[1]
|
van Griensven, M. (2015) Preclinical Testing of Drug Delivery Systems to Bone. Advanced Drug Delivery Reviews, 94, 151-164. https://doi.org/10.1016/j.addr.2015.07.006
|
[2]
|
Laurencin, C.T., Ashe, K.M., Henry, N., Kan, H.M. and Lo, K.W. (2014) Delivery of Small Molecules for Bone Regenerative Engineering: Preclinical Studies and Potential Clinical Applications. Drug Discovery Today, 19, 794-800. https://doi.org/10.1016/j.drudis.2014.01.012
|
[3]
|
Amato, M., Santonocito, S., Polizzi, A., Tartaglia, G.M., Ronsivalle, V., Viglianisi, G., et al. (2023) Local Delivery and Controlled Release Drugs Systems: A New Approach for the Clinical Treatment of Periodontitis Therapy. Pharmaceutics, 15, Article 1312. https://doi.org/10.3390/pharmaceutics15041312
|
[4]
|
Lopez-Vidal, L., Juskaite, K., Ramöller, I.K., Real, D.A., McKenna, P.E., Priotti, J., et al. (2024) Advanced Drug Delivery Systems for the Management of Local Conditions. Therapeutic Delivery, 16, 285-303. https://doi.org/10.1080/20415990.2024.2437978
|
[5]
|
Adepu, S. and Ramakrishna, S. (2021) Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules, 26, Article 5905. https://doi.org/10.3390/molecules26195905
|
[6]
|
Prausnitz, M.R. and Langer, R. (2008) Transdermal Drug Delivery. Nature Biotechnology, 26, 1261-1268. https://doi.org/10.1038/nbt.1504
|
[7]
|
Wells, C.M., Harris, M., Choi, L., Murali, V.P., Guerra, F.D. and Jennings, J.A. (2019) Stimuli-Responsive Drug Release from Smart Polymers. Journal of Functional Biomaterials, 10, Article 34. https://doi.org/10.3390/jfb10030034
|
[8]
|
Yi, Y., Song, J., Zhou, P., Shu, Y., Liang, P., Liang, H., et al. (2024) An Ultrasound-Triggered Injectable Sodium Alginate Scaffold Loaded with Electrospun Microspheres for On-Demand Drug Delivery to Accelerate Bone Defect Regeneration. Carbohydrate Polymers, 334, Article 122039. https://doi.org/10.1016/j.carbpol.2024.122039
|
[9]
|
Wei, P., Cornel, E.J. and Du, J. (2021) Ultrasound-Responsive Polymer-Based Drug Delivery Systems. Drug Delivery and Translational Research, 11, 1323-1339. https://doi.org/10.1007/s13346-021-00963-0
|
[10]
|
Ikeda, K., Takayama, T., Suzuki, N., Shimada, K., Otsuka, K. and Ito, K. (2006) Effects of Low-Intensity Pulsed Ultrasound on the Differentiation of C2C12 Cells. Life Sciences, 79, 1936-1943. https://doi.org/10.1016/j.lfs.2006.06.029
|
[11]
|
Fan, B., Guo, Z., Li, X., Li, S., Gao, P., Xiao, X., et al. (2020) Electroactive Barium Titanate Coated Titanium Scaffold Improves Osteogenesis and Osseointegration with Low-Intensity Pulsed Ultrasound for Large Segmental Bone Defects. Bioactive Materials, 5, 1087-1101. https://doi.org/10.1016/j.bioactmat.2020.07.001
|
[12]
|
Nakamura, T., Fujihara, S., Katsura, T., Yamamoto, K., Inubushi, T., Tanimoto, K., et al. (2010) Effects of Low-Intensity Pulsed Ultrasound on the Expression and Activity of Hyaluronan Synthase and Hyaluronidase in Il-1β-Stimulated Synovial Cells. Annals of Biomedical Engineering, 38, 3363-3370. https://doi.org/10.1007/s10439-010-0104-5
|
[13]
|
