室温柔性In2O3薄膜的制备及其气敏性能
Preparation of Flexible In2O3 Films at Room Temperature and Their Gas-Sensitive Properties
摘要: 本文报道了一种制备柔性甲醛传感器的简单合成策略,具有广阔的应用前景。以立方氧化铟纳米颗粒为敏感材料,采用简单的自旋镀膜工艺在聚酰亚胺薄膜上制备了甲醛传感器。实验结果表明,所设计的柔性甲醛传感器在室温下具有较高的活性和重复性,甲醛的检测限达到10 ppm。通过对器件的长时间监测,在大角度和循环弯曲下,器件的灵敏度变化不大,最大和最小灵敏度响应变化为1.66。从立方氧化铟纳米颗粒、芳香族聚酰亚胺的结构优势、光加成的催化作用等方面探讨了甲醛传感器的传感机理。这种传感器具有灵活、传感材料设计灵活、重量轻、成本低等优点,并能在室温下检测气体等,在环境气体检测、可穿戴智能医疗等领域有着广阔的应用前景。综上所述,本研究为制造高性能、适用性强的甲醛传感器提供了一条有效途径,为进一步应用于环境甲醛检测等应用场景提供了参考。
Abstract: Here, we report a simple synthesis strategy for the preparation of flexible formaldehyde sensors with broad application prospects. A formaldehyde sensor was constructed on polyimide film by a simple spin coating process using cubic indium oxide nanoparticles as the sensitive material. The experimental results show that the designed flexible formaldehyde sensor has high activity and repeatability at room temperature, and the detection limit of formaldehyde reaches 10 ppm. By monitoring the device for a long period of time, the sensitivity of the device changes little under large Angle and cyclic bending, and the maximum and minimum sensitivity responses change 1.66. The sensing mechanism of formaldehyde sensor was discussed from the aspects of cubic indium oxide nanoparticles, structural advantages of aromatic polyimide and catalytic effect of light addition. This kind of sensor has the advantages of flexibility, flexible sensing material design, light weight and low cost, and can detect gas at room temperature, etc., and has broad application prospects in the field of environmental gas detection and wearable smart medical treatment. In conclusion, this study provides an effective way to manufacture high-performance and applicable formaldehyde sensors, which may be helpful for further application in environmental formaldehyde detection and other application scenarios.
文章引用:李佳皓, 曹静. 室温柔性In2O3薄膜的制备及其气敏性能[J]. 材料科学, 2025, 15(6): 1322-1330. https://doi.org/10.12677/ms.2025.156140

1. 引言

传统的气体传感器通常是在无机衬底上制造的,包括石英、玻璃、氧化铝陶瓷管和硅晶圆[1]。然而,它们的刚性和易碎性限制了它们在各种新领域的应用。相比之下,在聚合物和纺织品等柔性基材上集成气体传感器在过去几年中吸引了越来越多的研究人员的关注,使其在便携式电子、智能纺织品和医疗保健等领域具有很大的前景[2]-[5]。金属氧化物需要高温来激发气化反应,这不可避免地导致高功耗和长期漂移,导致金属氧化物的热致生长[6] [7]。高工作温度也会导致安全问题,这对便携式和可穿戴应用来说是不利的。因此,室温柔性气体传感器逐渐受到了广泛的关注,比如应用于可穿戴设备,实现对个人周围气体的实时监测[8]

甲醛(HCHO)是一种具有致癌性质的挥发性有机化合物,低浓度的甲醛(1~3 ppm)会刺激鼻子和眼睛,浓度超过15 ppm会导致死亡,世界卫生组织(WHO)规定室内生活区域的甲醛浓度应低于80 ppb [9] [10]。因此,有效的甲醛检测方法对人体健康和环境保护具有重要意义和巨大需求。

