[1]
|
Fischer, A. and du Bois, R. (2012) Interstitial Lung Disease in Connective Tissue Disorders. The Lancet, 380, 689-698. https://doi.org/10.1016/s0140-6736(12)61079-4
|
[2]
|
Jee, A.S., Sheehy, R., Hopkins, P., Corte, T.J., Grainge, C., Troy, L.K., et al. (2020) Diagnosis and Management of Connective Tissue Disease‐Associated Interstitial Lung Disease in Australia and New Zealand: A Position Statement from the Thoracic Society of Australia and New Zealand. Respirology, 26, 23-51. https://doi.org/10.1111/resp.13977
|
[3]
|
Oliveira, R.P., Ribeiro, R., Melo, L., Grima, B., Oliveira, S. and Alves, J.D. (2022) Connective Tissue Disease-Associated Interstitial Lung Disease. Pulmonology, 28, 113-118. https://doi.org/10.1016/j.pulmoe.2020.01.004
|
[4]
|
Korsten, P., Konig, M.F., Tampe, B. and Mirsaeidi, M. (2021) Editorial: Interstitial Lung Disease in the Context of Systemic Disease: Pathophysiology, Treatment and Outcomes. Frontiers in Medicine, 7, Article ID: 644075. https://doi.org/10.3389/fmed.2020.644075
|
[5]
|
Hariri, L.P., Roden, A.C., Chung, J.H., Danoff, S.K., Gomez Manjarres, D.C., Hartwig, M., et al. (2021) The Role of Surgical Lung Biopsy in the Diagnosis of Fibrotic Interstitial Lung Disease: Perspective from the Pulmonary Fibrosis Foundation. Annals of the American Thoracic Society, 18, 1601-1609. https://doi.org/10.1513/annalsats.202009-1179fr
|
[6]
|
Kuwana, M., Bando, M., Kawahito, Y., Sato, S., Suda, T. and Kondoh, Y. (2023) Identification and Management of Connective Tissue Disease-Associated Interstitial Lung Disease: Evidence-Based Japanese Consensus Statements. Expert Review of Respiratory Medicine, 17, 71-80. https://doi.org/10.1080/17476348.2023.2176303
|
[7]
|
Caron, M., Hoa, S., Hudson, M., Schwartzman, K. and Steele, R. (2018) Pulmonary Function Tests as Outcomes for Systemic Sclerosis Interstitial Lung Disease. European Respiratory Review, 27, Article ID: 170102. https://doi.org/10.1183/16000617.0102-2017
|
[8]
|
Raghu, G., Remy-Jardin, M., Richeldi, L., Thomson, C.C., Inoue, Y., Johkoh, T., et al. (2022) Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 205, e18-e47. https://doi.org/10.1164/rccm.202202-0399st
|
[9]
|
Walsh, S.L.F., De Backer, J., Prosch, H., Langs, G., Calandriello, L., Cottin, V., et al. (2024) Towards the Adoption of Quantitative Computed Tomography in the Management of Interstitial Lung Disease. European Respiratory Review, 33, Article ID: 230055. https://doi.org/10.1183/16000617.0055-2023
|
[10]
|
Goh, N.S.L., Desai, S.R., Veeraraghavan, S., Hansell, D.M., Copley, S.J., Maher, T.M., et al. (2008) Interstitial Lung Disease in Systemic Sclerosis: A Simple Staging System. American Journal of Respiratory and Critical Care Medicine, 177, 1248-1254. https://doi.org/10.1164/rccm.200706-877oc
|
[11]
|
Guisado-Vasco, P., Silva, M., Duarte-Millán, M.A., Sambataro, G., Bertolazzi, C., Pavone, M., et al. (2019) Quantitative Assessment of Interstitial Lung Disease in Sjögren’s Syndrome. PLOS ONE, 14, e0224772. https://doi.org/10.1371/journal.pone.0224772
|
[12]
|
Ufuk, F., Demirci, M. and Altinisik, G. (2020) Quantitative Computed Tomography Assessment for Systemic Sclerosis-Related Interstitial Lung Disease: Comparison of Different Methods. European Radiology, 30, 4369-4380. https://doi.org/10.1007/s00330-020-06772-2
|
[13]
|
Goh, N.S., Hoyles, R.K., Denton, C.P., Hansell, D.M., Renzoni, E.A., Maher, T.M., et al. (2017) Short‐Term Pulmonary Function Trends Are Predictive of Mortality in Interstitial Lung Disease Associated with Systemic Sclerosis. Arthritis & Rheumatology, 69, 1670-1678. https://doi.org/10.1002/art.40130
|
[14]
|
Warrick, J.H., Bhalla, M., Schabel, S.I., et al. (1991) High Resolution Computed Tomography in Early Scleroderma Lung Disease. The Journal of Rheumatology, 18, 1520-1528.
