[1]
|
Koyuncu Irmak, D. and Karaoz, E. (2021) Generation of Induced Pluripotent Stem Cells from Human Bone Marrow-Derived Mesenchymal Stem Cells. In: Nagy, A. and Turksen, K., Eds., Methods in Molecular Biology, Springer, 17-29. https://doi.org/10.1007/7651_2021_445
|
[2]
|
Zhou, C.C., Wu, Z.P. and Zou, S.J. (2020) The Study of Signal Pathway Regulating the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Journal of Sichuan University. Medical Science Edition, 51, 777-782.
|
[3]
|
Roddy, E., DeBaun, M.R., Daoud-Gray, A., Yang, Y.P. and Gardner, M.J. (2017) Treatment of Critical-Sized Bone Defects: Clinical and Tissue Engineering Perspectives. European Journal of Orthopaedic Surgery & Traumatology, 28, 351-362. https://doi.org/10.1007/s00590-017-2063-0
|
[4]
|
Lingayat, M.B., Baria, K., Muslim, S.M., Chavan, S.B. and Shaikh, S. (2023) Evaluation of Clinical and Functional Outcome of Total Hip Arthroplasty in Avascular Necrosis of Head of Femur in Adults. International Journal of Research in Orthopaedics, 9, 1236-1240. https://doi.org/10.18203/issn.2455-4510.intjresorthop20232836
|
[5]
|
Ong, B., Wilson, J.R. and Henzel, M.K. (2020) Management of the Patient with Chronic Spinal Cord Injury. Medical Clinics of North America, 104, 263-278. https://doi.org/10.1016/j.mcna.2019.10.006
|
[6]
|
Drela, K., Stanaszek, L., Snioch, K., Kuczynska, Z., Wrobel, M., Sarzynska, S., et al. (2020) Bone Marrow-Derived from the Human Femoral Shaft as a New Source of Mesenchymal Stem/Stromal Cells: An Alternative Cell Material for Banking and Clinical Transplantation. Stem Cell Research & Therapy, 11, Article No. 262. https://doi.org/10.1186/s13287-020-01697-5
|
[7]
|
García-Muñoz, E. and Vives, J. (2021) Towards the Standardization of Methods of Tissue Processing for the Isolation of Mesenchymal Stromal Cells for Clinical Use. Cytotechnology, 73, 513-522. https://doi.org/10.1007/s10616-021-00474-3
|
[8]
|
Gao, Q., Wang, L., Wang, S., Huang, B., Jing, Y. and Su, J. (2022) Bone Marrow Mesenchymal Stromal Cells: Identification, Classification, and Differentiation. Frontiers in Cell and Developmental Biology, 9, Article ID: 787118. https://doi.org/10.3389/fcell.2021.787118
|
[9]
|
Xu, H., Wang, C., Liu, C., Li, J., Peng, Z., Guo, J., et al. (2022) Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair. Tissue Engineering Part A, 28, 111-124. https://doi.org/10.1089/ten.tea.2021.0055
|
[10]
|
Tan, Y., Ju, S., Wang, Q., Zhong, R., Gao, J., Wang, M., et al. (2024) Shuanglongjiegu Pill Promoted Bone Marrow Mesenchymal Stem Cell Osteogenic Differentiation by Regulating the miR-217/RUNX2 Axis to Activate Wnt/β-Catenin Pathway. Journal of Orthopaedic Surgery and Research, 19, Article No. 617. https://doi.org/10.1186/s13018-024-05085-0
|
[11]
|
Qin, S. and Liu, D. (2024) Long Non‐Coding RNA H19 Mediates Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells through the miR-29b-3p/DKK1 Axis. Journal of Cellular and Molecular Medicine, 28, e18287. https://doi.org/10.1111/jcmm.18287
|
[12]
|
Chen, B., Chen, Q., Zhang, H., Zhang, D., Li, C., Ma, K., et al. (2024) 3D‐Printed Dual‐Bionic Scaffolds to Promote Osteoconductivity and Angiogenesis for Large Segment Bone Restoration. Advanced Functional Materials, 35, Article ID: 2422691. https://doi.org/10.1002/adfm.202422691
|
[13]
|
