PKM2在消化系统疾病中的研究进展
Research Progress of PKM2 in Digestive System Diseases
DOI: 10.12677/acm.2025.1561883, PDF, HTML, XML,    科研立项经费支持
作者: 杨少雷, 梁丹丹:济宁医学院临床医学院(附属医院),山东 济宁;周广玺, 朱凤琴*:济宁医学院附属医院消化内科,山东 济宁
关键词: M2型丙酮酸激酶消化系统炎症性肠病肿瘤Pyruvate Kinase M2 Digestive System Inflammatory Bowel Disease Tumor
摘要: M2型丙酮酸激酶(Pyruvate Kinase M2, PKM2)是丙酮酸激酶家族中的一种重要成员,广泛存在于多种细胞类型中。近年来的研究表明,PKM2不仅在糖酵解过程中发挥关键作用,还具有调节细胞代谢、增殖、凋亡及免疫反应等多重功能。在消化系统疾病的发生和发展中,PKM2的作用日益受到关注。本文重点总结了PKM2在消化系统恶性肿瘤和炎症性肠病中的研究进展,探讨其在疾病发生中的分子机制,分析其在消化系统疾病中的潜在治疗价值,尤其是PKM2作为靶向治疗策略的可能性。
Abstract: M2 pyruvate kinase (Pyruvate Kinase M2, PKM2) is an important member of the pyruvate kinase family, which is widely present in many cell types. Recent studies have shown that PKM2 not only plays a key role in glycolysis, but also has multiple functions in regulating cell metabolism, proliferation, apoptosis and immune response. Especially in the occurrence and development of digestive system diseases, the role of PKM2 has received increasing attention. In this paper, we focus on summarizing the research progress of PKM2 in digestive malignant tumors and inflammatory bowel disease, exploring its molecular mechanism in disease development, and analyzing its potential therapeutic value in digestive diseases, especially the possibility of PKM2 as a targeted therapeutic strategy.
文章引用:杨少雷, 梁丹丹, 周广玺, 朱凤琴. PKM2在消化系统疾病中的研究进展[J]. 临床医学进展, 2025, 15(6): 1529-1536. https://doi.org/10.12677/acm.2025.1561883

1. 引言

丙酮酸激酶(Pyruvate Kinase, PK)是糖酵解途径中催化磷酸烯醇式丙酮酸(PEP)转化为丙酮酸的关键酶,参与ATP的生成。PK的四种亚型:L型、R型、M1型和M2型,各自在细胞信号传递、代谢调节和免疫反应中发挥独特的作用[1]。PKL通常具有较长时间的激活特性,广泛分布在心脏、肌肉及其他一些长时间维持稳定功能的组织中,主要参与细胞的代谢、增殖、分化以及响应长期的生理和病理刺激。PKR则以快速激活为特点,常见于神经系统和免疫细胞中,负责快速反应外界刺激,调节免疫应答和神经递质的释放,起到短期的调节作用。PKM1和PKM2是由PKM基因编码的两种不同亚型的同工酶。通常情况下,PKM1主要在心脏、骨骼肌和大脑等高耗能组织中表达,支持有氧代谢[2]。PKM2则广泛分布于多种组织,特别在胚胎组织和癌细胞中表达显著,参与调控细胞代谢和增殖[3]。PKM1在免疫系统中具有重要的促炎功能,尤其在巨噬细胞等免疫细胞中,通过激活免疫反应、促进细胞因子分泌等,帮助身体对抗感染和病原刺激[4]。PKM2具备多种功能,包括调控细胞基因转录、参与信号传导、作为RNA结合蛋白发挥作用,以及调节中性粒细胞的活性氧生成和杀伤效应[5]。由于PKM2在能量代谢和非代谢调控中的多重角色,近年来它成为癌症、代谢紊乱及炎症性疾病研究领域的一个重要焦点[6] [7]。在炎症性肠病(Inflammatory Bowel Disease, IBD)和消化道肿瘤中,PKM2表现出显著的功能差异和联系。以下分别讨论其在这两类疾病中的作用和机制,并阐明两者之间的关系。

2. PKM2在IBD中的作用与机制

炎症性肠病,包括溃疡性结肠炎(Ulcerative Colitis, UC)和克罗恩病(Crohn’s Disease, CD),是一种慢性炎症性疾病,其特征是肠道屏障功能受损、免疫失调以及异常炎症反应[8]。PKM2在IBD中的作用集中于代谢调控和促炎作用,然而目前关于PKM2的研究表明,其功能仍存在许多不确定性。因此,深入探讨肠道不同细胞中PKM2的作用具有重要意义。