Warden, S.J., Bennell, K.L., McMeeken, J.M. and Wark, J.D. (1999) Can Conventional Therapeutic Ultrasound Units Be Used to Accelerate Fracture Repair? Physical Therapy Reviews, 4, 117-126. https://doi.org/10.1179/ptr.1999.4.2.117
|
[14]
|
Farkash, U., Bain, O., Gam, A., Nyska, M. and Sagiv, P. (2015) Low-Intensity Pulsed Ultrasound for Treating Delayed Union Scaphoid Fractures: Case Series. Journal of Orthopaedic Surgery and Research, 10, Article No. 72. https://doi.org/10.1186/s13018-015-0221-9
|
[15]
|
Júnior, S.L.J., Camanho, G.L., Bassit, A.C.F., Forgas, A., Ingham, S.J.M. and Abdalla, R.J. (2011) Low-Intensity Pulsed Ultrasound Accelerates Healing in Rat Calcaneus Tendon Injuries. Journal of Orthopaedic & Sports Physical Therapy, 41, 526-531. https://doi.org/10.2519/jospt.2011.3468
|
[16]
|
Namazi, H. (2012) Effect of Low-Intensity Pulsed Ultrasound on the Cartilage Repair in People with Mild to Moderate Knee Osteoarthritis: A Novel Molecular Mechanism. Archives of Physical Medicine and Rehabilitation, 93, 1882. https://doi.org/10.1016/j.apmr.2012.01.028
|
[17]
|
Ren, L., Yang, Z., Song, J., Wang, Z., Deng, F. and Li, W. (2013) Involvement of P38 MAPK Pathway in Low Intensity Pulsed Ultrasound Induced Osteogenic Differentiation of Human Periodontal Ligament Cells. Ultrasonics, 53, 686-690. https://doi.org/10.1016/j.ultras.2012.10.008
|
[18]
|
Palanisamy, P., Alam, M., Li, S., Chow, S.K.H. and Zheng, Y. (2021) Low-Intensity Pulsed Ultrasound Stimulation for Bone Fractures Healing. Journal of Ultrasound in Medicine, 41, 547-563. https://doi.org/10.1002/jum.15738
|
[19]
|
Harrison, A. and Alt, V. (2021) Low-Intensity Pulsed Ultrasound (LIPUS) for Stimulation of Bone Healing—A Narrative Review. Injury, 52, S91-S96. https://doi.org/10.1016/j.injury.2021.05.002
|
[20]
|
Coelho, J.F., Ferreira, P.C., Alves, P., Cordeiro, R., Fonseca, A.C., Góis, J.R., et al. (2010) Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalized Treatments. EPMA Journal, 1, 164-209. https://doi.org/10.1007/s13167-010-0001-x
|
[21]
|
Nyamweya, N.N. (2021) Applications of Polymer Blends in Drug Delivery. Future Journal of Pharmaceutical Sciences, 7, Article No. 18. https://doi.org/10.1186/s43094-020-00167-2
|
[22]
|
Al-Shaeli, M., Benkhaya, S., Al-Juboori, R.A., Koyuncu, I. and Vatanpour, V. (2024) pH-Responsive Membranes: Mechanisms, Fabrications, and Applications. Science of the Total Environment, 946, Article 173865. https://doi.org/10.1016/j.scitotenv.2024.173865
|
[23]
|
Shinn, J., Kwon, N., Lee, S.A. and Lee, Y. (2022) Smart pH-Responsive Nanomedicines for Disease Therapy. Journal of Pharmaceutical Investigation, 52, 427-441. https://doi.org/10.1007/s40005-022-00573-z
|
[24]
|
Lengyel, M., Kállai-Szabó, N., Antal, V., Laki, A.J. and Antal, I. (2019) Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Scientia Pharmaceutica, 87, Article 20. https://doi.org/10.3390/scipharm87030020
|
[25]
|
Lagreca, E., Onesto, V., Di Natale, C., La Manna, S., Netti, P.A. and Vecchione, R. (2020) Recent Advances in the Formulation of PLGA Microparticles for Controlled Drug Delivery. Progress in Biomaterials, 9, 153-174. https://doi.org/10.1007/s40204-020-00139-y