Zhou, L., Quan, R., Yang, J. and Xu, H. (2021) Healing of Bone Defects by Induced Pluripotent Stem Cell-Derived Bone Marrow Mesenchymal Stem Cells Seeded on Hydroxyapatite-Zirconia. Annals of Translational Medicine, 9, 1723-1723. https://doi.org/10.21037/atm-21-5402
|
[14]
|
Lin, K., Xia, L., Li, H., Jiang, X., Pan, H., Xu, Y., et al. (2013) Enhanced Osteoporotic Bone Regeneration by Strontium-Substituted Calcium Silicate Bioactive Ceramics. Biomaterials, 34, 10028-10042. https://doi.org/10.1016/j.biomaterials.2013.09.056
|
[15]
|
Majeed, M.H. and Abd Alsaheb, N.K. (2022) Mechanical Property Evaluation of PLA/Soybean Oil Epoxidized Acrylate Three-Dimensional Scaffold in Bone Tissue Engineering. Key Engineering Materials, 911, 17-26. https://doi.org/10.4028/p-awpbe6
|
[16]
|
Maremanda, K.P., Sundar, I.K. and Rahman, I. (2019) Protective Role of Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Exosomes in Cigarette Smoke-Induced Mitochondrial Dysfunction in Mice. Toxicology and Applied Pharmacology, 385, Article ID: 114788. https://doi.org/10.1016/j.taap.2019.114788
|
[17]
|
Deng, L., Yi, S., Yin, X., Li, Y. and Luan, Q. (2022) Downregulating mfn2 Promotes the Differentiation of Induced Pluripotent Stem Cells into Mesenchymal Stem Cells through the PI3K/Akt/GSK-3β/Wnt Signaling Pathway. Stem Cells and Development, 31, 181-194. https://doi.org/10.1089/scd.2021.0316
|
[18]
|
Wang, X., Gao, J., Wang, Y., Zhao, B., Zhang, Y., Han, F., et al. (2017) Curcumin Pretreatment Prevents Hydrogen Peroxide-Induced Oxidative Stress through Enhanced Mitochondrial Function and Deactivation of Akt/Erk Signaling Pathways in Rat Bone Marrow Mesenchymal Stem Cells. Molecular and Cellular Biochemistry, 443, 37-45. https://doi.org/10.1007/s11010-017-3208-5
|
[19]
|
Li, Q., Gao, Z., Chen, Y. and Guan, M. (2017) The Role of Mitochondria in Osteogenic, Adipogenic and Chondrogenic Differentiation of Mesenchymal Stem Cells. Protein & Cell, 8, 439-445. https://doi.org/10.1007/s13238-017-0385-7
|
[20]
|
Lim, W.B. and Al-Dadah, O. (2022) Conservative Treatment of Knee Osteoarthritis: A Review of the Literature. World Journal of Orthopedics, 13, 212-229. https://doi.org/10.5312/wjo.v13.i3.212
|
[21]
|
Mariani, C., Meneghetti, E., Zambon, D., Elena, N., Agueci, A. and Melchior, C. (2023) Use of Bone Marrow Derived Mesenchymal Stem Cells for the Treatment of Osteoarthritis: A Retrospective Long-Term Follow-Up Study. Journal of Clinical Orthopaedics and Trauma, 36, Article ID: 102084. https://doi.org/10.1016/j.jcot.2022.102084
|
[22]
|
Xu, L., Wu, Y., Xiong, Z., Zhou, Y., Ye, Z. and Tan, W. (2016) Mesenchymal Stem Cells Reshape and Provoke Proliferation of Articular Chondrocytes by Paracrine Secretion. Scientific Reports, 6, Article No. 32705. https://doi.org/10.1038/srep32705
|
[23]
|
Zhang, Q., Shen, Y., Zhao, S., Jiang, Y., Zhou, D. and Zhang, Y. (2021) Exosomes miR-15a Promotes Nucleus Pulposus-Mesenchymal Stem Cells Chondrogenic Differentiation by Targeting MMP-3. Cellular Signalling, 86, Article ID: 110083. https://doi.org/10.1016/j.cellsig.2021.110083
|
[24]
|
Kenyon, J.D., Sergeeva, O., Somoza, R.A., Li, M., Caplan, A.I., Khalil, A.M., et al. (2019) Analysis of-5p and-3p Strands of miR-145 and miR-140 during Mesenchymal Stem Cell Chondrogenic Differentiation. Tissue Engineering Part A, 25, 80-90. https://doi.org/10.1089/ten.tea.2017.0440
