基于定量CT评估CTD-ILD的研究进展
Research Progress in Evaluating CTD-ILD Based on Quantitative CT
摘要: 间质性肺疾病(ILD)是结缔组织病(CTD)患者常见的并发症和死亡的主要原因。CTD的复杂性给结缔组织病相关间质性肺疾病(CTD-ILD)的诊断与治疗带来了重大挑战,而定量CT在CTD-ILD的诊断、分型、严重程度评估及预后方面展现出潜在应用价值。本文将半定量及定量CT在CTD-ILD中的应用与挑战进行综述,强调定量CT对实现CTD-ILD精准分型、严重程度评估及风险预测的重要性,并对未来研究方向予以展望。
Abstract: Interstitial lung disease (ILD) is a common complication and a major cause of death in patients with connective tissue disease (CTD). The complexity of CTD poses a major challenge in the diagnosis and treatment of connective tissue disease-associated interstitial lung disease (CTD-ILD), and quantitative CT has demonstrated potential applications in the diagnosis, staging, severity assessment and prognosis of CTD-ILD. In this article, we review the applications and challenges of semi-quantitative and quantitative CT in CTD-ILD, emphasise the importance of quantitative CT in achieving accurate typing, severity assessment and risk prediction of CTD-ILD, and provide an outlook on future research directions.
文章引用:王珂, 冀韩英, 黄晓旗. 基于定量CT评估CTD-ILD的研究进展[J]. 临床医学进展, 2025, 15(6): 1480-1487. https://doi.org/10.12677/acm.2025.1561876

1. 引言

结缔组织病(connective tissue disease, CTD)是一组涵盖类风湿性关节炎、系统性红斑狼疮、系统性硬化症等自身免疫性疾病的统称[1]。而间质性肺疾病(Interstitial Lung Disease, ILD)是CTD常见的并发症[2]和死亡的主要原因[3]。一旦ILD病情进展,预后通常不佳[4]。因此,早期识别并干预CTD患者的肺部间质性改变对于延缓病情进展至关重要。

CTD的复杂性使CTD-ILD的诊断和治疗面临重要挑战。尽管肺活检被视为金标准,但由于其侵入性而导致应用受限[5]。虽然HRCT和肺功能为常用筛查方式[6],但肺功能对早期病变敏感性不足且重度患者难以配合[7],所以,目前认为HRCT是CTD-ILD的主要诊断工具[8]。而定量CT以客观性和重复性优势在ILD的诊断及病情评估中展现出潜在应用价值[9]。本文将介绍常见的CTD-ILD的半定量及定量CT评估方法,并探讨其在疾病诊断、分型、严重程度评估以及预后中的应用价值,为无法接受肺功能检查的患者提供非侵入性评估方式。

2. 半定量CT方法

目前主要采用三种评分系统来评估间质性肺疾病(ILD)的严重程度。

2.1. Goh评分

Goh评分[10]在五个特定的肺部层面(大血管起源处、主气道分叉处、肺静脉汇合处、第三节与第五节之间的中点、以及紧邻右侧膈肌上方)估计CT图像ILD病变范围占该层面总面积的百分比,精确到5%,五个层面的平均值为ILD的总范围,依据ILD总范围分为局限性(<20%)和弥漫性(>20%)两组,对于不确定的病例,则参考用力肺活量百分比(predicted forced vital capacity, FVC%)的70%阈值进一步划分。该评分操作简便,已有研究证实与定量CT指标[11] (如峰度、偏度、平均肺衰减值)及肺功能指标[12] (FVC%、FEV1%、TLC%和DLCO%)等有良好的相关性,并且能提供患者的预后信息[10] [13],即弥漫性患者具有更高的死亡风险。

2.2. Warrick评分

与Goh评分不同,Warrick评分[14]则详细量化了CT上各种肺部异常表现,包括磨玻璃样变、蜂窝状改变和胸膜下囊泡等,并结合受影响支气管肺段,将患者分为正常、轻度、中度和重度四个等级。Warrick评分在ILD的严重程度评估方面具有显著优势,其全面性使得评分能够较准确地反映患者的病情。该评分与肺功能指标,如肺总量(total lung capacity, TLC%)和一氧化碳弥散量(predicted diffusing capacity of the lung for carbon monoxide, DLCO%)等,存在良好的相关性[15]。更重要的是,对于系统性硬化症(Systemic Sclerosis, SSc)患者而言,Warrick严重程度评分不仅与诱导皮肤和肺纤维化的IL-13水平显著相关[16],还与食管疾病受累存在紧密的关联[17]。这一发现不仅揭示了SSc病理生理过程中的一些重要机制,还为制定更有效的治疗方案提供了重要依据。

