Cardiovascular Abnormalities. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301, R885-R895. https://doi.org/10.1152/ajpregu.00316.2011
|
[6]
|
Yokota, T., Kinugawa, S., Hirabayashi, K., Yamato, M., Takada, S., Suga, T., et al. (2021) Systemic Oxidative Stress Is Associated with Lower Aerobic Capacity and Impaired Skeletal Muscle Energy Metabolism in Heart Failure Patients. Scientific Reports, 11, Article No. 2272. https://doi.org/10.1038/s41598-021-81736-0
|
[7]
|
Marassi, M. and Fadini, G.P. (2023) The Cardio-Renal-Metabolic Connection: A Review of the Evidence. Cardiovascular Diabetology, 22, Article No. 195. https://doi.org/10.1186/s12933-023-01937-x
|
[8]
|
James, D.E., Stöckli, J. and Birnbaum, M.J. (2021) The Aetiology and Molecular Landscape of Insulin Resistance. Nature Reviews Molecular Cell Biology, 22, 751-771. https://doi.org/10.1038/s41580-021-00390-6
|
[9]
|
Lee, S., Park, S. and Choi, C.S. (2022) Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & Metabolism Journal, 46, 15-37. https://doi.org/10.4093/dmj.2021.0280
|
[10]
|
苏青, 臧丽. 胰岛素抵抗的历史、机制和管理[J]. 中华糖尿病杂志, 2023, 15(1): 6-13.
|
[11]
|
Mocciaro, G. and Gastaldelli, A. (2022) Obesity-Related Insulin Resistance: The Central Role of Adipose Tissue Dysfunction. In: Eckel, J. and Clément, K., Eds., Handbook of Experimental Pharmacology, Springer International Publishing, 145-164. https://doi.org/10.1007/164_2021_573
|
[12]
|
Chibalin, A.V., Leng, Y., Vieira, E., Krook, A., Björnholm, M., Long, Y.C., et al. (2022) Downregulation of Diacylglycerol Kinase Delta Contributes to Hyperglycemia-Induced Insulin Resistance. Cell, 185, 397-398. https://doi.org/10.1016/j.cell.2021.12.044
|
[13]
|
Wallace, T.M., Levy, J.C. and Matthews, D.R. (2004) Use and Abuse of HOMA Modeling. Diabetes Care, 27, 1487-1495. https://doi.org/10.2337/diacare.27.6.1487
|
[14]
|
Bornfeldt, K.E. and Tabas, I. (2011) Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metabolism, 14, 575-585. https://doi.org/10.1016/j.cmet.2011.07.015
|
[15]
|
Nayak, V.K.R., Satheesh, P., Shenoy, M.T. and Kalra, S. (2022) Triglyceride Glucose (TyG) Index: A Surrogate Biomarker of Insulin Resistance. Journal of the Pakistan Medical Association, 72, 986-988. https://doi.org/10.47391/jpma.22-63
|
[16]
|
Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. https://doi.org/10.1089/met.2008.0034
|
[17]
|
Lee, S., Han, K., Yang, H.K., Kim, M.K., Yoon, K., Kwon, H., et al. (2014) Identifying Subgroups of Obesity Using the Product of Triglycerides and Glucose: The Korea National Health and Nutrition Examination Survey, 2008-2010. Clinical Endocrinology, 82, 213-220. https://doi.org/10.1111/cen.12502
|
[18]
|
Zhang, M., Wang, B., Liu, Y., Sun, X., Luo, X., Wang, C., et al. (2017) Cumulative Increased Risk of Incident Type 2 Diabetes Mellitus with Increasing Triglyceride Glucose Index in Normal-Weight People: The Rural Chinese Cohort Study. Cardiovascular Diabetology, 16, Article No. 30. https://doi.org/10.1186/s12933-017-0514-x
|
[19]
|
Lopez-Jaramillo, P., Gomez-Arbelaez, D., Martinez-Bello, D., Abat, M.E.M., Alhabib, K.F., Avezum, Á., et al. (2023) Association of the Triglyceride Glucose Index as a Measure of Insulin Resistance with Mortality and Cardiovascular Disease in Populations from Five Continents (PURE Study): A Prospective Cohort Study. The Lancet Healthy Longevity, 4, e23-e33. https://doi.org/10.1016/s2666-7568(22)00247-1
|
[20]
|
Son, D., Lee, H.S., Lee, Y., Lee, J. and Han, J. (2022) Comparison of Triglyceride-Glucose Index and HOMA-IR for Predicting Prevalence and Incidence of Metabolic Syndrome. Nutrition, Metabolism and Cardiovascular Diseases, 32, 596-604. https://doi.org/10.1016/j.numecd.2021.11.017
|
[21]
|
