|
[1]
|
Krishna, K.G., Parne, S., Pothukanuri, N., Kathirvelu, V., Gandi, S. and Joshi, D. (2022) Nanostructured Metal Oxide Semiconductor-Based Gas Sensors: A Comprehensive Review. Sensors and Actuators A: Physical, 341, Article ID: 113578. [Google Scholar] [CrossRef]
|
|
[2]
|
Bag, A. and Lee, N. (2021) Recent Advancements in Development of Wearable Gas Sensors. Advanced Materials Technologies, 6, Article ID: 2000883. [Google Scholar] [CrossRef]
|
|
[3]
|
Kou, Y., Hua, L., Chen, W., Xu, X., Song, L., Yu, S., et al. (2024) Material Design and Application Progress of Flexible Chemiresistive Gas Sensors. Journal of Materials Chemistry A, 12, 21583-21604. [Google Scholar] [CrossRef]
|
|
[4]
|
Majhi, S.M., Mirzaei, A., Kim, H.W., Kim, S.S. and Kim, T.W. (2021) Recent Advances in Energy-Saving Chemiresistive Gas Sensors: A Review. Nano Energy, 79, Article ID: 105369. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhu, L. and Zeng, W. (2017) Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sensors and Actuators A: Physical, 267, 242-261. [Google Scholar] [CrossRef]
|
|
[6]
|
Nikolic, M.V., Milovanovic, V., Vasiljevic, Z.Z. and Stamenkovic, Z. (2020) Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors, 20, Article 6694. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhou, T. and Zhang, T. (2021) Recent Progress of Nanostructured Sensing Materials from 0D to 3D: Overview of Structure-Property-Application Relationship for Gas Sensors. Small Methods, 5, Article ID: 2100515. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Li, Z., Li, H., Wu, Z., Wang, M., Luo, J., Torun, H., et al. (2019) Advances in Designs and Mechanisms of Semiconducting Metal Oxide Nanostructures for High-Precision Gas Sensors Operated at Room Temperature. Materials Horizons, 6, 470-506. [Google Scholar] [CrossRef]
|
|
[9]
|
La Torre, G., Vitello, T., Cocchiara, R.A. and Della Rocca, C. (2023) Relationship between Formaldehyde Exposure, Respiratory Irritant Effects and Cancers: A Review of Reviews. Public Health, 218, 186-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Nielsen, G.D., Larsen, S.T. and Wolkoff, P. (2016) Re-evaluation of the WHO (2010) Formaldehyde Indoor Air Quality Guideline for Cancer Risk Assessment. Archives of Toxicology, 91, 35-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Mirzaei, A., Leonardi, S.G. and Neri, G. (2016) Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review. Ceramics International, 42, 15119-15141. [Google Scholar] [CrossRef]
|
|
[12]
|
Ji, H., Zeng, W. and Li, Y. (2019) Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review. Nanoscale, 11, 22664-22684. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, D., Yang, Z., Yu, S., Mi, Q. and Pan, Q. (2020) Diversiform Metal Oxide-Based Hybrid Nanostructures for Gas Sensing with Versatile Prospects. Coordination Chemistry Reviews, 413, Article ID: 213272. [Google Scholar] [CrossRef]
|
|
[14]
|
Kumar, R., Liu, X., Zhang, J. and Kumar, M. (2020) Room-Temperature Gas Sensors under Photoactivation: From Metal Oxides to 2D Materials. Nano-Micro Letters, 12, Article No. 164. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chizhov, A., Rumyantseva, M. and Gaskov, A. (2021) Light Activation of Nanocrystalline Metal Oxides for Gas Sensing: Principles, Achievements, Challenges. Nanomaterials, 11, Article 892. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Espid, E. and Taghipour, F. (2017) Development of Highly Sensitive ZnO/In2O3 Composite Gas Sensor Activated by UV-Led. Sensors and Actuators B: Chemical, 241, 828-839. [Google Scholar] [CrossRef]
|
|
[17]
|
Song, Y., Yang, B., Ma, Z., Song, Y. and Sun, J. (2023) Fabrication of Sx/In2O3−x Based Microsphere for Photoexcitation Enhancing the NO2 Gas Detection Properties. Sensors and Actuators B: Chemical, 379, Article ID: 133162. [Google Scholar] [CrossRef]
|
|
[18]
|