2.3. Kazerooni评分

Kazerooni评分[18]则选取上、中、下肺叶的代表层面计算五个肺叶的平均分数,分别得出磨玻璃影和纤维化的评分。研究表明,该评分与密度直方图在ILD的病情评估中显示出良好的操作者间一致性[19],并且纤维化评分与DLCO呈负相关[19]。此外,磨玻璃评分与独立关联于类风湿性关节炎相关间质性肺疾病(Rheumatoid Arthritis-Interstitial Lung Disease, RA-ILD)严重程度的唯一血清标志物(IgA RF)的水平呈显著正相关[20]

对比三种评分发现,Goh评分具有良好的评估者间一致性[21]。目前,Warrick和Goh评分系统在视觉评估中占据了主导地位,成为最常用的两种评分方法[22]。虽然CT视觉半定量评分高度依赖医生主观判断,存在观察者内和观察者间变异,且可重复性低,难以精确捕捉病变细微特征及短期变化,但其简便易行、易于推广,是评估ILD严重程度不可或缺的重要参考工具,为疾病的病情监测及疗效评估提供了一定的影像学支持。

3. 定量CT方法

通过专用的软件对肺组织进行自动分割,得到相应的定量指标。目前常用的定量方法主要有密度直方图法、密度阈值法、纹理分析法、影像组学等。

3.1. 密度直方图法

密度直方图法是通过统计ILD患者HRCT图像中不同密度范围内的像素数量或比例,提取多种量化指标,包括峰度、偏度、平均肺衰减值、高密度衰减等。峰度可反映肺部组织密度的集中或分散状态,当峰度异常高时,预示着肺部存在显著的纤维化区域。偏度则提示肺密度分布是否偏向高密度或低密度区域,它有助于识别纤维化或肺气肿等病理改变。而标准差数值较高通常表明肺组织密度存在显著差异,可能与ILD的严重程度或分布范围密切相关。高密度衰减定义为衰减在−600到−250 HU之间的体素的百分比[23],主要代表磨玻璃影和网格影,这在ILD中很常见,对ILD的诊断和评估具有重要意义。

多项研究已经证实了密度直方图法在ILD评估中的有效性。如,Gaetano等发现[19]特发性纤维化患者肺平均衰减可用来预测患者肺功能的恶化。使用平均肺衰减、偏度和峰度不仅能评估干燥综合征相关间质性肺疾病(Sjogren syndrome-Interstitial Lung Disease, SS-ILD)患者疾病严重程度[11],并且合并后的计算机综合指数(Computerized composite index, CII)还能显著预测SSc-ILD患者的死亡率[24]。高密度衰减与间质性肺疾病(ILD)的纤维化严重程度密切相关,是ILD纤维化的最佳单一指标[25],能有效识别出有ILD风险但无症状的RA患者[26],从而指导筛查。Bina Choi等人的研究[27]也进一步验证了高密度衰减作为亚临床ILD有效量度的可行性。

尽管密度直方图能够反映ILD患者的整体CT密度分布,但它无法提供关于病灶空间分布的具体信息,这限制了其在评估ILD病情严重程度和分布特征的能力。此外,不同的CT重建算法可能会对ILD的定量评估产生影响,从而导致密度直方图的结果在不同条件下存在差异,这增加了结果的不确定性和解释难度。

3.2. 密度阈值法

密度阈值法是通过设定特定的密度阈值,将ILD患者HRCT图像的像素分为不同的类别(如正常肺组织、纤维化区域等),并计算各类别像素的数量或比例来评估ILD的严重程度。

密度阈值法得到的ILD%与Warrick评分和肺功能之间存在显著关联[15],验证了其评估ILD严重程度的准确性和可靠性。更重要的是,它还能有效区分特发性炎症性肌病中抗氨酰转移RNA-合成酶阴性和阳性的患者[15],为临床诊断和治疗提供了更为精确的信息。而以磨玻璃密度、实变、网状和蜂窝影的总来定义的间质性肺炎总范围,被证实是进行性间质性肺疾病患者肺活量(VC)降低的重要指标[28],这一发现对于那些无法进行肺功能检查的患者而言尤为重要,它提供了一种非侵入性的手段来预测肺功能的恶化趋势,有助于医生及时采取干预措施,延缓疾病进展。