Manolis, A.A., Manolis, T.A., Melita, H. and Manolis, A.S. (2018) Psoriasis and Cardiovascular Disease: The Elusive Link. International Reviews of Immunology, 38, 33-54. https://doi.org/10.1080/08830185.2018.1539084
|
[22]
|
Zheng, S., Shi, S., Ren, X., Han, T., Li, Y., Chen, Y., et al. (2016) Triglyceride Glucose-Waist Circumference, a Novel and Effective Predictor of Diabetes in First-Degree Relatives of Type 2 Diabetes Patients: Cross-Sectional and Prospective Cohort Study. Journal of Translational Medicine, 14, Article No. 260. https://doi.org/10.1186/s12967-016-1020-8
|
[23]
|
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K.B., et al. (2020) Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21, Article 6275. https://doi.org/10.3390/ijms21176275
|
[24]
|
Kramer, C.K., Zinman, B. and Retnakaran, R. (2013) Short-Term Intensive Insulin Therapy in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. The Lancet Diabetes & Endocrinology, 1, 28-34. https://doi.org/10.1016/s2213-8587(13)70006-8
|
[25]
|
Schlesinger, S., Neuenschwander, M., Barbaresko, J., Lang, A., Maalmi, H., Rathmann, W., et al. (2022) Prediabetes and Risk of Mortality, Diabetes-Related Complications and Comorbidities: Umbrella Review of Meta-Analyses of Prospective Studies. Diabetologia, 65, 275-285. https://doi.org/10.1007/s00125-021-05592-3
|
[26]
|
Ong, K.L., Stafford, L.K., McLaughlin, S.A., Boyko, E.J., Vollset, S.E., Smith, A.E., et al. (2023) Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet, 402, 203-234. https://doi.org/10.1016/s0140-6736(23)01301-6
|
[27]
|
Xu, Y., Lu, J., Li, M., Wang, T., Wang, K., Cao, Q., et al. (2024) Diabetes in China Part 1: Epidemiology and Risk Factors. The Lancet Public Health, 9, e1089-e1097. https://doi.org/10.1016/s2468-2667(24)00250-0
|
[28]
|
Er, L., Wu, S., Chou, H., Hsu, L., Teng, M., Sun, Y., et al. (2016) Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLOS ONE, 11, e0149731. https://doi.org/10.1371/journal.pone.0149731
|
[29]
|
Chen, X., Liu, Z., Yang, Y., Chen, G., Wan, Q., Qin, G., et al. (2022) Depression Status, Lifestyle, and Metabolic Factors with Subsequent Risk for Major Cardiovascular Events: The China Cardiometabolic Disease and Cancer Cohort (4C) Study. Frontiers in Cardiovascular Medicine, 9, Article 865063. https://doi.org/10.3389/fcvm.2022.865063
|
[30]
|
da Silva, A., Caldas, A.P.S., Rocha, D.M.U.P. and Bressan, J. (2020) Triglyceride-Glucose Index Predicts Independently Type 2 Diabetes Mellitus Risk: A Systematic Review and Meta-Analysis of Cohort Studies. Primary Care Diabetes, 14, 584-593. https://doi.org/10.1016/j.pcd.2020.09.001
|
[31]
|
Zhang, Q., Xiao, S., Jiao, X. and Shen, Y. (2023) The Triglyceride-Glucose Index Is a Predictor for Cardiovascular and All-Cause Mortality in CVD Patients with Diabetes or Pre-Diabetes: Evidence from NHANES 2001-2018. Cardiovascular Diabetology, 22, Article No. 279. https://doi.org/10.1186/s12933-023-02030-z
|
[32]
|
Tai, S., Fu, L., Zhang, N., Yang, R., Zhou, Y., Xing, Z., et al. (2022) Association of the Cumulative Triglyceride-Glucose Index with Major Adverse Cardiovascular Events in Patients with Type 2 Diabetes. Cardiovascular Diabetology, 21, Article No. 161. https://doi.org/10.1186/s12933-022-01599-1
|
[33]
|
Yan, H., Zhou, Q., Wang, Y., Tu, Y., Zhao, Y., Yu, J., et al. (2024) Associations between Cardiometabolic Indices and the Risk of Diabetic Kidney Disease in Patients with Type 2 Diabetes. Cardiovascular Diabetology, 23, Article No. 142. https://doi.org/10.1186/s12933-024-02228-9
|
[34]
|
Wang, D., Yang, Y., Lei, Y., Tzvetkov, N.T., Liu, X., Yeung, A.W.K., et al. (2019) Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacological Reviews, 71, 596-670. https://doi.org/10.1124/pr.118.017178
|
[35]
|
中华医学会健康管理学分会,《中华健康管理学杂志》编辑委员会, 国家老年疾病临床医学研究中心. 成人代谢综合征防控健康教育专家共识[J]. 中华健康管理学杂志, 2024, 18(2): 81-92.