|
[25]
|
Zou, X., Xu, H. and Qian, W. (2024) Macrophage Polarization in the Osteoarthritis Pathogenesis and Treatment. Orthopaedic Surgery, 17, 22-35. https://doi.org/10.1111/os.14302
|
[26]
|
Kehoe, O., Cartwright, A., Askari, A., El Haj, A.J. and Middleton, J. (2014) Intra-Articular Injection of Mesenchymal Stem Cells Leads to Reduced Inflammation and Cartilage Damage in Murine Antigen-Induced Arthritis. Journal of Translational Medicine, 12, Article No. 157. https://doi.org/10.1186/1479-5876-12-157
|
[27]
|
Lee, B., Lee, J.J., Jung, J. and Ju, J.H. (2025) Intra-Articular Injection of Human Bone Marrow-Derived Mesenchymal Stem Cells in Knee Osteoarthritis: A Randomized, Double-Blind, Controlled Trial. Cell Transplantation, 34, 1-13. https://doi.org/10.1177/09636897241303275
|
[28]
|
Bastos, R., Mathias, M., Andrade, R., Bastos, R., Balduino, A., Schott, V., et al. (2018) Intra-Articular Injections of Expanded Mesenchymal Stem Cells with and without Addition of Platelet-Rich Plasma Are Safe and Effective for Knee Osteoarthritis. Knee Surgery, Sports Traumatology, Arthroscopy, 26, 3342-3350. https://doi.org/10.1007/s00167-018-4883-9
|
[29]
|
Hernigou, P., Delambre, J., Quiennec, S. and Poignard, A. (2020) Human Bone Marrow Mesenchymal Stem Cell Injection in Subchondral Lesions of Knee Osteoarthritis: A Prospective Randomized Study versus Contralateral Arthroplasty at a Mean Fifteen Year Follow-Up. International Orthopaedics, 45, 365-373. https://doi.org/10.1007/s00264-020-04571-4
|
[30]
|
Mautner, K., Carr, D., Whitley, J. and Bowers, R. (2019) Allogeneic versus Autologous Injectable Mesenchymal Stem Cells for Knee Osteoarthritis: Review and Current Status. Techniques in Orthopaedics, 34, 244-256. https://doi.org/10.1097/bto.0000000000000357
|
[31]
|
He, L., He, T., Xing, J., Zhou, Q., Fan, L., Liu, C., et al. (2020) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Protect Cartilage Damage and Relieve Knee Osteoarthritis Pain in a Rat Model of Osteoarthritis. Stem Cell Research & Therapy, 11, Article No. 276. https://doi.org/10.1186/s13287-020-01781-w
|
[32]
|
Zhang, J., Rong, Y., Luo, C. and Cui, W. (2020) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Prevent Osteoarthritis by Regulating Synovial Macrophage Polarization. Aging, 12, 25138-25152. https://doi.org/10.18632/aging.104110
|
[33]
|
Dasari, V.R. (2014) Mesenchymal Stem Cells in the Treatment of Spinal Cord Injuries: A Review. World Journal of Stem Cells, 6, 120-133. https://doi.org/10.4252/wjsc.v6.i2.120
|
[34]
|
Jeong, S.K., Choi, I. and Jeon, S.R. (2020) Current Status and Future Strategies to Treat Spinal Cord Injury with Adult Stem Cells. Journal of Korean Neurosurgical Society, 63, 153-162. https://doi.org/10.3340/jkns.2019.0146
|
[35]
|
Wang, X., Ye, L., Zhang, K., Gao, L., Xiao, J. and Zhang, Y. (2020) Upregulation of MicroRNA‐200a in Bone Marrow Mesenchymal Stem Cells Enhances the Repair of Spinal Cord Injury in Rats by Reducing Oxidative Stress and Regulating Keap1/Nrf2 Pathway. Artificial Organs, 44, 744-752. https://doi.org/10.1111/aor.13656
|
[36]
|
Jabermoradi, S., Paridari, P., Ramawad, H.A., et al. (2025) Stem Cell-Derived Exosomes as a Therapeutic Option for Spinal Cord Injuries: A Systematic Review and Meta-Analysis. Archives of Academic Emergency Medicine, 13, e2.