但是,目前对ILD的阈值范围存在争议,这主要源于多个因素:首先,不同CT扫描设备和定量软件[29]-[32]在成像原理和数据处理上存在差异导致阈值设定不一致。例如,一些文献报道的阈值范围为−200~−700 HU [29]、而有的研究则提出为−500~−700 HU [30]或−700~+99 HU [33]。因此,可研究不同设备和软件之间的差异,并尝试建立统一的校准标准。同时,结合其他定量CT方法(如纹理分析法)来综合评估肺部病变。此外,评估标准的多样性也是导致阈值差异的一个重要因素。不同的研究可能采用不同的评估标准来判定ILD的严重程度,如视觉半定量评分[12]、肺功能指标[34]等。这些评估标准与密度阈值之间的相关性也可能存在差异,从而导致阈值设定的不一致性。后续可引入一致性评估方法。其次,CTD-ILD的病理和临床异质性,也是导致阈值差异的重要原因[35]。由于CTD-ILD患者的肺部病变类型和程度各不相同,所以在CT扫描上的密度特征也各异。这使得难以确定一个统一的阈值来准确评估所有患者的ILD严重程度。因此,可针对不同的CTD疾病类型或不同的影像类型设定阈值范围。

密度阈值法主要基于CT值进行分割,但无法考虑肺部病灶的形态学特征或局部空间关系,这限制了其在区分具有相似CT值的不同肺部病灶的能力。且该方法的分割结果容易受到其他因素(如肿瘤、感染等)的干扰,导致分割不准确或误导性的诊断。未来研究需综合考虑扫描仪和定量软件的差异、CTD-ILD的病理和临床表现异质性以及评估标准的多样性等因素,以建立统一、可靠的诊断阈值标准。

3.3. 纹理分析法

纹理分析法利用特定算法提取和分析CT图像中的灰度值、空间分布、形状及方向等纹理特征,从而自动识别并分割出多种肺部异常区域,如肺气肿、磨玻璃影、实变、网状混浊和蜂窝状囊肿等。

纹理分析在CTD-ILD患者疾病严重程度评估和治疗反应方面比Warrick视觉评分更具潜力[36]。常用的纹理分析软件是美国梅奥中心研究开发的CALIPER软件,使用CALIPER评估SSc-ILD,Ferrazzad等人[37]发现磨玻璃影百分比是预测DLCO恶化的最佳指标(AUC = 0.75, p = 0.009),但Occhipinti等人发现[38]定量CT指标预测疾病进展不准确,但可准确预测FVC%和DLco%复合功能呼吸终点(用于评估SSc-ILD患者疾病进展或改善的综合指标) (AUC = 0.74),而Amorim等人[39]发现基线定量CT较高的网状模式是患者死亡率的独立预测因素(OR = 2.70, 95% CI 1.26~5.82)。值得关注的是,Ahn等人[40]通过纹理分析计算CTD-ILD患者随访与基线磨玻璃影、实变、网状影和蜂窝影的体积百分比差值,结果表明4%为进行性肺纤维化(Progressive pulmonary fibrosis, PPF)的最佳定量CT阈值,即百分比差值 ≥ 4%时存在放射学进展,这拓宽了纹理分析在CTD-ILD领域的应用范围。基于纹理分析对CT偶然发现的间质性肺异常也具有高灵敏度和特异性[41] [42],这有助于实现CTD-ILD的早期诊断。

相比传统的密度阈值法,纹理分析法不易受图像噪声和伪影干扰,能提供更详细的肺部异常区域信息,提高了诊断的精确度和全面性。此外,纹理分析法还能反映疾病的进展和变化,为疾病的预后提供重要信息。因此,未来纹理分析在间质性肺疾病的CT评估领域可能是更有前景的研究方向[43]

3.4. 影像组学与机器学习

影像组学和机器学习(machine learning, ML)在CTD-ILD的定量CT分析中是极具潜力的领域。影像组学能够将数字医学影像转化为高维数据,提取包括形状特征、纹理特征、衰减或强度分布特征等定量信息[44]。机器学习则通过计算机算法识别模型,包括监督学习和无监督学习两类。监督学习包括朴素贝叶斯、逻辑回归、K最近邻、随机森林、决策树、梯度提升树、支持向量机和多层感知器等模型,经过标记数据后进行预测;而无监督学习则在未标记数据中寻找预测模型。深度学习(deep learning, DL)是机器学习的分支,如卷积神经网络(convolutional neural networks, CNNs)等,通过多层处理单元进行特征提取和分类,避免手动提取特征,提高处理效率和准确性。