UC的核心病理特征表现为肠道防御体系的持续性损伤与修复失衡。完整的肠道屏障系统依赖多维度保护机制:物理屏障由肠上皮细胞通过紧密连接构成的连续性结构维持,化学屏障则由黏液层中持续分泌的抗菌活性物质形成保护界面。肠道共生微生物通过生态位竞争形成的生物拮抗作用构建微生物屏障,同时固有层免疫细胞通过精确调控促炎/抗炎信号建立免疫稳态[9]。当上述屏障系统出现协同性功能障碍时,不仅会引发持续的黏膜炎症反应,未完全修复的上皮缺损更可能通过破坏局部微环境导致病情迁延反复。这种病理过程的恶性循环最终加剧了疾病复发风险。肠道上皮细胞(Intestinal Epithelial Cells, IEC)构成了物理屏障,而巨噬细胞则是免疫屏障的关键组成部分,它们在免疫反应中发挥着重要作用[10]。在IBD的背景下,这两种细胞的功能受到显著影响,进一步加剧了肠道的损伤和炎症反应。接下来,我们将重点探讨PKM2在巨噬细胞和肠上皮细胞中的作用,特别是在代谢重编程和免疫调节中的双重功能,揭示其在IBD进程中的重要角色。

2.1. 巨噬细胞

在IBD患者中,PKM2通过调节巨噬细胞和T细胞代谢,帮助细胞适应炎症微环境。在炎症刺激下,PKM2被激活并转移到巨噬细胞核内,与HIF-1α结合,诱导促炎细胞因子(如IL-1β、TNF-α和IL-6)的表达,从而维持慢性炎症状态[11]

巨噬细胞具备显著的可塑性,能够极化为具有促炎特性的M1表型或具有抗炎特性的M2表型[12]。相关研究发现UC患者肠道组织糖酵解增强,PKM表达增高且与疾病严重程度正相关[13]。PKM2在UC小鼠巨噬细胞中高表达。在巨噬细胞中条件性敲除PKM2基因后,研究人员建立了结肠炎小鼠模型。结果显示,PKM2缺失显著减缓了结肠炎的进展,促进了巨噬细胞向修复性表型转化,并通过提升修复因子的表达,促进了结肠炎小鼠黏膜的修复[13]

2.2. 肠上皮细胞

在IBD患者的组织中,肠道PKM2表达较高,主要定位于IEC,但是在粪便等肠道内容物中,PKM2的浓度显著增加,这表明PKM2可能在肠道内发生大量流失,因此总体水平可能保持不变或有所上升[14] [15]。进一步研究发现,PKM2的缺失导致肠上皮细胞增殖减少和迁移能力下降,同时细胞间紧密连接蛋白ZO-1、Occludin、Claudin-1的表达水平降低,从而削弱了肠道黏膜的修复能力,进一步加重了肠道屏障功能的损伤,并促进了炎症反应的持续和加剧。除此之外,在氧化应激条件下,PKM2能够转位至线粒体,并通过稳定Bcl-2蛋白来抑制细胞凋亡[16]。Tang等人的研究表明,PKM2通过上调抗凋亡蛋白Bcl-xl,抑制肠上皮细胞的凋亡,从而保护肠道屏障免受损伤[15]。此外,PKM2的敲低加剧了TNF-α诱导的凋亡反应,进一步证明PKM2在肠道炎症中通过抑制细胞凋亡发挥保护作用[15]。与此同时,PKM2能够与β-catenin直接结合,并促进其下游信号的激活,说明PKM2的存在可能有助于Wnt/β-catenin介导的信号传导途径发挥其功能,尤其是在抗菌肽等物质的产生过程中[17]

