[1]
|
Dey, P., Kundu, A., Sachan, R., Park, J.H., Ahn, M.Y. and Yoon, K. (2019) PKM2 Knockdown Induces Autophagic Cell Death via AKT/mTOR Pathway in Human Prostate Cancer Cells. Cell Physiol Biochem, 52, 1535-1552.
|
[2]
|
Yang, W. and Lu, Z. (2015) Pyruvate Kinase M2 at a Glance. Journal of Cell Science, 128, 1655-1660. https://doi.org/10.1242/jcs.166629
|
[3]
|
Zhang, Z., Deng, X., Liu, Y., Liu, Y., Sun, L. and Chen, F. (2019) PKM2, Function and Expression and Regulation. Cell & Bioscience, 9, Article No. 52. https://doi.org/10.1186/s13578-019-0317-8
|
[4]
|
Viola, A., Munari, F., Sánchez-Rodríguez, R., Scolaro, T. and Castegna, A. (2019) The Metabolic Signature of Macrophage Responses. Frontiers in Immunology, 10, Article 1462. https://doi.org/10.3389/fimmu.2019.01462
|
[5]
|
Chen, T., Wang, H., Liu, J., Cheng, H., Hsu, S., Wu, M., et al. (2019) Mutations in the PKM2 Exon-10 Region Are Associated with Reduced Allostery and Increased Nuclear Translocation. Communications Biology, 2, Article No. 105. https://doi.org/10.1038/s42003-019-0343-4
|
[6]
|
Shirai, T., Nazarewicz, R.R., Wallis, B.B., Yanes, R.E., Watanabe, R., Hilhorst, M., et al. (2016) The Glycolytic Enzyme PKM2 Bridges Metabolic and Inflammatory Dysfunction in Coronary Artery Disease. Journal of Experimental Medicine, 213, 337-354. https://doi.org/10.1084/jem.20150900
|
[7]
|
Zahra, K., Dey, T., Ashish, Mishra, S.P. and Pandey, U. (2020) Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Frontiers in Oncology, 10, Article 159. https://doi.org/10.3389/fonc.2020.00159
|
[8]
|
Zhang, Y. (2014) Inflammatory Bowel Disease: Pathogenesis. World Journal of Gastroenterology, 20, 91-99. https://doi.org/10.3748/wjg.v20.i1.91
|
[9]
|
An, J., Liu, Y., Wang, Y., Fan, R., Hu, X., Zhang, F., et al. (2022) The Role of Intestinal Mucosal Barrier in Autoimmune Disease: A Potential Target. Frontiers in Immunology, 13, Article 871713. https://doi.org/10.3389/fimmu.2022.871713
|
[10]
|
Yao, Y., Shang, W., Bao, L., Peng, Z. and Wu, C. (2024) Epithelial‐Immune Cell Crosstalk for Intestinal Barrier Homeostasis. European Journal of Immunology, 54, e2350631. https://doi.org/10.1002/eji.202350631
|
[11]
|
Palsson-McDermott, E.M., Curtis, A.M., Goel, G., Lauterbach, M.A.R., Sheedy, F.J., Gleeson, L.E., et al. (2015) Pyruvate Kinase M2 Regulates HIF-1α Activity and Il-1β Induction and Is a Critical Determinant of the Warburg Effect in LPS-Activated Macrophages. Cell Metabolism, 21, 65-80. https://doi.org/10.1016/j.cmet.2014.12.005
|
[12]
|
Yunna, C., Mengru, H., Lei, W. and Weidong, C. (2020) Macrophage M1/M2 polarization. European Journal of Pharmacology, 877, Article ID: 173090. https://doi.org/10.1016/j.ejphar.2020.173090
|
[13]
|
张迪, 王丽娟, 李冲, 等. PKM2缺失通过巨噬细胞极化促进溃疡性结肠炎黏膜修复[J]. 中国病理生理杂志, 2024, 40(7): 1163-1172.