|
[15]
|
Roncella, C., Barsotti, S., Valentini, A., Cavagna, L., Castellana, R., Cioffi, E., et al. (2022) Evaluation of Interstitial Lung Disease in Idiopathic Inflammatory Myopathies through Semiquantitative and Quantitative Analysis of Lung Computed Tomography. Journal of Thoracic Imaging, 37, 344-351. https://doi.org/10.1097/rti.0000000000000659
|
[16]
|
Versace, A.G., Bitto, A., Ioppolo, C., Aragona, C.O., La Rosa, D., Roberts, W.N., et al. (2022) IL-13 and IL-33 Serum Levels Are Increased in Systemic Sclerosis Patients with Interstitial Lung Disease. Frontiers in Medicine, 9, Article ID: 825567. https://doi.org/10.3389/fmed.2022.825567
|
[17]
|
Marten Canavesio, Y., Pasta, A., Calabrese, F., Alessandri, E., Cutolo, M., Paolino, S., et al. (2023) Association between Esophageal Motor Disorders and Pulmonary Involvement in Patients Affected by Systemic Sclerosis: A Retrospective Study. Rheumatology International, 44, 2905-2910. https://doi.org/10.1007/s00296-023-05399-y
|
[18]
|
Kazerooni, E.A., Martinez, F.J., Flint, A., Jamadar, D.A., Gross, B.H., Spizarny, D.L., et al. (1997) Thin-Section CT Obtained at 10 mm Increments versus Limited Three-Level Thin-Section CT for Idiopathic Pulmonary Fibrosis: Correlation with Pathologic Scoring. American Journal of Roentgenology, 169, 977-983. https://doi.org/10.2214/ajr.169.4.9308447
|
[19]
|
Rea, G., De Martino, M., Capaccio, A., Dolce, P., Valente, T., Castaldo, S., et al. (2020) Comparative Analysis of Density Histograms and Visual Scores in Incremental and Volumetric High-Resolution Computed Tomography of the Chest in Idiopathic Pulmonary Fibrosis Patients. La Radiologia Medica, 126, 599-607. https://doi.org/10.1007/s11547-020-01307-7
|
[20]
|
Rajalingham, S., Shaharir, S.S. and Sridharan, R. (2020) FRI0073 Serological Predictors of the Severity of Rheumatoid Arthritis Related Interstitial Lung Disease. Annals of the Rheumatic Diseases, 79, 613.1-613.