3. PKM2在消化系统恶性肿瘤中的作用与机制

消化系统恶性肿瘤(如食管癌、胃癌、肝癌、结肠癌)在我国发病率和病死率均较高,但其具体发病机制尚不明确。肿瘤细胞通过有氧糖酵解,即使在充足氧气条件下,仍依赖糖酵解供能并生成大量丙酮酸,从而改变肿瘤微环境,促进细胞增殖与转移,这一现象被称为“Warburg效应”[18]。PKM2在这一过程中起着关键作用,支持肿瘤细胞的快速增殖与侵袭[19]。PKM2通过构象转换调控肿瘤代谢重编程,其低活性二聚体在恶性肿瘤中占主导并具有双重功能:一方面通过Warburg效应高效生成ATP支持肿瘤增殖,另一方面促进代谢中间产物进入旁路途径合成生物大分子前体[3]。该蛋白还可经磷酸化/乙酰化修饰与HIF-1αβ-catenin互作,激活促增殖基因表达[20]。研究表明,PKM2的过表达与肺癌、乳腺癌等实体瘤的进展和转移密切相关[21] [22]。基于这些发现,本文进一步探讨了PKM2在消化系统恶性肿瘤中的作用,并分析了其调控机制。这些研究结果对于开发靶向代谢的肿瘤治疗策略具有重要的临床意义。

3.1. 食管癌

在食管鳞状细胞癌(Esophageal Squamous Cell Carcinoma, ESCC)中,PKM2通过改变细胞的能量代谢途径促进肿瘤细胞的增殖和生长。PKM2是糖酵解中的重要酶,它通过增强糖酵解来为快速增殖的肿瘤细胞提供能量和代谢底物[23]。PKM2的高表达与食管癌的侵袭性和转移能力密切相关,而它的调节主要通过mTOR信号通路完成[24]。研究显示,PKM2一方面通过激活信号转导及转录激活因子3 (Signal Transducer and Activator of Transcription 3, STAT3)通路增强其转录功能,另一方面通过调控转化生长因子-β1介导的细胞表型重塑机制,二者协同促进肿瘤细胞的恶性生物学行为[25]。抑制PKM2的活性能够显著抑制食管癌细胞的增殖,并增加其对治疗的敏感性[26],因此PKM2可能成为治疗ESCC的新靶点。

3.2. 胃癌

胃癌细胞通常依赖于PKM2维持高水平的糖酵解,这为肿瘤细胞提供了足够的能量,促进了肿瘤的生长和转移。PKM2的表达与PI3K/Akt/mTOR信号通路的激活密切相关,尤其在胃癌的恶性进展中,这些信号通路的异常激活能够进一步增强PKM2的作用,从而加速肿瘤细胞的代谢过程[27]。此外,PKM2在胃癌发生发展中的代谢调控作用受到幽门螺杆菌感染微环境的显著影响。研究表明,幽门螺杆菌CagA蛋白通过胞外信号调节激酶(ERK)信号通路可诱导PKM2表达上调,进而增强肿瘤细胞的有氧糖酵解代谢。这种由病原体–宿主互作触发的代谢重编程过程,为胃癌细胞的异常增殖提供了关键的生物能量支持[28]。因此,针对PKM2的干预有可能成为一种有效的治疗胃癌的新策略。

3.3. 肝细胞癌

PKM2在肝细胞癌(Hepatocellular Carcinoma, HCC)中同样扮演着促进肿瘤代谢和增殖的重要角色。研究表明,PKM2通过调节肝癌细胞的代谢途径,促进有氧糖酵解,从而为肿瘤细胞的增殖和扩散提供所需的能量。在HCC中,GATA6的低表达通过启动子甲基化的改变,抑制其表达,进而激活PKM2的转录,推动糖酵解,促进肿瘤生长和转移[29]。热激蛋白90 (Hsp90)通过与PKM2结合,减少其降解,并通过磷酸化作用增强PKM2的稳定性,进一步促进HCC细胞的代谢和增殖[30]。此外,低氧应激条件下,Yes相关蛋白(Yes-Associated Protein, YAP)与HIF-1α结合,维持HIF-1α的稳定性并激活PKM2基因的表达,从而加速糖酵解过程[31]。研究还发现,miRNA在调控PKM2的表达方面起着重要作用,诸如miR-122等miRNA通过调节PKM2的表达比例,参与HCC的发生与进展[32] [33]。针对PKM2的干预不仅可以抑制HCC的生长,还可能成为提高治疗效果、抑制其发展的重要策略。

3.4. 结肠癌

PKM2在结肠癌的发生和进展中发挥着重要作用。研究发现,结肠癌细胞中PKM2的高表达促进了糖酵解和细胞增殖,而通过抑制PKM2的表达,能够有效阻止细胞周期进程并诱导细胞凋亡,从而抑制肿瘤的进一步发展。此外,长链非编码RNA FEZF1-AS1通过与PKM2结合,增加其稳定性并激活STAT3信号通路,推动糖酵解的进行,促进癌细胞的增殖和转移[34]。其他研究发现,SRFS3与PTBP1和hnRNP A1共同作用,调节PKM2的表达,进一步维持结肠癌细胞的糖酵解代谢[35]。此外,TSC22D2基因过表达有助于抑制结肠癌细胞的增殖,并通过调节PKM2与细胞周期蛋白D1的相互作用来实现[36]。PRL-3则通过增加PKM2表达和糖酵解,促进肿瘤的转移[37]。而PKM2对结肠癌化疗耐药性的影响也被发现,抑制其表达能够增强药物的疗效。