对于CTD-ILD这一复杂疾病而言,不同类型的ILD预后存在显著差异[45],因此应针对不同病理分型和不同疾病类型具体研究。而ILD的HRCT影像模式与病理学结果密切相关[46],通过影像组学和深度学习算法[47],自动检测和分类ILD及其亚型,成功实现了对各类典型影像模式的精准临床分类,而结合定量CT与临床数据的ML模型[45],在诊断准确性及组织病理学分类方面更是表现出色。由于ILD的非特异性和重叠的临床和放射学特征,仍有10%~20%的ILD患者被归类为无法分类的ILD [48]。为克服这一局限性,Haga等人[49]将CT影像组学特征与外科肺活检的组织学标本比较,开发了评估ILD患者的细胞浸润预测模型,该模型通过分析手术肺活检标本,量化单位面积的有核细胞数量来评估细胞浸润程度。高细胞浸润可能需采取抗炎措施,且不同疾病类型的细胞浸润差异有助于鉴别诊断。这一创新有望提升定量CT分析在ILD分型中的准确性,为ILD的精准诊疗提供新视角。研究发现,被算法判定为UIP阳性患者的FVC年下降幅度显著高于UIP阴性者[50],这证实了精确分类可预测患者肺功能下降趋势,以便早期干预以延缓肺纤维化进展。值得一提的是,一款基于计算机深度学习分析软件[51]在区分FVC% < 70患者方面表现优异,为肺功能评估和疾病预测提供了有力工具。此外,深度学习卷积神经网络模型在量化ILD类型、分期及识别普通型间质性肺炎(Usual interstitial pneumonia, UIP)方面表现出色[52],而UIP作为SSc-ILD的重要预后指标,与其疾病进展及不良生存率密切相关[53],这一技术的应用为SSc-ILD患者的预后评估提供了重要参考标准。

随着影像组学和深度学习技术的不断发展,CTD-ILD的诊断、分型和预后评估将变得更加精准和高效,然而,目前该领域的研究数据有限,需要更多的数据和深入研究来进一步优化模型性能并验证其临床应用价值。

4. 总结和展望

综上所述,CTD-ILD的定量CT研究领域正处于快速发展阶段,但仍面临诸多挑战和争议。未来需要建立统一、可靠的诊断阈值标准,开发更加先进的图像分割和识别算法,以克服当前技术的局限性。同时,应深入探究疾病病理生理机制与分子生物标志物,结合多学科知识实现对ILD患者的精准分型和诊断,以便医生制定个性化治疗方案,提升患者疗效并改善生活质量。此外,还应加强跨学科合作与交流,共同推动CTD-ILD领域的进步与发展。