|
[37]
|
Gou, Y., Liu, D., Liu, J. and Sun, H. (2018) Protective Effect of Transplantation of Bone Mesenchymal Stem Cells on Demyelination in Spinal Cord Injury. Chinese Journal of Biotechnology, 34, 761-776.
|
[38]
|
Anna, Z., Katarzyna, J., Joanna, C., Barczewska, M., Joanna, W. and Wojciech, M. (2017) Therapeutic Potential of Olfactory Ensheathing Cells and Mesenchymal Stem Cells in Spinal Cord Injuries. Stem Cells International, 2017, Article ID: 3978595. https://doi.org/10.1155/2017/3978595
|
[39]
|
Bai, J., Liu, G., Gao, Y., Zhang, X., Niu, G. and Zhang, H. (2024) Co-Culturing Neural and Bone Mesenchymal Stem Cells in Photosensitive Hydrogel Enhances Spinal Cord Injury Repair. Frontiers in Bioengineering and Biotechnology, 12, Article ID: 1431420. https://doi.org/10.3389/fbioe.2024.1431420
|
[40]
|
Yang, C., Wang, G., Ma, F., Yu, B., Chen, F., Yang, J., et al. (2018) Repeated Injections of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Significantly Promotes Functional Recovery in Rabbits with Spinal Cord Injury of Two Noncontinuous Segments. Stem Cell Research & Therapy, 9, Article No. 136. https://doi.org/10.1186/s13287-018-0879-0
|
[41]
|
Lim, J.S., Cui, X. and Konan, S. (2024) ThP2.17—Efficacy of Mesenchymal Stem Cells in the Treatment of Osteonecrosis of Femoral Head. British Journal of Surgery, 111, znae197.247. https://doi.org/10.1093/bjs/znae197.247
|
[42]
|
Li, X., Xu, X. and Wu, W. (2014) Comparison of Bone Marrow Mesenchymal Stem Cells and Core Decompression in Treatment of Osteonecrosis of the Femoral Head: A Meta-Analysis. International Journal of Clinical and Experimental Pathology, 7, 5024-5030.
|
[43]
|
Wang, Z., Sun, Q., Zhang, F., Zhang, Q., Wang, L. and Wang, W. (2019) Core Decompression Combined with Autologous Bone Marrow Stem Cells versus Core Decompression Alone for Patients with Osteonecrosis of the Femoral Head: A Meta-Analysis. International Journal of Surgery, 69, 23-31. https://doi.org/10.1016/j.ijsu.2019.06.016
|
[44]
|
Wu, Z.Y., Sun, Q., Liu, M., Grottkau, B.E., He, Z.X., Zou, Q., et al. (2020) Correlation between the Efficacy of Stem Cell Therapy for Osteonecrosis of the Femoral Head and Cell Viability. BMC Musculoskeletal Disorders, 21, Article No. 55. https://doi.org/10.1186/s12891-020-3064-4
|
[45]
|
Mao, Q., Jin, H., Liao, F., Xiao, L., Chen, D. and Tong, P. (2013) The Efficacy of Targeted Intraarterial Delivery of Concentrated Autologous Bone Marrow Containing Mononuclear Cells in the Treatment of Osteonecrosis of the Femoral Head: A Five Year Follow-Up Study. Bone, 57, 509-516. https://doi.org/10.1016/j.bone.2013.08.022
|
[46]
|
Li, D., Xie, X., Yang, Z., Wang, C., Wei, Z. and Kang, P. (2023) Retraction: Enhanced Bone Defect Repairing Effects in Glucocorticoid-Induced Osteonecrosis of the Femoral Head Using a Porous Nano-Lithium-Hydroxyapatite/Gelatin Microsphere/Erythropoietin Composite Scaffold. Biomaterials Science, 11, 3365-3365. https://doi.org/10.1039/d3bm90030d
|