|
[21]
|
Ananyeva, L.P., Lesnyak, V., Ovsyannikova, O., Koneva, O. and Goryachev, D. (2012) AB1279 Evaluation of Different Composite Radiological Indexes for Assessment of Interstitial Lung Disease Progression in Systemic Sclerosis. Annals of the Rheumatic Diseases, 71, Article No. 710. https://doi.org/10.1136/annrheumdis-2012-eular.1275
|
[22]
|
Landini, N., Mattone, M., De Nardo, C., Ottaviani, F., Mohammad Reza Beigi, D., Riccieri, V., et al. (2024) CT Evaluation of Interstitial Lung Disease Related to Systemic Sclerosis: Visual versus Automated Assessment. a Systematic Review. Clinical Radiology, 79, e440-e452. https://doi.org/10.1016/j.crad.2023.11.022
|
[23]
|
Lederer, D.J., Enright, P.L., Kawut, S.M., Hoffman, E.A., Hunninghake, G., van Beek, E.J.R., et al. (2009) Cigarette Smoking Is Associated with Subclinical Parenchymal Lung Disease. American Journal of Respiratory and Critical Care Medicine, 180, 407-414. https://doi.org/10.1164/rccm.200812-1966oc
|
[24]
|
Bruni, C., Tofani, L., Garaiman, A., et al. (2024) Histogram-Based Densitometry Index to Assess the Severity of Interstitial Lung Disease in Systemic Sclerosis in Standard and Low-Dose Computed Tomography. The Journal of Rheumatology, 51, 270-276.
|
[25]
|
Hasan, D., Imam, H., Megally, H., Makhlouf, H. and ElKady, R. (2020) The Qualitative and Quantitative High-Resolution Computed Tomography in the Evaluation of Interstitial Lung Diseases. Egyptian Journal of Radiology and Nuclear Medicine, 51, Article No. 135. https://doi.org/10.1186/s43055-020-00254-7
|
[26]
|
Alevizos, M.K., Danoff, S.K., Pappas, D.A., Lederer, D.J., Johnson, C., Hoffman, E.A., et al. (2021) Assessing Predictors of Rheumatoid Arthritis-Associated Interstitial Lung Disease Using Quantitative Lung Densitometry. Rheumatology, 61, 2792-2804. https://doi.org/10.1093/rheumatology/keab828
|
[27]
|
Choi, B., Kawut, S.M., Raghu, G., Hoffman, E., Tracy, R., Madahar, P., et al. (2020) Regional Distribution of High-Attenuation Areas on Chest Computed Tomography in the Multi-Ethnic Study of Atherosclerosis. ERJ Open Research, 6, 00115-2019. https://doi.org/10.1183/23120541.00115-2019
|
[28]
|
Kunihiro, Y., Matsumoto, T., Onoda, H., Murakami, T., Iduki, M., Hirano, Y., et al. (2024) A Quantitative Analysis of Progressive Fibrosing Interstitial Lung Disease on Computed Tomography for the Assessment of Decreased Vital Capacity. Acta Radiologica, 65, 922-929. https://doi.org/10.1177/02841851241246881
|
[29]
|
Pu, D., Yuan, H., Ma, G., Duan, H., Zhang, M. and Yu, N. (2023) CT Quantitative Analysis of Pulmonary Changes in Rheumatoid Arthritis. Journal of X-Ray Science and Technology, 31, 545-553. https://doi.org/10.3233/xst-221329
|
[30]
|
徐光兴, 俞咏梅, 徐亮, 等. 皮肌炎/多发性肌炎并发间质性肺病的CT定量分析与肺功能的相关性研究[J]. 放射学实践, 2023, 38(5): 565-570.