|
[36]
|
Xi, B., He, D., Hu, Y. and Zhou, D. (2013) Prevalence of Metabolic Syndrome and Its Influencing Factors among the Chinese Adults: The China Health and Nutrition Survey in 2009. Preventive Medicine, 57, 867-871. https://doi.org/10.1016/j.ypmed.2013.09.023
|
[37]
|
Luo, W., Ai, L., Wang, B. and Zhou, Y. (2019) High Glucose Inhibits Myogenesis and Induces Insulin Resistance by Down-Regulating AKT Signaling. Biomedicine & Pharmacotherapy, 120, Article 109498. https://doi.org/10.1016/j.biopha.2019.109498
|
[38]
|
Kang, S.W., Kim, S.K., Kim, Y.S. and Park, M. (2023) Risk Prediction of the Metabolic Syndrome Using Tyg Index and SNPs: A 10-Year Longitudinal Prospective Cohort Study. Molecular and Cellular Biochemistry, 478, 39-45. https://doi.org/10.1007/s11010-022-04494-1
|
[39]
|
Wei, X., Min, Y., Song, G., Ye, X. and Liu, L. (2024) Association between Triglyceride-Glucose Related Indices with the All-Cause and Cause-Specific Mortality among the Population with Metabolic Syndrome. Cardiovascular Diabetology, 23, Article No. 134. https://doi.org/10.1186/s12933-024-02215-0
|
[40]
|
Yu, X., Wang, L., Zhang, W., Ming, J., Jia, A., Xu, S., et al. (2018) Fasting Triglycerides and Glucose Index Is More Suitable for the Identification of Metabolically Unhealthy Individuals in the Chinese Adult Population: A Nationwide Study. Journal of Diabetes Investigation, 10, 1050-1058. https://doi.org/10.1111/jdi.12975
|
[41]
|
Eda Kaya, Yusuf Yilmaz. 累及全身多系统的疾病: 代谢相关(非酒精性)脂肪性肝病[J]. 中华肝脏病杂志, 2025, 33(1): 77-87.
|
[42]
|
Paik, J.M., Henry, L., Younossi, Y., Ong, J., Alqahtani, S. and Younossi, Z.M. (2023) The Burden of Nonalcoholic Fatty Liver Disease (NAFLD) Is Rapidly Growing in Every Region of the World from 1990 to 2019. Hepatology Communications, 7, e0251. https://doi.org/10.1097/hc9.0000000000000251
|
[43]
|
Younossi, Z.M., Golabi, P., Paik, J.M., Henry, A., Van Dongen, C. and Henry, L. (2023) The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology, 77, 1335-1347. https://doi.org/10.1097/hep.0000000000000004
|
[44]
|
Zhou, X., Cai, J., Targher, G., Byrne, C.D., Shapiro, M.D., Sung, K., et al. (2022) Metabolic Dysfunction-Associated Fatty Liver Disease and Implications for Cardiovascular Risk and Disease Prevention. Cardiovascular Diabetology, 21, Article No. 270. https://doi.org/10.1186/s12933-022-01697-0
|
[45]
|
Guo, W., Lu, J., Qin, P., Li, X., Zhu, W., Wu, J., et al. (2020) The Triglyceride-Glucose Index Is Associated with the Severity of Hepatic Steatosis and the Presence of Liver Fibrosis in Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study in Chinese Adults. Lipids in Health and Disease, 19, Article No. 218. https://doi.org/10.1186/s12944-020-01393-6
|
[46]
|
Kitae, A., Hashimoto, Y., Hamaguchi, M., Obora, A., Kojima, T. and Fukui, M. (2019) The Triglyceride and Glucose Index Is a Predictor of Incident Nonalcoholic Fatty Liver Disease: A Population-Based Cohort Study. Canadian Journal of Gastroenterology and Hepatology, 2019, Article 5121574. https://doi.org/10.1155/2019/5121574
|
[47]
|