金属氧化物半导体(MOSs)气体传感器是商业应用中应用最广泛的传感器器件[11]。氧化物半导体气体传感器通常需要较高的工作温度来提供化学反应活化能,以使敏感材料的表面活性基团与目标气体发生反应[12]。然而,更高的工作温度不仅会导致功耗增加,还会带来安全隐患。因此,开发可在室温下工作的氧化物半导体气体传感器在实际应用中具有重要意义。近年来,光激发已成为使氧化物半导体气体传感器在室温下工作的有效方法[13] [14]。在众多氧化物半导体中,氧化铟(In2O3)具有较强的光吸收能力和较高的电子迁移率,已成为光激发气体传感器敏感材料的理想选择[15]。例如,Espid等人报道了室温下365 nm UV-LED照射下检测低浓度NO2气体的ZnO/In2O3复合传感器的光响应行为[16]。Song等报道了Sx/In2O3x在光激发下的气敏性质,发现了通过光激发提高材料电导率、调整材料能带结构、提高载流子寿命的有效途径。掺杂直接控制了材料结构中结构缺陷和氧空位的分布,在光激发下对NO2的响应提高了几个数量级[17]

本文采用水热法制备了In2O3样品。该方法制备的颗粒结晶度好,结块少,纯度高,颗粒分布窄。聚酰亚胺因其优异的机械性能、化学稳定性和耐高温性能被广泛应用于柔性气体传感器中[18]。一般来说,聚酰亚胺在柔性气体传感器中的应用可以提高传感器的灵活性,使其能够适应各种复杂的应用环境[19]。如何将选定的气敏材料与聚酰亚胺材料复配。方法的研究和条件的探索是制备聚酰亚胺/敏感材料复合材料的关键。

2. 实验部分

2.1. 化学药品材料

邻苯二甲酸二酐(PMDA),4,4′聚氧二胺(ODA),N,N-二甲基乙酰胺(DMAc),NaOH (AR),四水氯化铟(InCl3·4H2O, AR)。

2.2. 制备流程

聚酰胺酸的制备:聚酰亚胺前体(PAA)通过在0℃下等摩尔比的PMDA和ODA在DMAc中的缩聚反应合成。首先,将2 g ODA溶解在30 ml DMAc中,然后加入2.18 g PMDA,在0℃下搅拌24小时,得到14 wt%的PAA溶液。立方In2O3纳米颗粒的合成:首先,将0.29 g InCl·4H2O溶解在25 ml去离子水中,搅拌15分钟,然后将0.1 g NaOH分散在10 ml去离子水中,持续搅拌。然后将NaOH溶液逐滴加入InCl3·4H2O溶液中,剧烈搅拌直至反应完成,形成白色均匀溶液。将溶液转移到50 ml聚四氟乙烯不锈钢高压釜中。反应温度升至180℃,反应10小时。水热反应后,用去离子水和乙醇洗涤数次,干燥并收集沉淀。最后,将预合成的In(OH)3前体放入石英坩埚中,在常规马弗炉中以5℃/min的加热速率在300℃下煅烧2小时。煅烧后,得到淡黄色的In2O3纳米立方体。PI-In2O3传感器的旋涂和退火过程如图1(a)所示。

Figure 1. (a) PI-In2O3 sensor spin-coating and minimization process flow chart; (b) Test flow chart of gas sensing measurement system; (c) Equipment for bending test of thin film samples

1. (a) PI-In2O3传感器旋涂及最小化工艺流程图;(b) 气敏测量系统测试流程图;(c) 薄膜试样弯曲试验设备

2.3. 气体传感器的制作和测量

采用CGS-8智能气敏分析系统对PI-In2O3传感器的气敏性能进行监测。将传感器放置在封闭空间中,暴露在不同波长的光下,实验设置示意图如图1(b)所示。

3. 结果与讨论

3.1. 表征结果

图2(a)所示,合成的PI-In2O3薄膜和纯In2O3样品的XRD谱图与体心立方结构的In2O3纳米颗粒(JCPDS卡号:03-065-3170)的XRD谱图吻合较好,这与文献报道一致[20]。在21.45˚、30.52˚、35.38˚、50.90˚和60.52˚处有5个明显的衍射峰,分别属于立方相In2O3的(211)、(222)、(400)、(440)和(622)晶面。尖锐的衍射峰表明合成的In2O3具有良好的结晶度。聚酰亚胺(Kapton)是一种非晶聚合物。它具有芳香单体和聚合物链的大交联排列[21]。在图2(a)的XRD谱图中,20˚附近的宽峰是聚酰亚胺的特征峰[22]。采用紫外–可见吸收光谱法测定了In2O3和PI-In2O3样品的光吸收性能。如图2(b)所示,In2O3在200~400 nm区域有很强的吸收峰。对紫外线吸收强,对可见光吸收小。