|
[14]
|
Chung-Faye, G., Hayee, B., Maestranzi, S., Donaldson, N., Forgacs, I. and Sherwood, R. (2007) Fecal M2-Pyruvate Kinase (M2-PK): A Novel Marker of Intestinal Inflammation. Inflammatory Bowel Diseases, 13, 1374-1378. https://doi.org/10.1002/ibd.20214
|
[15]
|
Tang, Q., Ji, Q., Xia, W., Li, L., Bai, J., Ni, R., et al. (2014) Pyruvate Kinase M2 Regulates Apoptosis of Intestinal Epithelial Cells in Crohn’s Disease. Digestive Diseases and Sciences, 60, 393-404. https://doi.org/10.1007/s10620-014-3189-0
|
[16]
|
Gao, J., Zhao, Y., Li, T., Gan, X. and Yu, H. (2022) The Role of PKM2 in the Regulation of Mitochondrial Function: Focus on Mitochondrial Metabolism, Oxidative Stress, Dynamic, and Apoptosis. PKM2 in Mitochondrial Function. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 7702681. https://doi.org/10.1155/2022/7702681
|
[17]
|
Canal, F. and Perret, C. (2012) PKM2: A New Player in the β-Catenin Game. Future Oncology, 8, 395-398. https://doi.org/10.2217/fon.12.11
|
[18]
|
Warburg, O. (1956) On the Origin of Cancer Cells. Science, 123, 309-314. https://doi.org/10.1126/science.123.3191.309
|
[19]
|
Wong, N., De Melo, J. and Tang, D. (2013) PKM2, a Central Point of Regulation in Cancer Metabolism. International Journal of Cell Biology, 2013, Article ID: 242513. https://doi.org/10.1155/2013/242513
|
[20]
|
Prakasam, G., Iqbal, M.A., Bamezai, R.N.K. and Mazurek, S. (2018) Posttranslational Modifications of Pyruvate Kinase M2: Tweaks That Benefit Cancer. Frontiers in Oncology, 8, Article 22. https://doi.org/10.3389/fonc.2018.00022
|
[21]
|
Yin, L., Shi, J., Zhang, J., Lin, X., Jiang, W., Zhu, Y., et al. (2023) PKM2 Is a Potential Prognostic Biomarker and Related to Immune Infiltration in Lung Cancer. Scientific Reports, 13, Article No. 22243. https://doi.org/10.1038/s41598-023-49558-4
|
[22]
|
Ishfaq, M., Bashir, N., Riaz, S.K., Manzoor, S., Khan, J.S., Bibi, Y., et al. (2022) Expression of HK2, PKM2, and PFKM Is Associated with Metastasis and Late Disease Onset in Breast Cancer Patients. Genes, 13, Article 549. https://doi.org/10.3390/genes13030549
|
[23]
|
Lee, Y., Min, J.K., Kim, J., Cap, K.C., Islam, R., Hossain, A.J., et al. (2021) Multiple Functions of Pyruvate Kinase M2 in Various Cell Types. Journal of Cellular Physiology, 237, 128-148. https://doi.org/10.1002/jcp.30536
|
[24]
|
Xiaoyu, H., Yiru, Y., Shuisheng, S., Keyan, C., Zixing, Y., Shanglin, C., et al. (2018) The mTOR Pathway Regulates PKM2 to Affect Glycolysis in Esophageal Squamous Cell Carcinoma. Technology in Cancer Research & Treatment, 17. https://doi.org/10.1177/1533033818780063
|
[25]
|
Ma, R., Liu, Q., Zheng, S., Liu, T., Tan, D. and Lu, X. (2019) PKM2‐Regulated STAT3 Promotes Esophageal Squamous Cell Carcinoma Progression via TGF‐β1‐Induced EMT. Journal of Cellular Biochemistry, 120, 11539-11550. https://doi.org/10.1002/jcb.28434