|
[31]
|
Bocchino, M., Bruzzese, D., D’Alto, M., Argiento, P., Borgia, A., Capaccio, A., et al. (2019) Performance of a New Quantitative Computed Tomography Index for Interstitial Lung Disease Assessment in Systemic Sclerosis. Scientific Reports, 9, Article No. 9468. https://doi.org/10.1038/s41598-019-45990-7
|
[32]
|
Carvalho, A.R.S., Guimarães, A.R., Sztajnbok, F.R., Rodrigues, R.S., Silva, B.R.A., Lopes, A.J., et al. (2020) Automatic Quantification of Interstitial Lung Disease from Chest Computed Tomography in Systemic Sclerosis. Frontiers in Medicine, 7, Article ID: 577739. https://doi.org/10.3389/fmed.2020.577739
|
[33]
|
Nathan, S.D., Pastre, J., Ksovreli, I., Barnett, S., King, C., Aryal, S., et al. (2020) HRCT Evaluation of Patients with Interstitial Lung Disease: Comparison of the 2018 and 2011 Diagnostic Guidelines. Therapeutic Advances in Respiratory Disease, 14, 1-9. https://doi.org/10.1177/1753466620968496
|
[34]
|
Yabuuchi, H., Matsuo, Y., Tsukamoto, H., Horiuchi, T., Sunami, S., Kamitani, T., et al. (2014) Evaluation of the Extent of Ground-Glass Opacity on High-Resolution CT in Patients with Interstitial Pneumonia Associated with Systemic Sclerosis: Comparison between Quantitative and Qualitative Analysis. Clinical Radiology, 69, 758-764. https://doi.org/10.1016/j.crad.2014.03.008
|
[35]
|
Biederer, J., Schnabel, A., Muhle, C., Gross, W.L., Heller, M. and Reuter, M. (2004) Correlation between HRCT Findings, Pulmonary Function Tests and Bronchoalveolar Lavage Cytology in Interstitial Lung Disease Associated with Rheumatoid Arthritis. European Radiology, 14, 272-280. https://doi.org/10.1007/s00330-003-2026-1
|
[36]
|
Ohno, Y., Aoyagi, K., Takenaka, D., Yoshikawa, T., Fujisawa, Y., Sugihara, N., et al. (2021) Machine Learning for Lung Texture Analysis on Thin-Section CT: Capability for Assessments of Disease Severity and Therapeutic Effect for Connective Tissue Disease Patients in Comparison with Expert Panel Evaluations. Acta Radiologica, 63, 1363-1373. https://doi.org/10.1177/02841851211044973
|
[37]
|
Ferrazza, A.M., Gigante, A., Gasperini, M.L., Ammendola, R.M., Paone, G., Carbone, I., et al. (2020) Assessment of Interstitial Lung Disease in Systemic Sclerosis Using the Quantitative CT Algorithm Caliper. Clinical Rheumatology, 39, 1537-1542. https://doi.org/10.1007/s10067-020-04938-3
|
[38]
|
Occhipinti, M., Bosello, S., Sisti, L.G., Cicchetti, G., de Waure, C., Pirronti, T., et al. (2019) Quantitative and Semi-Quantitative Computed Tomography Analysis of Interstitial Lung Disease Associated with Systemic Sclerosis: A Longitudinal Evaluation of Pulmonary Parenchyma and Vessels. PLOS ONE, 14, e0213444. https://doi.org/10.1371/journal.pone.0213444
|
[39]
|
Amorim, F.G., dos Santos, E.R., Yuji Verrastro, C.G. and Kayser, C. (2024) Quantitative Chest Computed Tomography Predicts Mortality in Systemic Sclerosis: A Longitudinal Study. PLOS ONE, 19, e0310892. https://doi.org/10.1371/journal.pone.0310892
|
[40]
|
Ahn, Y., Kim, H.C., Lee, J.K., Noh, H.N., Choe, J., Seo, J.B., et al. (2024) Usefulness of CT Quantification-Based Assessment in Defining Progressive Pulmonary Fibrosis. Academic Radiology, 31, 4696-4708. https://doi.org/10.1016/j.acra.2024.05.005
|
[41]
|
Kim, M.S., Choe, J., Hwang, H.J., Lee, S.M., Yun, J., Kim, N., et al. (2022) Interstitial Lung Abnormalities (ILA) on Routine Chest CT: Comparison of Radiologists’ Visual Evaluation and Automated Quantification. European Journal of Radiology, 157, Article ID: 110564. https://doi.org/10.1016/j.ejrad.2022.110564