Figure 2. (a) XRD patterns of PI-In2O3, In2O3 and Polyimide; (b) UV-vis absorption spectra of In2O3 and PI-In2O3; (c) Raman spectra of PI-In2O3, PI and In2O3 nanoparticles; SEM images of (d)~(f) In2O3 and (g)~(i) PI-In2O3

2. (a) PI-In2O3、In2O3和聚酰亚胺的XRD图;(b) In2O3和PI-In2O3的紫外–可见吸收光谱;(c) PI-In2O3、PI和In2O3纳米颗粒的拉曼光谱;(d)~(f) In2O3和(g)~(i) PI-In2O3的SEM图像

图2(c)为PI和PI-In2O3纳米复合材料的拉曼光谱。C-O在1610 cm1和1780 cm1处的不对称和对称拉伸,C-O在725 cm1处的弯曲振动,C-N在1380 cm1处的拉伸振动都证明了聚酰胺酸的模拟是完全的。725 cm1附近的峰为亚胺环的弯曲振动峰,1780 cm1和1610 cm1处的峰分别对应亚胺结构中C-O的不对称和对称拉伸振动峰[23]-[25]图2(c)也给出了氧化铟纳米材料的拉曼光谱图,分析了氧化铟半导体纳米材料的关键电子参数。在310、365、492和627 cm1处出现了四个明显的特征峰,它们都是立方相氧化铟晶体(c-In2O3)产生的声子[26]。310 cm1的特征峰对应于δ (InO6)的晶格振动,而365 cm1和627 cm1的特征峰归属于υ (InO6)的晶格振动。492 cm1位置的特征峰归因于In-O-In晶格振动[27]-[30]

此外,利用扫描电镜对In2O3和PI-In2O3的形貌和微观结构进行了研究。两种样品均匀分散。如图2(d)~(f)所示,In2O3由纳米立方体和不规则多面体组成,可以观察到In2O3立方体的表面有凹坑、裂纹和不规则的孔隙,这些裂纹和粗糙的表面结构导致了更多的通道,或者有助于气敏反应。对于PI-In2O3,如图2(g)~(i)所示,可以看到In2O3纳米颗粒被聚酰亚胺包围。

Figure 3. XPS spectra of (a) Polyimide and (e) In2O3, respectively; (b) N1s spectrum; (c) c1s spectrum and (d) O1s spectrum of Polyimide, respectively; (f) O1s spectrum and (g) In3d spectrum of In2O3

3. (a) 聚酰亚胺和(e) In2O3的XPS光谱;(b) 聚酰亚胺的N1s光谱、(c) c1s光谱和(d) O1s光谱;(f) O1s光谱和(g) In2O3的In3d光谱

采用x射线光电子能谱(XPS)进一步分析样品的化学成分和结合状态。c1s的峰值标准结合能为284.8 eV,对XPS分析进行了标准化。全光谱测量光谱显示,PI样品由C、N、O元素组成(图3(a))。如图3(c)所示,π的C1s的XPS光谱可以拟合到以284.8 eV、285.48 eV和288.53 eV为中心的三个峰。在XPS分析中,光谱曲线通过284.8 eV的C1s峰进行标准化,这可能是由于sp2的C=C键或外源碳污染所致,285.48 eV和288.53 eV的结合能峰分别指向C-O-C和O-C=O键。图3(b)对应PI的N1s谱,在398.7 eV和400.51 eV处可观察到两个峰,通常与骨架中氮三嗪环和五胺亚胺环中的氮原子有关,说明PI是由这两个N原子组成的骨架结构。PI的O1s峰可以分解成两个化学键,如图3(d)所示,其中532.18 eV和533.28 eV处的两个峰分别属于C=O和C-O [31] [32]。In2O3的全光谱扫描如图3(e)所示,表明In2O3样品由元素in和o组成。In2O3样品的in三维高分辨率光谱如图3(g)所示。在444.01 eV和451.61 eV下,3d5/2和3d3/2的特征信号与立方相In2O3的自旋轨道分裂特征峰In 3d5/2和In 3d3/2一致[33]