NOTES

*通讯作者。

参考文献

[1] Fischer, A. and du Bois, R. (2012) Interstitial Lung Disease in Connective Tissue Disorders. The Lancet, 380, 689-698.
https://doi.org/10.1016/s0140-6736(12)61079-4
[2] Jee, A.S., Sheehy, R., Hopkins, P., Corte, T.J., Grainge, C., Troy, L.K., et al. (2020) Diagnosis and Management of Connective Tissue Disease‐Associated Interstitial Lung Disease in Australia and New Zealand: A Position Statement from the Thoracic Society of Australia and New Zealand. Respirology, 26, 23-51.
https://doi.org/10.1111/resp.13977
[3] Oliveira, R.P., Ribeiro, R., Melo, L., Grima, B., Oliveira, S. and Alves, J.D. (2022) Connective Tissue Disease-Associated Interstitial Lung Disease. Pulmonology, 28, 113-118.
https://doi.org/10.1016/j.pulmoe.2020.01.004
[4] Korsten, P., Konig, M.F., Tampe, B. and Mirsaeidi, M. (2021) Editorial: Interstitial Lung Disease in the Context of Systemic Disease: Pathophysiology, Treatment and Outcomes. Frontiers in Medicine, 7, Article ID: 644075.
https://doi.org/10.3389/fmed.2020.644075
[5] Hariri, L.P., Roden, A.C., Chung, J.H., Danoff, S.K., Gomez Manjarres, D.C., Hartwig, M., et al. (2021) The Role of Surgical Lung Biopsy in the Diagnosis of Fibrotic Interstitial Lung Disease: Perspective from the Pulmonary Fibrosis Foundation. Annals of the American Thoracic Society, 18, 1601-1609.
https://doi.org/10.1513/annalsats.202009-1179fr
[6] Kuwana, M., Bando, M., Kawahito, Y., Sato, S., Suda, T. and Kondoh, Y. (2023) Identification and Management of Connective Tissue Disease-Associated Interstitial Lung Disease: Evidence-Based Japanese Consensus Statements. Expert Review of Respiratory Medicine, 17, 71-80.
https://doi.org/10.1080/17476348.2023.2176303
[7] Caron, M., Hoa, S., Hudson, M., Schwartzman, K. and Steele, R. (2018) Pulmonary Function Tests as Outcomes for Systemic Sclerosis Interstitial Lung Disease. European Respiratory Review, 27, Article ID: 170102.
https://doi.org/10.1183/16000617.0102-2017
[8] Raghu, G., Remy-Jardin, M., Richeldi, L., Thomson, C.C., Inoue, Y., Johkoh, T., et al. (2022) Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 205, e18-e47.
https://doi.org/10.1164/rccm.202202-0399st
[9] Walsh, S.L.F., De Backer, J., Prosch, H., Langs, G., Calandriello, L., Cottin, V., et al. (2024) Towards the Adoption of Quantitative Computed Tomography in the Management of Interstitial Lung Disease. European Respiratory Review, 33, Article ID: 230055.
https://doi.org/10.1183/16000617.0055-2023
[10] Goh, N.S.L., Desai, S.R., Veeraraghavan, S., Hansell, D.M., Copley, S.J., Maher, T.M., et al. (2008) Interstitial Lung Disease in Systemic Sclerosis: A Simple Staging System. American Journal of Respiratory and Critical Care Medicine, 177, 1248-1254.
https://doi.org/10.1164/rccm.200706-877oc
[11] Guisado-Vasco, P., Silva, M., Duarte-Millán, M.A., Sambataro, G., Bertolazzi, C., Pavone, M., et al. (2019) Quantitative Assessment of Interstitial Lung Disease in Sjögren’s Syndrome. PLOS ONE, 14, e0224772.
https://doi.org/10.1371/journal.pone.0224772
[12] Ufuk, F., Demirci, M. and Altinisik, G. (2020) Quantitative Computed Tomography Assessment for Systemic Sclerosis-Related Interstitial Lung Disease: Comparison of Different Methods. European Radiology, 30, 4369-4380.
https://doi.org/10.1007/s00330-020-06772-2
[13] Goh, N.S., Hoyles, R.K., Denton, C.P., Hansell, D.M., Renzoni, E.A., Maher, T.M., et al. (2017) Short‐Term Pulmonary Function Trends Are Predictive of Mortality in Interstitial Lung Disease Associated with Systemic Sclerosis. Arthritis & Rheumatology, 69, 1670-1678.
https://doi.org/10.1002/art.40130
[14] Warrick, J.H., Bhalla, M., Schabel, S.I., et al. (1991) High Resolution Computed Tomography in Early Scleroderma Lung Disease. The Journal of Rheumatology, 18, 1520-1528.