|
[42]
|
Chae, K.J., Lim, S., Seo, J.B., Hwang, H.J., Choi, H., Lynch, D., et al. (2023) Interstitial Lung Abnormalities at CT in the Korean National Lung Cancer Screening Program: Prevalence and Deep Learning-Based Texture Analysis. Radiology, 307, e222828. https://doi.org/10.1148/radiol.222828
|
[43]
|
Egashira, R. and Nishino, M. (2023) Quantitative Texture Analysis of Interstitial Lung Abnormalities Opens a New Chapter for Chest CT Interpretation. Radiology, 307, e230469. https://doi.org/10.1148/radiol.230469
|
[44]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. https://doi.org/10.1148/radiol.2015151169
|
[45]
|
Zheng, B., Marinescu, D., Hague, C.J., Muller, N.L., Murphy, D., Churg, A., et al. (2024) Lung Imaging Patterns in Connective Tissue Disease-Associated Interstitial Lung Disease Impact Prognosis and Immunosuppression Response. Rheumatology, 63, 2734-2740. https://doi.org/10.1093/rheumatology/keae076
|
[46]
|
Elicker, B.M., Kallianos, K.G. and Henry, T.S. (2019) Imaging of the Thoracic Manifestations of Connective Tissue Disease. Clinics in Chest Medicine, 40, 655-666. https://doi.org/10.1016/j.ccm.2019.05.010
|
[47]
|
Hoffmann, T., Teichgräber, U., Lassen-Schmidt, B., Renz, D., Brüheim, L.B., Krämer, M., et al. (2024) Artificial Intelligence-Based Quantification of Pulmonary HRCT (AIqpHRCT) for the Evaluation of Interstitial Lung Disease in Patients with Inflammatory Rheumatic Diseases. Rheumatology International, 44, 2483-2496. https://doi.org/10.1007/s00296-024-05715-0
|
[48]
|
Ryerson, C.J., Corte, T.J., Myers, J.L., Walsh, S.L.F. and Guler, S.A. (2021) A Contemporary Practical Approach to the Multidisciplinary Management of Unclassifiable Interstitial Lung Disease. European Respiratory Journal, 58, Article ID: 2100276. https://doi.org/10.1183/13993003.00276-2021
|
[49]
|
Haga, A., Iwasawa, T., Misumi, T., Okudela, K., Oda, T., Kitamura, H., et al. (2024) Correlation of Ct-Based Radiomics Analysis with Pathological Cellular Infiltration in Fibrosing Interstitial Lung Diseases. Japanese Journal of Radiology, 42, 1157-1167. https://doi.org/10.1007/s11604-024-01607-2
|
[50]
|
Humphries, S.M., Thieke, D., Baraghoshi, D., Strand, M.J., Swigris, J.J., Chae, K.J., et al. (2024) Deep Learning Classification of Usual Interstitial Pneumonia Predicts Outcomes. American Journal of Respiratory and Critical Care Medicine, 209, 1121-1131. https://doi.org/10.1164/rccm.202307-1191oc
|
[51]
|
Ito, Y., Ichikawa, Y., Murashima, S., Sakuma, H., Iwasawa, T., Arinuma, Y., et al. (2024) Novel Deep-Learning Analysis for Connective Tissue Disease-Related Interstitial Lung Disease Extent Assessment on CT: A Preliminary Cross-Sectional Study. Rheumatology, keae491. https://doi.org/10.1093/rheumatology/keae491
|
[52]
|
Lai, Y., Liu, X., Hou, F., Han, Z., E, L., Su, N., et al. (2024) Severity-Stratification of Interstitial Lung Disease by Deep Learning Enabled Assessment and Quantification of Lesion Indicators from HRCT Images. Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and Therapeutics, 32, 323-338. https://doi.org/10.3233/xst-230218
|
[53]
|
Stock, C.J.W., Nan, Y., Fang, Y., et al. (2024) Deep-Learning CT Imaging Algorithm to Detect Usual Interstitial Pneumonia Pattern in Patients with Systemic Sclerosis-Associated Interstitial Lung Disease: Association with Disease Progression and Survival. Rheumatology, keae571.
|