3.2. 传感性能测试

为了评价传感器的选择性,如图4(a)~(c)所示,测试了不同波长下对100 ppm乙醇、丙酮、甲醇、甲醛、甲苯、二甲苯和氨的响应。单层、双层和三层薄膜对不同照度和不同目标气体的响应灵敏度依次降低。这可能是由于随着薄膜层数的增加,传感材料与目标气体接触的有效面积减小。该单层膜在405 nm波长激发下表现出较高的灵敏度。证明该装置对甲醛具有良好的选择性,适用于甲醛的检测。

为了研究反复弯曲对复合材料薄膜气敏性能的影响,进行了弯曲实验。将薄膜切成9 × 9 mm的正方形,在机器上反复进行弯曲试验,弯曲角度均匀一致。图4(c)显示了弯曲试验中使用的弯曲设备。从图中可以看出,随着层数的增加,弯曲次数增加,气敏性能降低。复合膜对甲醛气体的敏感性随着复合膜弯曲次数的增加而降低的主要原因是,随着复合膜弯曲次数的增加,膜内的团聚现象也随之增加,导致氧化铟纳米颗粒与聚酰亚胺树脂基体之间发生相分离。

Figure 4. (a) Single-layer PI-In2O3; (b) Double-layer PI-In2O3 and (c) Three-layer PI-In2O3 sensors respond to 100 ppm of ethanol, acetone, methanol, formaldehyde, toluene, xylene and ammonia; (d) Single-layer PI-In2O3; (e) Double-layer PI-In2O3; (f) Three-layer PI-In2O3 sensor response to 100 ppm formaldehyde at different bending times

4. (a) 单层PI-In2O3;(b) 双层PI-In2O3和(c) 三层PI-In2O3传感器对100 ppm的乙醇、丙酮、甲醇、甲醛、甲苯、二甲苯和氨做出响应;(d) 单层PI-In2O3;(e) 双层PI-In2O3;(f) 三层PI-In2O3传感器在不同弯曲时间对100 ppm甲醛的响应

为了评估一层样品气体传感器的响应恢复特性,在405 nm光激发下进行了实验测试。如图5(a)所示,PI-In2O3传感器对100 ppm甲醛的响应时间为50 s,恢复时间为312 s。该传感器在室温下表现出优异的响应恢复速度。

研究了PI-In2O3传感器在405 nm光下对100 ppm甲醛的响应稳定性。PI-In2O3传感器的长期稳定性是通过每隔一周测量响应来实现的。100 ppm甲醛暴露6个周期间隔一周的动态响应恢复曲线如图5(b)所示。响应和恢复过程几乎是可重复的,曲线上只有轻微的变化,表明在很长一段时间内灵敏度不会降低,并且具有良好的可重复性。结果表明,PI-In2O3传感器具有良好的可靠性和稳定性。

为了进一步测试传感器在自然光环境下的气敏性能,我们设计了不同浓度甲醛气体在自然光下的气敏测试。图5(c)的分析表明,PI-In2O3传感器在自然光下对甲醛气体也有响应。并且随着甲醛浓度的增加,气体传感器的响应值也会增加,说明其在自然光下对甲醛也具有敏感性。在405 nm处评价了PI-In2O3传感器对不同浓度甲醛的传感性能。图5(d)显示了随着甲醛浓度的增加,传感器的灵敏度不断提高。为了进一步研究衬底对In2O3传感器的影响,测量了陶瓷管型In2O3传感器在不同波长光下对100 ppm甲醛气体的灵敏度。如图5(e)所示,基于陶瓷管的In2O3传感器在405 nm光下的灵敏度最高,与基于PI的In2O3传感器的灵敏度一致。然而,基于PI的In2O3传感器的灵敏度略高于基于陶瓷管的In2O3传感器。