[15] Roncella, C., Barsotti, S., Valentini, A., Cavagna, L., Castellana, R., Cioffi, E., et al. (2022) Evaluation of Interstitial Lung Disease in Idiopathic Inflammatory Myopathies through Semiquantitative and Quantitative Analysis of Lung Computed Tomography. Journal of Thoracic Imaging, 37, 344-351.
https://doi.org/10.1097/rti.0000000000000659
[16] Versace, A.G., Bitto, A., Ioppolo, C., Aragona, C.O., La Rosa, D., Roberts, W.N., et al. (2022) IL-13 and IL-33 Serum Levels Are Increased in Systemic Sclerosis Patients with Interstitial Lung Disease. Frontiers in Medicine, 9, Article ID: 825567.
https://doi.org/10.3389/fmed.2022.825567
[17] Marten Canavesio, Y., Pasta, A., Calabrese, F., Alessandri, E., Cutolo, M., Paolino, S., et al. (2023) Association between Esophageal Motor Disorders and Pulmonary Involvement in Patients Affected by Systemic Sclerosis: A Retrospective Study. Rheumatology International, 44, 2905-2910.
https://doi.org/10.1007/s00296-023-05399-y
[18] Kazerooni, E.A., Martinez, F.J., Flint, A., Jamadar, D.A., Gross, B.H., Spizarny, D.L., et al. (1997) Thin-Section CT Obtained at 10 mm Increments versus Limited Three-Level Thin-Section CT for Idiopathic Pulmonary Fibrosis: Correlation with Pathologic Scoring. American Journal of Roentgenology, 169, 977-983.
https://doi.org/10.2214/ajr.169.4.9308447
[19] Rea, G., De Martino, M., Capaccio, A., Dolce, P., Valente, T., Castaldo, S., et al. (2020) Comparative Analysis of Density Histograms and Visual Scores in Incremental and Volumetric High-Resolution Computed Tomography of the Chest in Idiopathic Pulmonary Fibrosis Patients. La Radiologia Medica, 126, 599-607.
https://doi.org/10.1007/s11547-020-01307-7
[20] Rajalingham, S., Shaharir, S.S. and Sridharan, R. (2020) FRI0073 Serological Predictors of the Severity of Rheumatoid Arthritis Related Interstitial Lung Disease. Annals of the Rheumatic Diseases, 79, 613.1-613.
[21] Ananyeva, L.P., Lesnyak, V., Ovsyannikova, O., Koneva, O. and Goryachev, D. (2012) AB1279 Evaluation of Different Composite Radiological Indexes for Assessment of Interstitial Lung Disease Progression in Systemic Sclerosis. Annals of the Rheumatic Diseases, 71, Article No. 710.
https://doi.org/10.1136/annrheumdis-2012-eular.1275
[22] Landini, N., Mattone, M., De Nardo, C., Ottaviani, F., Mohammad Reza Beigi, D., Riccieri, V., et al. (2024) CT Evaluation of Interstitial Lung Disease Related to Systemic Sclerosis: Visual versus Automated Assessment. a Systematic Review. Clinical Radiology, 79, e440-e452.
https://doi.org/10.1016/j.crad.2023.11.022
[23] Lederer, D.J., Enright, P.L., Kawut, S.M., Hoffman, E.A., Hunninghake, G., van Beek, E.J.R., et al. (2009) Cigarette Smoking Is Associated with Subclinical Parenchymal Lung Disease. American Journal of Respiratory and Critical Care Medicine, 180, 407-414.
https://doi.org/10.1164/rccm.200812-1966oc
[24] Bruni, C., Tofani, L., Garaiman, A., et al. (2024) Histogram-Based Densitometry Index to Assess the Severity of Interstitial Lung Disease in Systemic Sclerosis in Standard and Low-Dose Computed Tomography. The Journal of Rheumatology, 51, 270-276.
[25] Hasan, D., Imam, H., Megally, H., Makhlouf, H. and ElKady, R. (2020) The Qualitative and Quantitative High-Resolution Computed Tomography in the Evaluation of Interstitial Lung Diseases. Egyptian Journal of Radiology and Nuclear Medicine, 51, Article No. 135.
https://doi.org/10.1186/s43055-020-00254-7
[26] Alevizos, M.K., Danoff, S.K., Pappas, D.A., Lederer, D.J., Johnson, C., Hoffman, E.A., et al. (2021) Assessing Predictors of Rheumatoid Arthritis-Associated Interstitial Lung Disease Using Quantitative Lung Densitometry. Rheumatology, 61, 2792-2804.
https://doi.org/10.1093/rheumatology/keab828
[27] Choi, B., Kawut, S.M., Raghu, G., Hoffman, E., Tracy, R., Madahar, P., et al. (2020) Regional Distribution of High-Attenuation Areas on Chest Computed Tomography in the Multi-Ethnic Study of Atherosclerosis. ERJ Open Research, 6, 00115-2019.