|
[26]
|
Blasi, P. (2019) Poly(Lactic Acid)/Poly(Lactic-Co-Glycolic Acid)-Based Microparticles: An Overview. Journal of Pharmaceutical Investigation, 49, 337-346. https://doi.org/10.1007/s40005-019-00453-z
|
[27]
|
Vlachopoulos, A., Karlioti, G., Balla, E., Daniilidis, V., Kalamas, T., Stefanidou, M., et al. (2022) Poly(Lactic Acid)-Based Microparticles for Drug Delivery Applications: An Overview of Recent Advances. Pharmaceutics, 14, Article 359. https://doi.org/10.3390/pharmaceutics14020359
|
[28]
|
Mansour, A., Romani, M., Acharya, A.B., Rahman, B., Verron, E. and Badran, Z. (2023) Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics, 15, Article 695. https://doi.org/10.3390/pharmaceutics15020695
|
[29]
|
Baker, K.G., Robertson, V.J. and Duck, F.A. (2001) A Review of Therapeutic Ultrasound: Biophysical Effects. Physical Therapy, 81, 1351-1358. https://doi.org/10.1093/ptj/81.7.1351
|
[30]
|
Sonis, S. (2016) Ultrasound-Mediated Drug Delivery. Oral Diseases, 23, 135-138. https://doi.org/10.1111/odi.12501
|
[31]
|
Frenkel, V. (2008) Ultrasound Mediated Delivery of Drugs and Genes to Solid Tumors. Advanced Drug Delivery Reviews, 60, 1193-1208. https://doi.org/10.1016/j.addr.2008.03.007
|
[32]
|
Roovers, S., Segers, T., Lajoinie, G., Deprez, J., Versluis, M., De Smedt, S.C., et al. (2019) The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble Fundamentals to Clinical Translation. Langmuir, 35, 10173-10191. https://doi.org/10.1021/acs.langmuir.8b03779
|
[33]
|
Rapoport, N.Y., Kennedy, A.M., Shea, J.E., Scaife, C.L. and Nam, K. (2009) Controlled and Targeted Tumor Chemotherapy by Ultrasound-Activated Nanoemulsions/Microbubbles. Journal of Controlled Release, 138, 268-276. https://doi.org/10.1016/j.jconrel.2009.05.026
|
[34]
|
Dromi, S., Frenkel, V., Luk, A., Traughber, B., Angstadt, M., Bur, M., et al. (2007) Pulsed-High Intensity Focused Ultrasound and Low Temperature-Sensitive Liposomes for Enhanced Targeted Drug Delivery and Antitumor Effect. Clinical Cancer Research, 13, 2722-2727. https://doi.org/10.1158/1078-0432.ccr-06-2443
|
[35]
|
Wheatley, M.A., Lathia, J.D. and Oum, K.L. (2006) Polymeric Ultrasound Contrast Agents Targeted to Integrins: Importance of Process Methods and Surface Density of Ligands. Biomacromolecules, 8, 516-522. https://doi.org/10.1021/bm060659i
|
[36]
|
Pisani, E., Tsapis, N., Paris, J., Nicolas, V., Cattel, L. and Fattal, E. (2006) Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization. Langmuir, 22, 4397-4402. https://doi.org/10.1021/la0601455
|
[37]
|
Kooiman, K., Böhmer, M.R., Emmer, M., Vos, H.J., Chlon, C., Shi, W.T., et al. (2009) Oil-Filled Polymer Microcapsules for Ultrasound-Mediated Delivery of Lipophilic Drugs. Journal of Controlled Release, 133, 109-118. https://doi.org/10.1016/j.jconrel.2008.09.085
|
[38]
|