|
[26]
|
Fukuda, S., Miyata, H., Miyazaki, Y., Makino, T., Takahashi, T., Kurokawa, Y., et al. (2015) Pyruvate Kinase M2 Modulates Esophageal Squamous Cell Carcinoma Chemotherapy Response by Regulating the Pentose Phosphate Pathway. Annals of Surgical Oncology, 22, 1461-1468. https://doi.org/10.1245/s10434-015-4522-3
|
[27]
|
Lu, J., Chen, M., Gao, S., Yuan, J., Zhu, Z. and Zou, X. (2018) LY294002 Inhibits the Warburg Effect in Gastric Cancer Cells by Downregulating Pyruvate Kinase M2. Oncology Letters, 15, 4358-4364. https://doi.org/10.3892/ol.2018.7843
|
[28]
|
Shiroki, T., Yokoyama, M., Tanuma, N., Maejima, R., Tamai, K., Yamaguchi, K., et al. (2017) Enhanced Expression of the M2 Isoform of Pyruvate Kinase Is Involved in Gastric Cancer Development by Regulating Cancer‐Specific Metabolism. Cancer Science, 108, 931-940. https://doi.org/10.1111/cas.13211
|
[29]
|
Gao, W., Wang, J., Xu, Y., Yu, H., Yi, S., Bai, C., et al. (2024) Research Progress in the Metabolic Reprogramming of Hepatocellular Carcinoma (Review). Molecular Medicine Reports, 30, Article No. 131. https://doi.org/10.3892/mmr.2024.13255
|
[30]
|
Zuo, W., Pang, Q., Zhu, X., Yang, Q., Zhao, Q., He, G., et al. (2024) Heat Shock Proteins as Hallmarks of Cancer: Insights from Molecular Mechanisms to Therapeutic Strategies. Journal of Hematology & Oncology, 17, Article No. 81. https://doi.org/10.1186/s13045-024-01601-1
|
[31]
|
Li, S., Hao, L., Li, N., Hu, X., Yan, H., Dai, E., et al. (2024) Targeting the Hippo/YAP1 Signaling Pathway in Hepatocellular Carcinoma: From Mechanisms to Therapeutic Drugs (Review). International Journal of Oncology, 65, Article No. 88. https://doi.org/10.3892/ijo.2024.5676
|
[32]
|
Taniguchi, K., Sugito, N., Shinohara, H., Kuranaga, Y., Inomata, Y., Komura, K., et al. (2018) Organ-Specific MicroRNAs (MIR122, 137, and 206) Contribute to Tissue Characteristics and Carcinogenesis by Regulating Pyruvate Kinase M1/2 (PKM) Expression. International Journal of Molecular Sciences, 19, Article 1276. https://doi.org/10.3390/ijms19051276
|
[33]
|
Al-Rugeebah, A., Alanazi, M. and Parine, N.R. (2019) MEG3: An Oncogenic Long Non-Coding RNA in Different Cancers. Pathology & Oncology Research, 25, 859-874. https://doi.org/10.1007/s12253-019-00614-3
|
[34]
|
Bian, Z., Zhang, J., Li, M., Feng, Y., Wang, X., Zhang, J., et al. (2018) LncRNA-Fezf1-as1 Promotes Tumor Proliferation and Metastasis in Colorectal Cancer by Regulating PKM2 Signaling. Clinical Cancer Research, 24, 4808-4819. https://doi.org/10.1158/1078-0432.ccr-17-2967
|
[35]
|
Zhang, Y., Wang, M., Meng, F., Yang, M., Chen, Y., Guo, X., et al. (2022) A Novel SRSF3 Inhibitor, SFI003, Exerts Anticancer Activity against Colorectal Cancer by Modulating the SRSF3/DHCR24/ROS Axis. Cell Death Discovery, 8, Article No. 238. https://doi.org/10.1038/s41420-022-01039-9