4. PKM2在消化系统疾病中的机制与联系

PKM2不仅作为糖酵解的限速酶参与细胞代谢过程,还在多种病理状态下通过其“非酶性”功能调控多条信号通路,特别是在消化系统疾病的发生发展中,表现出多维度的生物学作用。目前研究表明,PKM2可与NF-κB、STAT3、HIF-1α及mTOR等通路密切互作,调控细胞的炎症反应、增殖能力、代谢重编程及肿瘤微环境的构建[38]。在这些作用中,PKM2的构象状态(四聚体与二聚体/单体之间的转变)在其功能切换中具有重要意义。

在STAT3和HIF-1α信号通路中,PKM2的作用机制具有高度一致性。在炎症、氧化应激或低氧环境下,PKM2易形成二聚体或单体,并转位至细胞核,与STAT3或HIF-1α结合,增强其转录活性。具体而言,PKM2可转位至细胞核,与STAT3形成功能复合物,促进STAT3在酪氨酸705位点的磷酸化,增强其转录活性[39]。活化后的STAT3上调IL-6、cyclin D1、Bcl-xL等促炎及抗凋亡基因的表达,从而参与细胞增殖、免疫应答及慢性炎症反应的维持[40]。同时,PKM2不仅与HIF-1α形成复合物协同调控VEGF、LDHA和GLUT1等低氧应答相关基因,还通过调控染色质结构、延长HIF-1α稳定性并构建代谢正反馈环路,促进糖酵解代谢、血管新生及缺氧适应[41] [42]。这两条通路尽管靶点不同,但PKM2均通过构象转变后进入细胞核发挥作用,表现出统一的非代谢性调控模式。四聚体状态的PKM2则主要定位于胞质,执行其糖酵解功能,通常不参与上述信号过程。

在mTOR通路中,PKM2则更多通过代谢物水平和氧化还原状态对信号活动产生间接调节。一方面,PKM2通过调控糖酵解速率、ATP生成和NAD+/NADH比例,影响能量感应通路中AMPK的活性,进而调节mTORC1的活化。另一方面,PKM2也可通过调控ROS水平,影响mTOR下游靶蛋白的磷酸化状态,从而介入细胞生长、分化和自噬等过程[43]

综合来看,PKM2的功能状态在不同信号通路中呈现明显的构象依赖性。四聚体形式的PKM2主要执行糖酵解功能,维持基础代谢活动;而二聚体或单体形式则更易进入细胞核,参与STAT3和HIF-1α等信号分子的转录调控。这一特性赋予PKM2在“代谢–信号联动”网络中双重角色,不仅影响细胞能量代谢,还能介导炎症反应、肿瘤进展及免疫调控等关键过程。因此,通过调节PKM2的构象状态,有望实现对其病理功能的选择性干预。例如,小分子激活剂如TEPP-46可稳定PKM2的四聚体状态,从而抑制其核内功能,成为潜在的靶向治疗策略。

由此可见,PKM2在消化系统疾病中充当桥梁作用,其通过调节免疫反应、代谢重编程和激活关键信号通路,推动了从炎症到癌症的转化。从具体机制来看,PKM2增强糖酵解途径为免疫细胞提供能量,从而支持炎症反应;而在肿瘤进程中,PKM2在消化系统肿瘤中的作用机制是多维度的,除了通过调节肿瘤细胞的代谢途径为其增殖提供能量外,PKM2还参与调控肿瘤的侵袭、转移以及化疗耐药性。研究表明,IBD患者发展为结直肠癌的风险显著增加,且结直肠癌的发生率可增加60%,其死亡率也较高[44]。因此,PKM2在代谢和信号通路中的双重作用可能为IBD患者发展为结直肠癌提供了重要的分子基础。