Skotadis, E., Mousadakos, D., Katsabrokou, K., Stathopoulos, S. and Tsoukalas, D. (2013) Flexible Polyimide Chemical Sensors Using Platinum Nanoparticles. Sensors and Actuators B: Chemical, 189, 106-112. [Google Scholar] [CrossRef]
|
|
[19]
|
Kim, J., Porte, Y., Ko, K.Y., Kim, H. and Myoung, J. (2017) Micropatternable Double-Faced ZnO Nanoflowers for Flexible Gas Sensor. ACS Applied Materials & Interfaces, 9, 32876-32886. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Spencer, J.A., Mock, A.L., Jacobs, A.G., Schubert, M., Zhang, Y. and Tadjer, M.J. (2022) A Review of Band Structure and Material Properties of Transparent Conducting and Semiconducting Oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO, CuO, and Sc2O3. Applied Physics Reviews, 9, Article ID: 011315. [Google Scholar] [CrossRef]
|
|
[21]
|
Liu, X., Zheng, M., Chen, G., Dang, Z. and Zha, J. (2022) High-Temperature Polyimide Dielectric Materials for Energy Storage: Theory, Design, Preparation and Properties. Energy & Environmental Science, 15, 56-81. [Google Scholar] [CrossRef]
|
|
[22]
|
Li, Y., Sun, G., Zhou, Y., Liu, G., Wang, J. and Han, S. (2022) Progress in Low Dielectric Polyimide Film—A Review. Progress in Organic Coatings, 172, Article ID: 107103. [Google Scholar] [CrossRef]
|
|
[23]
|
Kadiyala, A.K., Sharma, M. and Bijwe, J. (2016) Exploration of Thermoplastic Polyimide as High Temperature Adhesive and Understanding the Interfacial Chemistry Using XPS, ToF-SIMS and Raman Spectroscopy. Materials & Design, 109, 622-633. [Google Scholar] [CrossRef]
|
|
[24]
|
Kato, T., Yamada, Y., Nishikawa, Y., Ishikawa, H. and Sato, S. (2021) Carbonization Mechanisms of Polyimide: Methodology to Analyze Carbon Materials with Nitrogen, Oxygen, Pentagons, and Heptagons. Carbon, 178, 58-80. [Google Scholar] [CrossRef]
|
|
[25]
|
Vo, T.S. and Vo, T.T.B.C. (2022) Surface Characterization of Polyimide and Polyethylene Terephthalate Membranes toward Plasma and UV Treatments. Progress in Natural Science: Materials International, 32, 314-327. [Google Scholar] [CrossRef]
|
|
[26]
|
Korotcenkov, G., Boris, I., Cornet, A., Rodriguez, J., Cirera, A., Golovanov, V., et al. (2007) The Influence of Additives on Gas Sensing and Structural Properties of In2O3-Based Ceramics. Sensors and Actuators B: Chemical, 120, 657-664. [Google Scholar] [CrossRef]
|
|
[27]
|
Guo, L., Shen, X., Zhu, G. and Chen, K. (2011) Preparation and Gas-Sensing Performance of In2O3 Porous Nanoplatelets. Sensors and Actuators B: Chemical, 155, 752-758. [Google Scholar] [CrossRef]
|
|
[28]
|
Hafeezullah, Yamani, Z.H., Iqbal, J., Qurashi, A. and Hakeem, A. (2014) Rapid Sonochemical Synthesis of In2O3 Nanoparticles Their Doping Optical, Electrical and Hydrogen Gas Sensing Properties. Journal of Alloys and Compounds, 616, 76-80. [Google Scholar] [CrossRef]
|
|
[29]
|
Tuzluca, F.N., Yesilbag, Y.O. and Ertugrul, M. (2018) Synthesis of In2O3 Nanostructures with Different Morphologies as Potential Supercapacitor Electrode Materials. Applied Surface Science, 427, 956-964. [Google Scholar] [CrossRef]
|
|
[30]
|
Wang, X., Chen, Z., Saito, K., Tanaka, T., Nishio, M. and Guo, Q. (2017) Temperature-Dependent Raman Scattering in Cubic (InGa)2O3 Thin Films. Journal of Alloys and Compounds, 690, 287-292. [Google Scholar] [CrossRef]
|
|
[31]
|
Ni, H., Liu, J., Wang, Z. and Yang, S. (2015) A Review on Colorless and Optically Transparent Polyimide Films: Chemistry, Process and Engineering Applications. Journal of Industrial and Engineering Chemistry, 28, 16-27. [Google Scholar] [CrossRef]
|
|
[32]
|
Sanaeepur, H., Ebadi Amooghin, A., Bandehali, S., Moghadassi, A., Matsuura, T. and Van der Bruggen, B. (2019) Polyimides in Membrane Gas Separation: Monomer’s Molecular Design and Structural Engineering. Progress in Polymer Science, 91, 80-125. [Google Scholar] [CrossRef]
|
|
[33]
|
Huang, C.C. and Yeh, C.S. (2008) Porous Cube-Like In2O3 Nanoparticles and Their Sensing Characteristics toward Ethanol. Journal of Materials Science & Technology, 24, 667-674.
|