|
[36]
|
Liang, F., Li, Q., Li, X., Li, Z., Gong, Z., Deng, H., et al. (2016) TSC22D2 Interacts with PKM2 and Inhibits Cell Growth in Colorectal Cancer. International Journal of Oncology, 49, 1046-1056. https://doi.org/10.3892/ijo.2016.3599
|
[37]
|
Zhou, H., Liu, Z., Wang, Y., Wen, X., Amador, E.H., Yuan, L., et al. (2022) Colorectal Liver Metastasis: Molecular Mechanism and Interventional Therapy. Signal Transduction and Targeted Therapy, 7, Article No. 70. https://doi.org/10.1038/s41392-022-00922-2
|
[38]
|
Demaria, M. and Poli, V. (2012) PKM2, STAT3 and HIF-1α. JAK-STAT, 1, 194-196. https://doi.org/10.4161/jkst.20662
|
[39]
|
Li, M., Li, F., Zhu, C., Zhang, C., Le, Y., Li, Z., et al. (2025) The Glycolytic Enzyme PKM2 Regulates Inflammatory Osteoclastogenesis by Modulating STAT3 Phosphorylation. Journal of Biological Chemistry, 301, Article ID: 108389. https://doi.org/10.1016/j.jbc.2025.108389
|
[40]
|
李菲菲, 张祉薇, 于宏杰, 等. STAT3在结直肠癌发生发展中的作用机制[J]. 中国细胞生物学学报, 2021, 43(1): 93-102.
|
[41]
|
Azoitei, N., Becher, A., Steinestel, K., Rouhi, A., Diepold, K., Genze, F., et al. (2016) PKM2 Promotes Tumor Angiogenesis by Regulating HIF-1α through NF-κB Activation. Molecular Cancer, 15, Article No. 3. https://doi.org/10.1186/s12943-015-0490-2
|
[42]
|
Wang, J., Zhu, W., Han, J., Yang, X., Zhou, R., Lu, H., et al. (2021) The Role of the HIF‐1α/ALYREF/PKM2 Axis in Glycolysis and Tumorigenesis of Bladder Cancer. Cancer Communications, 41, 560-575. https://doi.org/10.1002/cac2.12158
|
[43]
|
He, C., Bian, Y., Xue, Y., Liu, Z., Zhou, K., Yao, C., et al. (2016) Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1. Scientific Reports, 6, Article No. 21524. https://doi.org/10.1038/srep21524
|
[44]
|
Bye, W.A., Nguyen, T.M., Parker, C.E., Jairath, V. and East, J.E. (2017) Strategies for Detecting Colon Cancer in Patients with Inflammatory Bowel Disease. Cochrane Database of Systematic Reviews, 9, CD000279. https://doi.org/10.1002/14651858.cd000279.pub4
|
[45]
|
Zhang, Q., Liu, Q., Zheng, S., Liu, T., Yang, L., Han, X., et al. (2021) Shikonin Inhibits Tumor Growth of ESCC by Suppressing PKM2 Mediated Aerobic Glycolysis and STAT3 Phosphorylation. Journal of Cancer, 12, 4830-4840. https://doi.org/10.7150/jca.58494
|
[46]
|
Sun, Q., Gong, T., Liu, M., Ren, S., Yang, H., Zeng, S., et al. (2022) Shikonin, a Naphthalene Ingredient: Therapeutic Actions, Pharmacokinetics, Toxicology, Clinical Trials and Pharmaceutical Researches. Phytomedicine, 94, Article ID: 153805. https://doi.org/10.1016/j.phymed.2021.153805
|
[47]
|
Anastasiou, D., Yu, Y., Israelsen, W.J., Jiang, J., Boxer, M.B., Hong, B.S., et al. (2012) Pyruvate Kinase M2 Activators Promote Tetramer Formation and Suppress Tumorigenesis. Nature Chemical Biology, 8, 839-847. https://doi.org/10.1038/nchembio.1060
|