5. PKM2作为治疗靶点的潜力与挑战

PKM2作为代谢重编程的核心分子,近年来在肿瘤免疫微环境中的重要作用逐渐被揭示。作为一个代谢–炎症交叉调控的枢纽,PKM2在多种消化系统疾病中,包括IBD与消化系统肿瘤中,均表现出显著的病理调控作用。因此,PKM2作为治疗靶点的潜力不容忽视,尤其是在靶向代谢微环境的干预策略中,PKM2可能为临床治疗提供新的切入点。其在调节肿瘤细胞增殖、侵袭、转移以及免疫逃逸等方面的多维度作用,使其成为肿瘤治疗中的重要靶点。此外,PKM2通过调控免疫反应和代谢途径的交互作用,也为炎症性疾病的治疗提供了新的可能。

然而,PKM2广泛参与正常生理过程也提示了靶向干预可能带来的副作用和挑战。其不仅在病理状态下上调,在多种正常组织中亦有表达,特别是在肠道、肝脏等代谢活跃的器官中,其调控着葡萄糖代谢、抗氧化应答、细胞分裂及组织修复等过程。因此,非特异性或持续性抑制PKM2可能干扰正常细胞功能,导致代谢失衡、组织损伤甚至免疫功能紊乱。特别是在慢性疾病或肿瘤患者中,机体代谢状态本已复杂,靶向PKM2的治疗策略更需谨慎评估其系统性影响。

目前已有多种针对PKM2的小分子药物进入研究阶段,包括抑制剂(Shikonin、alkannin、化合物3k和化合物3h),以及激动剂(TEPP-46、DASA-58、mitapivat和TP-1454)等。Shikonin是一种天然萘醌类化合物,直接抑制PKM2活性并诱导肿瘤细胞死亡,但其毒性大、选择性差,限制了临床应用前景[45] [46]。相比之下,TEPP-46和DASA-58通过稳定PKM2的四聚体构象,促使其保持高酶活性状态,减少其非代谢功能,从而抑制其在转录调控中的致癌作用[47]。这类“构象稳定剂”在动物模型中显示出良好疗效,且副作用较低,具有一定的临床开发潜力。然而,目前大部分以PKM2为靶点的药物尚未进入大规模临床试验阶段,如何提高其靶向性、克服代谢耐受以及评估长期安全性,仍是今后研究的重点方向。

6. 小结与展望

PKM2作为代谢–炎症交叉调控的关键枢纽分子,在消化道疾病中展现出双重病理调控功能。其介导的代谢重编程与信号转导网络不仅揭示了IBD与消化道肿瘤的共性机制,更为开发靶向代谢微环境的干预策略提供了理论支撑,凸显了该靶点在消化系统疾病诊疗转化研究中的重要价值。