https://doi.org/10.1183/23120541.00115-2019
[28] Kunihiro, Y., Matsumoto, T., Onoda, H., Murakami, T., Iduki, M., Hirano, Y., et al. (2024) A Quantitative Analysis of Progressive Fibrosing Interstitial Lung Disease on Computed Tomography for the Assessment of Decreased Vital Capacity. Acta Radiologica, 65, 922-929.
https://doi.org/10.1177/02841851241246881
[29] Pu, D., Yuan, H., Ma, G., Duan, H., Zhang, M. and Yu, N. (2023) CT Quantitative Analysis of Pulmonary Changes in Rheumatoid Arthritis. Journal of X-Ray Science and Technology, 31, 545-553.
https://doi.org/10.3233/xst-221329
[30] 徐光兴, 俞咏梅, 徐亮, 等. 皮肌炎/多发性肌炎并发间质性肺病的CT定量分析与肺功能的相关性研究[J]. 放射学实践, 2023, 38(5): 565-570.
[31] Bocchino, M., Bruzzese, D., D’Alto, M., Argiento, P., Borgia, A., Capaccio, A., et al. (2019) Performance of a New Quantitative Computed Tomography Index for Interstitial Lung Disease Assessment in Systemic Sclerosis. Scientific Reports, 9, Article No. 9468.
https://doi.org/10.1038/s41598-019-45990-7
[32] Carvalho, A.R.S., Guimarães, A.R., Sztajnbok, F.R., Rodrigues, R.S., Silva, B.R.A., Lopes, A.J., et al. (2020) Automatic Quantification of Interstitial Lung Disease from Chest Computed Tomography in Systemic Sclerosis. Frontiers in Medicine, 7, Article ID: 577739.
https://doi.org/10.3389/fmed.2020.577739
[33] Nathan, S.D., Pastre, J., Ksovreli, I., Barnett, S., King, C., Aryal, S., et al. (2020) HRCT Evaluation of Patients with Interstitial Lung Disease: Comparison of the 2018 and 2011 Diagnostic Guidelines. Therapeutic Advances in Respiratory Disease, 14, 1-9.
https://doi.org/10.1177/1753466620968496
[34] Yabuuchi, H., Matsuo, Y., Tsukamoto, H., Horiuchi, T., Sunami, S., Kamitani, T., et al. (2014) Evaluation of the Extent of Ground-Glass Opacity on High-Resolution CT in Patients with Interstitial Pneumonia Associated with Systemic Sclerosis: Comparison between Quantitative and Qualitative Analysis. Clinical Radiology, 69, 758-764.
https://doi.org/10.1016/j.crad.2014.03.008
[35] Biederer, J., Schnabel, A., Muhle, C., Gross, W.L., Heller, M. and Reuter, M. (2004) Correlation between HRCT Findings, Pulmonary Function Tests and Bronchoalveolar Lavage Cytology in Interstitial Lung Disease Associated with Rheumatoid Arthritis. European Radiology, 14, 272-280.
https://doi.org/10.1007/s00330-003-2026-1
[36] Ohno, Y., Aoyagi, K., Takenaka, D., Yoshikawa, T., Fujisawa, Y., Sugihara, N., et al. (2021) Machine Learning for Lung Texture Analysis on Thin-Section CT: Capability for Assessments of Disease Severity and Therapeutic Effect for Connective Tissue Disease Patients in Comparison with Expert Panel Evaluations. Acta Radiologica, 63, 1363-1373.
https://doi.org/10.1177/02841851211044973
[37] Ferrazza, A.M., Gigante, A., Gasperini, M.L., Ammendola, R.M., Paone, G., Carbone, I., et al. (2020) Assessment of Interstitial Lung Disease in Systemic Sclerosis Using the Quantitative CT Algorithm Caliper. Clinical Rheumatology, 39, 1537-1542.
https://doi.org/10.1007/s10067-020-04938-3
[38] Occhipinti, M., Bosello, S., Sisti, L.G., Cicchetti, G., de Waure, C., Pirronti, T., et al. (2019) Quantitative and Semi-Quantitative Computed Tomography Analysis of Interstitial Lung Disease Associated with Systemic Sclerosis: A Longitudinal Evaluation of Pulmonary Parenchyma and Vessels. PLOS ONE, 14, e0213444.
https://doi.org/10.1371/journal.pone.0213444
[39] Amorim, F.G., dos Santos, E.R., Yuji Verrastro, C.G. and Kayser, C. (2024) Quantitative Chest Computed Tomography Predicts Mortality in Systemic Sclerosis: A Longitudinal Study. PLOS ONE, 19, e0310892.
https://doi.org/10.1371/journal.pone.0310892