Villa, R., Cerroni, B., Viganò, L., Margheritelli, S., Abolafio, G., Oddo, L., et al. (2013) Targeted Doxorubicin Delivery by Chitosan-Galactosylated Modified Polymer Microbubbles to Hepatocarcinoma Cells. Colloids and Surfaces B: Biointerfaces, 110, 434-442. https://doi.org/10.1016/j.colsurfb.2013.04.022
|
[39]
|
Lu, C., Zhao, Y.Z., Ge, S.P., Jin, Y. and Du, L. (2013) Potential and Problems in Ultrasound-Responsive Drug Delivery Systems. International Journal of Nanomedicine, 8, 1621-1633. https://doi.org/10.2147/ijn.s43589
|
[40]
|
Fernandes, C., Suares, D. and Yergeri, M.C. (2018) Tumor Microenvironment Targeted Nanotherapy. Frontiers in Pharmacology, 9, Article 1230. https://doi.org/10.3389/fphar.2018.01230
|
[41]
|
Wu, M., Wang, Y., Wang, Y., Zhang, M., Luo, Y., Tang, J., et al. (2017) Paclitaxel-Loaded and A10-3.2 Aptamer-Targeted Poly(Lactide-Co-Glycolic Acid) Nanobubbles for Ultrasound Imaging and Therapy of Prostate Cancer. International Journal of Nanomedicine, 12, 5313-5330. https://doi.org/10.2147/ijn.s136032
|
[42]
|
Du, J. and O’Reilly, R.K. (2009) Advances and Challenges in Smart and Functional Polymer Vesicles. Soft Matter, 5, 3544-3561. https://doi.org/10.1039/b905635a
|
[43]
|
Rapoport, N. (2012) Ultrasound-Mediated Micellar Drug Delivery. International Journal of Hyperthermia, 28, 374-385. https://doi.org/10.3109/02656736.2012.665567
|
[44]
|
Matsumura, Y., Hamaguchi, T., Ura, T., Muro, K., Yamada, Y., Shimada, Y., et al. (2004) Phase I Clinical Trial and Pharmacokinetic Evaluation of NK911, a Micelle-Encapsulated Doxorubicin. British Journal of Cancer, 91, 1775-1781. https://doi.org/10.1038/sj.bjc.6602204
|
[45]
|
Danson, S., Ferry, D., Alakhov, V., Margison, J., Kerr, D., Jowle, D., et al. (2004) Phase I Dose Escalation and Pharmacokinetic Study of Pluronic Polymer-Bound Doxorubicin (SP1049C) in Patients with Advanced Cancer. British Journal of Cancer, 90, 2085-2091. https://doi.org/10.1038/sj.bjc.6601856
|
[46]
|
Tomatsu, I., Peng, K. and Kros, A. (2011) Photoresponsive Hydrogels for Biomedical Applications. Advanced Drug Delivery Reviews, 63, 1257-1266. https://doi.org/10.1016/j.addr.2011.06.009
|
[47]
|
El-Sherbiny, I., Khalil, I., Ali, I. and Yacoub, M. (2017) Updates on Smart Polymeric Carrier Systems for Protein Delivery. Drug Development and Industrial Pharmacy, 43, 1567-1583. https://doi.org/10.1080/03639045.2017.1338723
|
[48]
|
Yamaguchi, S., Higashi, K., Azuma, T. and Okamoto, A. (2019) Supramolecular Polymeric Hydrogels for Ultrasound-Guided Protein Release. Biotechnology Journal, 14, Article 1800530. https://doi.org/10.1002/biot.201800530
|
[49]
|
Alford, A., Tucker, B., Kozlovskaya, V., Chen, J., Gupta, N., Caviedes, R., et al. (2018) Encapsulation and Ultrasound-Triggered Release of G-Quadruplex DNA in Multilayer Hydrogel Microcapsules. Polymers, 10, Article 1342. https://doi.org/10.3390/polym10121342
|
[50]
|
Vannozzi, L., Ricotti, L., Filippeschi, C., Sartini, S., Coviello, V., Piazza, V., et al. (2015) Nanostructured Ultra-Thin Patches for Ultrasound-Modulated Delivery of Anti-Restenotic Drug. International Journal of Nanomedicine, 2016, 69-92. https://doi.org/10.2147/ijn.s92031
|
[51]
|