基金项目

山东省自然科学基金面上项目(ZR2024MH282)。

NOTES

*通讯作者。

参考文献

[1] Dey, P., Kundu, A., Sachan, R., Park, J.H., Ahn, M.Y. and Yoon, K. (2019) PKM2 Knockdown Induces Autophagic Cell Death via AKT/mTOR Pathway in Human Prostate Cancer Cells. Cell Physiol Biochem, 52, 1535-1552.
[2] Yang, W. and Lu, Z. (2015) Pyruvate Kinase M2 at a Glance. Journal of Cell Science, 128, 1655-1660.
https://doi.org/10.1242/jcs.166629
[3] Zhang, Z., Deng, X., Liu, Y., Liu, Y., Sun, L. and Chen, F. (2019) PKM2, Function and Expression and Regulation. Cell & Bioscience, 9, Article No. 52.
https://doi.org/10.1186/s13578-019-0317-8
[4] Viola, A., Munari, F., Sánchez-Rodríguez, R., Scolaro, T. and Castegna, A. (2019) The Metabolic Signature of Macrophage Responses. Frontiers in Immunology, 10, Article 1462.
https://doi.org/10.3389/fimmu.2019.01462
[5] Chen, T., Wang, H., Liu, J., Cheng, H., Hsu, S., Wu, M., et al. (2019) Mutations in the PKM2 Exon-10 Region Are Associated with Reduced Allostery and Increased Nuclear Translocation. Communications Biology, 2, Article No. 105.
https://doi.org/10.1038/s42003-019-0343-4
[6] Shirai, T., Nazarewicz, R.R., Wallis, B.B., Yanes, R.E., Watanabe, R., Hilhorst, M., et al. (2016) The Glycolytic Enzyme PKM2 Bridges Metabolic and Inflammatory Dysfunction in Coronary Artery Disease. Journal of Experimental Medicine, 213, 337-354.
https://doi.org/10.1084/jem.20150900
[7] Zahra, K., Dey, T., Ashish, Mishra, S.P. and Pandey, U. (2020) Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Frontiers in Oncology, 10, Article 159.
https://doi.org/10.3389/fonc.2020.00159
[8] Zhang, Y. (2014) Inflammatory Bowel Disease: Pathogenesis. World Journal of Gastroenterology, 20, 91-99.
https://doi.org/10.3748/wjg.v20.i1.91
[9] An, J., Liu, Y., Wang, Y., Fan, R., Hu, X., Zhang, F., et al. (2022) The Role of Intestinal Mucosal Barrier in Autoimmune Disease: A Potential Target. Frontiers in Immunology, 13, Article 871713.
https://doi.org/10.3389/fimmu.2022.871713
[10] Yao, Y., Shang, W., Bao, L., Peng, Z. and Wu, C. (2024) Epithelial‐Immune Cell Crosstalk for Intestinal Barrier Homeostasis. European Journal of Immunology, 54, e2350631.
https://doi.org/10.1002/eji.202350631
[11] Palsson-McDermott, E.M., Curtis, A.M., Goel, G., Lauterbach, M.A.R., Sheedy, F.J., Gleeson, L.E., et al. (2015) Pyruvate Kinase M2 Regulates HIF-1α Activity and Il-1β Induction and Is a Critical Determinant of the Warburg Effect in LPS-Activated Macrophages. Cell Metabolism, 21, 65-80.
https://doi.org/10.1016/j.cmet.2014.12.005
[12] Yunna, C., Mengru, H., Lei, W. and Weidong, C. (2020) Macrophage M1/M2 polarization. European Journal of Pharmacology, 877, Article ID: 173090.
https://doi.org/10.1016/j.ejphar.2020.173090
[13] 张迪, 王丽娟, 李冲, 等. PKM2缺失通过巨噬细胞极化促进溃疡性结肠炎黏膜修复[J]. 中国病理生理杂志, 2024, 40(7): 1163-1172.
[14] Chung-Faye, G., Hayee, B., Maestranzi, S., Donaldson, N., Forgacs, I. and Sherwood, R. (2007) Fecal M2-Pyruvate Kinase (M2-PK): A Novel Marker of Intestinal Inflammation. Inflammatory Bowel Diseases, 13, 1374-1378.
https://doi.org/10.1002/ibd.20214
[15] Tang, Q., Ji, Q., Xia, W., Li, L., Bai, J., Ni, R., et al. (2014) Pyruvate Kinase M2 Regulates Apoptosis of Intestinal Epithelial Cells in Crohn’s Disease. Digestive Diseases and Sciences, 60, 393-404.
https://doi.org/10.1007/s10620-014-3189-0
[16] Gao, J., Zhao, Y., Li, T., Gan, X. and Yu, H. (2022) The Role of PKM2 in the Regulation of Mitochondrial Function: Focus on Mitochondrial Metabolism, Oxidative Stress, Dynamic, and Apoptosis. PKM2 in Mitochondrial Function. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 7702681.
https://doi.org/10.1155/2022/7702681
[17] Canal, F. and Perret, C. (2012) PKM2: A New Player in the β-Catenin Game. Future Oncology, 8, 395-398.