Liu, Y.T., Wang, W., Tong, J. and Wang, B.Y. (2021) Relationship between Triglyceride-Glucose Index and Non-Alcoholic Fatty Liver Disease. Chinese Journal of Hepatology, 29, 451-455. https://doi.org/10.3760/cma.j.cn501113-20200615-00322
|
[48]
|
Sánchez-García, A., Rodríguez-Gutiérrez, R., Mancillas-Adame, L., González-Nava, V., Díaz González-Colmenero, A., Solis, R.C., et al. (2020) Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. International Journal of Endocrinology, 2020, Article 4678526. https://doi.org/10.1155/2020/4678526
|
[49]
|
Zheng, R., Du, Z., Wang, M., Mao, Y. and Mao, W. (2018) A Longitudinal Epidemiological Study on the Triglyceride and Glucose Index and the Incident Nonalcoholic Fatty Liver Disease. Lipids in Health and Disease, 17, Article No. 262. https://doi.org/10.1186/s12944-018-0913-3
|
[50]
|
Mensah, G.A., Fuster, V. and Roth, G.A. (2023) A Heart-Healthy and Stroke-Free World. Journal of the American College of Cardiology, 82, 2343-2349. https://doi.org/10.1016/j.jacc.2023.11.003
|
[51]
|
Chong, B., Jayabaskaran, J., Jauhari, S.M., Chan, S.P., Goh, R., Kueh, M.T.W., et al. (2024) Global Burden of Cardiovascular Diseases: Projections from 2025 to 2050. European Journal of Preventive Cardiology, 13, zwae281. https://doi.org/10.1093/eurjpc/zwae281
|
[52]
|
徐倩, 姜志胜. 动脉粥样硬化机制研究的新认识[J]. 中国动脉硬化杂志, 2024, 32(11): 921-931.
|
[53]
|
Sánchez‐Íñigo, L., Navarro‐González, D., Fernández‐Montero, A., Pastrana‐Delgado, J. and Martínez, J.A. (2016) The Tyg Index May Predict the Development of Cardiovascular Events. European Journal of Clinical Investigation, 46, 189-197. https://doi.org/10.1111/eci.12583
|
[54]
|
Park, K., Ahn, C.W., Lee, S.B., Kang, S., Nam, J.S., Lee, B.K., et al. (2019) Elevated Tyg Index Predicts Progression of Coronary Artery Calcification. Diabetes Care, 42, 1569-1573. https://doi.org/10.2337/dc18-1920
|
[55]
|
Liang, S., Wang, C., Zhang, J., Liu, Z., Bai, Y., Chen, Z., et al. (2023) Triglyceride-Glucose Index and Coronary Artery Disease: A Systematic Review and Meta-Analysis of Risk, Severity, and Prognosis. Cardiovascular Diabetology, 22, Article No. 170. https://doi.org/10.1186/s12933-023-01906-4
|
[56]
|
Sun, C., Hu, L., Li, X., Zhang, X., Chen, J., Li, D., et al. (2024) Triglyceride‐Glucose Index’s Link to Cardiovascular Outcomes Post‐Percutaneous Coronary Intervention in China: A Meta‐Analysis. ESC Heart Failure, 11, 1317-1328. https://doi.org/10.1002/ehf2.14679
|
[57]
|
Zuo, H., Yang, X., Liu, Q., Zhang, Y., Zeng, H., Yan, J., et al. (2018) Global Longitudinal Strain at Rest for Detection of Coronary Artery Disease in Patients without Diabetes Mellitus. Current Medical Science, 38, 413-421. https://doi.org/10.1007/s11596-018-1894-1
|
[58]
|
He, G., Zhang, Z., Wang, C., Wang, W., Bai, X., He, L., et al. (2024) Association of the Triglyceride-Glucose Index with All-Cause and Cause-Specific Mortality: A Population-Based Cohort Study of 3.5 Million Adults in China. The Lancet Regional Health-Western Pacific, 49, Article 101135. https://doi.org/10.1016/j.lanwpc.2024.101135
|