Zhu, P., Chen, Y. and Shi, J. (2020) Piezocatalytic Tumor Therapy by Ultrasound-Triggered and Batio3-Mediated Piezoelectricity. Advanced Materials, 32, Article 2001976. https://doi.org/10.1002/adma.202001976
|
[52]
|
Liu, D., Li, L., Shi, B., Shi, B., Li, M., Qiu, Y., et al. (2023) Ultrasound-Triggered Piezocatalytic Composite Hydrogels for Promoting Bacterial-Infected Wound Healing. Bioactive Materials, 24, 96-111. https://doi.org/10.1016/j.bioactmat.2022.11.023
|
[53]
|
Qian, W., Zhao, K., Zhang, D., Bowen, C.R., Wang, Y. and Yang, Y. (2019) Piezoelectric Material-Polymer Composite Porous Foam for Efficient Dye Degradation via the Piezo-Catalytic Effect. ACS Applied Materials & Interfaces, 11, 27862-27869. https://doi.org/10.1021/acsami.9b07857
|
[54]
|
Ghosh, S., Kumar, N. and Chattopadhyay, S. (2025) Electrically Conductive “SMART” Hydrogels for On-Demand Drug Delivery. Asian Journal of Pharmaceutical Sciences, 20, Article 101007. https://doi.org/10.1016/j.ajps.2024.101007
|
[55]
|
De Alvarenga, G., Hryniewicz, B.M., Jasper, I., Silva, R.J., Klobukoski, V., Costa, F.S., et al. (2020) Recent Trends of Micro and Nanostructured Conducting Polymers in Health and Environmental Applications. Journal of Electroanalytical Chemistry, 879, Article 114754. https://doi.org/10.1016/j.jelechem.2020.114754
|
[56]
|
Zhang, R., Cheng, K., Xuan, Y., Yang, X., An, J., Hu, Y., et al. (2021) A pH/Ultrasonic Dual-Response Step-Targeting Enterosoluble Granule for Combined Sonodynamic-Chemotherapy Guided via Gastrointestinal Tract Imaging in Orthotopic Colorectal Cancer. Nanoscale, 13, 4278-4294. https://doi.org/10.1039/d0nr08100k
|
[57]
|
Ramírez-Carracedo, R., Hernández, I., Moreno-Gómez-Toledano, R., Díez-Mata, J., Tesoro, L., González-Cucharero, C., et al. (2024) NOS3 Prevents MMP-9, and MMP-13 Induced Extracellular Matrix Proteolytic Degradation through Specific MicroRNA-Targeted Expression of Extracellular Matrix Metalloproteinase Inducer in Hypertension-Related Atherosclerosis. Journal of Hypertension, 42, 685-693. https://doi.org/10.1097/hjh.0000000000003679
|
[58]
|
Shiroud Heidari, B., Muiños Lopez, E., Harrington, E., Ruan, R., Chen, P., Davachi, S.M., et al. (2023) Novel Hybrid Biocomposites for Tendon Grafts: The Addition of Silk to Polydioxanone and Poly(Lactide-Co-Caprolactone) Enhances Material Properties, in Vitro and in Vivo Biocompatibility. Bioactive Materials, 25, 291-306. https://doi.org/10.1016/j.bioactmat.2023.02.003
|
[59]
|
Zhang, D., Kandadai, M.A., Cech, J., Roth, S. and Curran, S.A. (2006) Poly(L-Lactide) (PLLA)/Multiwalled Carbon Nanotube (MWCNT) Composite: Characterization and Biocompatibility Evaluation. The Journal of Physical Chemistry B, 110, 12910-12915. https://doi.org/10.1021/jp061628k
|
[60]
|
Loan Pham, T., Huy Nguyen, V., Tam Tien H, T., Le Thu Hoa, T., NghiaPhan, C. and Quyen Nguy, T. (2020) Evaluation of Acute Toxicity and Semi-Chronic Toxicity of Extract from Celastrus Hindsii Benth. Pakistan Journal of Biological Sciences, 23, 1096-1102. https://doi.org/10.3923/pjbs.2020.1096.1102
|