https://doi.org/10.2217/fon.12.11
[18] Warburg, O. (1956) On the Origin of Cancer Cells. Science, 123, 309-314.
https://doi.org/10.1126/science.123.3191.309
[19] Wong, N., De Melo, J. and Tang, D. (2013) PKM2, a Central Point of Regulation in Cancer Metabolism. International Journal of Cell Biology, 2013, Article ID: 242513.
https://doi.org/10.1155/2013/242513
[20] Prakasam, G., Iqbal, M.A., Bamezai, R.N.K. and Mazurek, S. (2018) Posttranslational Modifications of Pyruvate Kinase M2: Tweaks That Benefit Cancer. Frontiers in Oncology, 8, Article 22.
https://doi.org/10.3389/fonc.2018.00022
[21] Yin, L., Shi, J., Zhang, J., Lin, X., Jiang, W., Zhu, Y., et al. (2023) PKM2 Is a Potential Prognostic Biomarker and Related to Immune Infiltration in Lung Cancer. Scientific Reports, 13, Article No. 22243.
https://doi.org/10.1038/s41598-023-49558-4
[22] Ishfaq, M., Bashir, N., Riaz, S.K., Manzoor, S., Khan, J.S., Bibi, Y., et al. (2022) Expression of HK2, PKM2, and PFKM Is Associated with Metastasis and Late Disease Onset in Breast Cancer Patients. Genes, 13, Article 549.
https://doi.org/10.3390/genes13030549
[23] Lee, Y., Min, J.K., Kim, J., Cap, K.C., Islam, R., Hossain, A.J., et al. (2021) Multiple Functions of Pyruvate Kinase M2 in Various Cell Types. Journal of Cellular Physiology, 237, 128-148.
https://doi.org/10.1002/jcp.30536
[24] Xiaoyu, H., Yiru, Y., Shuisheng, S., Keyan, C., Zixing, Y., Shanglin, C., et al. (2018) The mTOR Pathway Regulates PKM2 to Affect Glycolysis in Esophageal Squamous Cell Carcinoma. Technology in Cancer Research & Treatment, 17.
https://doi.org/10.1177/1533033818780063
[25] Ma, R., Liu, Q., Zheng, S., Liu, T., Tan, D. and Lu, X. (2019) PKM2‐Regulated STAT3 Promotes Esophageal Squamous Cell Carcinoma Progression via TGF‐β1‐Induced EMT. Journal of Cellular Biochemistry, 120, 11539-11550.
https://doi.org/10.1002/jcb.28434
[26] Fukuda, S., Miyata, H., Miyazaki, Y., Makino, T., Takahashi, T., Kurokawa, Y., et al. (2015) Pyruvate Kinase M2 Modulates Esophageal Squamous Cell Carcinoma Chemotherapy Response by Regulating the Pentose Phosphate Pathway. Annals of Surgical Oncology, 22, 1461-1468.
https://doi.org/10.1245/s10434-015-4522-3
[27] Lu, J., Chen, M., Gao, S., Yuan, J., Zhu, Z. and Zou, X. (2018) LY294002 Inhibits the Warburg Effect in Gastric Cancer Cells by Downregulating Pyruvate Kinase M2. Oncology Letters, 15, 4358-4364.
https://doi.org/10.3892/ol.2018.7843
[28] Shiroki, T., Yokoyama, M., Tanuma, N., Maejima, R., Tamai, K., Yamaguchi, K., et al. (2017) Enhanced Expression of the M2 Isoform of Pyruvate Kinase Is Involved in Gastric Cancer Development by Regulating Cancer‐Specific Metabolism. Cancer Science, 108, 931-940.
https://doi.org/10.1111/cas.13211
[29] Gao, W., Wang, J., Xu, Y., Yu, H., Yi, S., Bai, C., et al. (2024) Research Progress in the Metabolic Reprogramming of Hepatocellular Carcinoma (Review). Molecular Medicine Reports, 30, Article No. 131.
https://doi.org/10.3892/mmr.2024.13255
[30] Zuo, W., Pang, Q., Zhu, X., Yang, Q., Zhao, Q., He, G., et al. (2024) Heat Shock Proteins as Hallmarks of Cancer: Insights from Molecular Mechanisms to Therapeutic Strategies. Journal of Hematology & Oncology, 17, Article No. 81.
https://doi.org/10.1186/s13045-024-01601-1
[31] Li, S., Hao, L., Li, N., Hu, X., Yan, H., Dai, E., et al. (2024) Targeting the Hippo/YAP1 Signaling Pathway in Hepatocellular Carcinoma: From Mechanisms to Therapeutic Drugs (Review). International Journal of Oncology, 65, Article No. 88.
https://doi.org/10.3892/ijo.2024.5676