[40] Ahn, Y., Kim, H.C., Lee, J.K., Noh, H.N., Choe, J., Seo, J.B., et al. (2024) Usefulness of CT Quantification-Based Assessment in Defining Progressive Pulmonary Fibrosis. Academic Radiology, 31, 4696-4708.
https://doi.org/10.1016/j.acra.2024.05.005
[41] Kim, M.S., Choe, J., Hwang, H.J., Lee, S.M., Yun, J., Kim, N., et al. (2022) Interstitial Lung Abnormalities (ILA) on Routine Chest CT: Comparison of Radiologists’ Visual Evaluation and Automated Quantification. European Journal of Radiology, 157, Article ID: 110564.
https://doi.org/10.1016/j.ejrad.2022.110564
[42] Chae, K.J., Lim, S., Seo, J.B., Hwang, H.J., Choi, H., Lynch, D., et al. (2023) Interstitial Lung Abnormalities at CT in the Korean National Lung Cancer Screening Program: Prevalence and Deep Learning-Based Texture Analysis. Radiology, 307, e222828.
https://doi.org/10.1148/radiol.222828
[43] Egashira, R. and Nishino, M. (2023) Quantitative Texture Analysis of Interstitial Lung Abnormalities Opens a New Chapter for Chest CT Interpretation. Radiology, 307, e230469.
https://doi.org/10.1148/radiol.230469
[44] Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577.
https://doi.org/10.1148/radiol.2015151169
[45] Zheng, B., Marinescu, D., Hague, C.J., Muller, N.L., Murphy, D., Churg, A., et al. (2024) Lung Imaging Patterns in Connective Tissue Disease-Associated Interstitial Lung Disease Impact Prognosis and Immunosuppression Response. Rheumatology, 63, 2734-2740.
https://doi.org/10.1093/rheumatology/keae076
[46] Elicker, B.M., Kallianos, K.G. and Henry, T.S. (2019) Imaging of the Thoracic Manifestations of Connective Tissue Disease. Clinics in Chest Medicine, 40, 655-666.
https://doi.org/10.1016/j.ccm.2019.05.010
[47] Hoffmann, T., Teichgräber, U., Lassen-Schmidt, B., Renz, D., Brüheim, L.B., Krämer, M., et al. (2024) Artificial Intelligence-Based Quantification of Pulmonary HRCT (AIqpHRCT) for the Evaluation of Interstitial Lung Disease in Patients with Inflammatory Rheumatic Diseases. Rheumatology International, 44, 2483-2496.
https://doi.org/10.1007/s00296-024-05715-0
[48] Ryerson, C.J., Corte, T.J., Myers, J.L., Walsh, S.L.F. and Guler, S.A. (2021) A Contemporary Practical Approach to the Multidisciplinary Management of Unclassifiable Interstitial Lung Disease. European Respiratory Journal, 58, Article ID: 2100276.
https://doi.org/10.1183/13993003.00276-2021
[49] Haga, A., Iwasawa, T., Misumi, T., Okudela, K., Oda, T., Kitamura, H., et al. (2024) Correlation of Ct-Based Radiomics Analysis with Pathological Cellular Infiltration in Fibrosing Interstitial Lung Diseases. Japanese Journal of Radiology, 42, 1157-1167.
https://doi.org/10.1007/s11604-024-01607-2
[50] Humphries, S.M., Thieke, D., Baraghoshi, D., Strand, M.J., Swigris, J.J., Chae, K.J., et al. (2024) Deep Learning Classification of Usual Interstitial Pneumonia Predicts Outcomes. American Journal of Respiratory and Critical Care Medicine, 209, 1121-1131.
https://doi.org/10.1164/rccm.202307-1191oc
[51] Ito, Y., Ichikawa, Y., Murashima, S., Sakuma, H., Iwasawa, T., Arinuma, Y., et al. (2024) Novel Deep-Learning Analysis for Connective Tissue Disease-Related Interstitial Lung Disease Extent Assessment on CT: A Preliminary Cross-Sectional Study. Rheumatology, keae491.
https://doi.org/10.1093/rheumatology/keae491
[52] Lai, Y., Liu, X., Hou, F., Han, Z., E, L., Su, N., et al. (2024) Severity-Stratification of Interstitial Lung Disease by Deep Learning Enabled Assessment and Quantification of Lesion Indicators from HRCT Images. Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and Therapeutics, 32, 323-338.
https://doi.org/10.3233/xst-230218
[53] Stock, C.J.W., Nan, Y., Fang, Y., et al. (2024) Deep-Learning CT Imaging Algorithm to Detect Usual Interstitial Pneumonia Pattern in Patients with Systemic Sclerosis-Associated Interstitial Lung Disease: Association with Disease Progression and Survival. Rheumatology, keae571.