[32] Taniguchi, K., Sugito, N., Shinohara, H., Kuranaga, Y., Inomata, Y., Komura, K., et al. (2018) Organ-Specific MicroRNAs (MIR122, 137, and 206) Contribute to Tissue Characteristics and Carcinogenesis by Regulating Pyruvate Kinase M1/2 (PKM) Expression. International Journal of Molecular Sciences, 19, Article 1276.
https://doi.org/10.3390/ijms19051276
[33] Al-Rugeebah, A., Alanazi, M. and Parine, N.R. (2019) MEG3: An Oncogenic Long Non-Coding RNA in Different Cancers. Pathology & Oncology Research, 25, 859-874.
https://doi.org/10.1007/s12253-019-00614-3
[34] Bian, Z., Zhang, J., Li, M., Feng, Y., Wang, X., Zhang, J., et al. (2018) LncRNA-Fezf1-as1 Promotes Tumor Proliferation and Metastasis in Colorectal Cancer by Regulating PKM2 Signaling. Clinical Cancer Research, 24, 4808-4819.
https://doi.org/10.1158/1078-0432.ccr-17-2967
[35] Zhang, Y., Wang, M., Meng, F., Yang, M., Chen, Y., Guo, X., et al. (2022) A Novel SRSF3 Inhibitor, SFI003, Exerts Anticancer Activity against Colorectal Cancer by Modulating the SRSF3/DHCR24/ROS Axis. Cell Death Discovery, 8, Article No. 238.
https://doi.org/10.1038/s41420-022-01039-9
[36] Liang, F., Li, Q., Li, X., Li, Z., Gong, Z., Deng, H., et al. (2016) TSC22D2 Interacts with PKM2 and Inhibits Cell Growth in Colorectal Cancer. International Journal of Oncology, 49, 1046-1056.
https://doi.org/10.3892/ijo.2016.3599
[37] Zhou, H., Liu, Z., Wang, Y., Wen, X., Amador, E.H., Yuan, L., et al. (2022) Colorectal Liver Metastasis: Molecular Mechanism and Interventional Therapy. Signal Transduction and Targeted Therapy, 7, Article No. 70.
https://doi.org/10.1038/s41392-022-00922-2
[38] Demaria, M. and Poli, V. (2012) PKM2, STAT3 and HIF-1α. JAK-STAT, 1, 194-196.
https://doi.org/10.4161/jkst.20662
[39] Li, M., Li, F., Zhu, C., Zhang, C., Le, Y., Li, Z., et al. (2025) The Glycolytic Enzyme PKM2 Regulates Inflammatory Osteoclastogenesis by Modulating STAT3 Phosphorylation. Journal of Biological Chemistry, 301, Article ID: 108389.
https://doi.org/10.1016/j.jbc.2025.108389
[40] 李菲菲, 张祉薇, 于宏杰, 等. STAT3在结直肠癌发生发展中的作用机制[J]. 中国细胞生物学学报, 2021, 43(1): 93-102.
[41] Azoitei, N., Becher, A., Steinestel, K., Rouhi, A., Diepold, K., Genze, F., et al. (2016) PKM2 Promotes Tumor Angiogenesis by Regulating HIF-1α through NF-κB Activation. Molecular Cancer, 15, Article No. 3.
https://doi.org/10.1186/s12943-015-0490-2
[42] Wang, J., Zhu, W., Han, J., Yang, X., Zhou, R., Lu, H., et al. (2021) The Role of the HIF‐1α/ALYREF/PKM2 Axis in Glycolysis and Tumorigenesis of Bladder Cancer. Cancer Communications, 41, 560-575.
https://doi.org/10.1002/cac2.12158
[43] He, C., Bian, Y., Xue, Y., Liu, Z., Zhou, K., Yao, C., et al. (2016) Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1. Scientific Reports, 6, Article No. 21524.
https://doi.org/10.1038/srep21524
[44] Bye, W.A., Nguyen, T.M., Parker, C.E., Jairath, V. and East, J.E. (2017) Strategies for Detecting Colon Cancer in Patients with Inflammatory Bowel Disease. Cochrane Database of Systematic Reviews, 9, CD000279.
https://doi.org/10.1002/14651858.cd000279.pub4
[45] Zhang, Q., Liu, Q., Zheng, S., Liu, T., Yang, L., Han, X., et al. (2021) Shikonin Inhibits Tumor Growth of ESCC by Suppressing PKM2 Mediated Aerobic Glycolysis and STAT3 Phosphorylation. Journal of Cancer, 12, 4830-4840.
https://doi.org/10.7150/jca.58494
[46] Sun, Q., Gong, T., Liu, M., Ren, S., Yang, H., Zeng, S., et al. (2022) Shikonin, a Naphthalene Ingredient: Therapeutic Actions, Pharmacokinetics, Toxicology, Clinical Trials and Pharmaceutical Researches. Phytomedicine, 94, Article ID: 153805.
https://doi.org/10.1016/j.phymed.2021.153805
[47] Anastasiou, D., Yu, Y., Israelsen, W.J., Jiang, J., Boxer, M.B., Hong, B.S., et al. (2012) Pyruvate Kinase M2 Activators Promote Tetramer Formation and Suppress Tumorigenesis. Nature Chemical Biology, 8, 839-847.
https://doi.org/10.1038/nchembio.1060