Figure 5. (a) Response and recovery time based on PI-In2O3 sensor to 100 ppm formaldehyde under 405 nm assisted-light; (b) Repeatability of 100 ppm formaldehyde at 405 nm light every week; (c) Response of PI-In2O3 sensor to different formaldehyde concentrations under natural light; (d) Response of PI-In2O3 sensor to different formaldehyde concentrations under 405 nm illumination; (e) Response of In2O3 ceramic tube sensor to 100 ppm formaldehyde concentration under different wavelengths of light

5. (a) 基于PI-In2O3传感器在405 nm辅助光下对100 ppm甲醛的响应和恢复时间;(b) 100 ppm甲醛每周在405 nm光下的重复性;(c) 自然光照下PI-In2O3传感器对不同甲醛浓度的响应;(d) 405 nm光照下PI-In2O3传感器对不同甲醛浓度的响应;(e) 不同波长光下In2O3陶瓷管传感器对100 ppm甲醛浓度的响应

4. 敏感性机理分析

光激发是提升气敏性能的优越策略,可以有效降低MOS气体传感器的工作温度,为实现室温MOS气体传感器提供了独特的途径。氧化铟(In2O3)是一种重要的金属氧化物半导体材料,立方In2O3具有完全暴露的表面缺陷,使其成为非常合适的气敏材料。芳香族聚酰亚胺材料最显著的特点是优异的热稳定性。同时聚酰亚胺材料具有优异的力学性能,普通聚酰亚胺的抗拉强度可超过100 mpa。此外,芳香族聚酰亚胺由于其结构优势,还具有良好的耐腐蚀性能。值得一提的是,在气敏测试中,聚酰亚胺薄膜的高透光率并不影响氧化铟纳米材料的光激发。

5. 结论

在这项工作中,使用立方In2O3纳米颗粒和聚酰亚胺的组合制成了柔性和室温工作的PI-In2O3传感器。采用水热法制备了立方In2O3纳米颗粒。采用低温缩聚反应合成了聚酰亚胺前体(PAA)。该传感器在405 nm光照射下对甲醛具有良好的灵敏度和选择性。在自然光下,甲醛仍有反应,检出限低至10 ppm。值得注意的是,一层PI-In2O3样品的反复弯曲对传感器性能的影响可以忽略不计,不同弯曲条件下的响应基本相同。这项工作为便携式设备上的气体传感器的设计和检测低浓度气体铺平了道路,这对环境监测至关重要。

NOTES

*通讯作者。

参考文献

[1] Krishna, K.G., Parne, S., Pothukanuri, N., Kathirvelu, V., Gandi, S. and Joshi, D. (2022) Nanostructured Metal Oxide Semiconductor-Based Gas Sensors: A Comprehensive Review. Sensors and Actuators A: Physical, 341, Article ID: 113578.
https://doi.org/10.1016/j.sna.2022.113578
[2] Bag, A. and Lee, N. (2021) Recent Advancements in Development of Wearable Gas Sensors. Advanced Materials Technologies, 6, Article ID: 2000883.
https://doi.org/10.1002/admt.202000883
[3] Kou, Y., Hua, L., Chen, W., Xu, X., Song, L., Yu, S., et al. (2024) Material Design and Application Progress of Flexible Chemiresistive Gas Sensors. Journal of Materials Chemistry A, 12, 21583-21604.
https://doi.org/10.1039/d4ta02855d
[4] Majhi, S.M., Mirzaei, A., Kim, H.W., Kim, S.S. and Kim, T.W. (2021) Recent Advances in Energy-Saving Chemiresistive Gas Sensors: A Review. Nano Energy, 79, Article ID: 105369.
https://doi.org/10.1016/j.nanoen.2020.105369
[5] Zhu, L. and Zeng, W. (2017) Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sensors and Actuators A: Physical, 267, 242-261.
https://doi.org/10.1016/j.sna.2017.10.021
[6] Nikolic, M.V., Milovanovic, V., Vasiljevic, Z.Z. and Stamenkovic, Z. (2020) Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors, 20, Article 6694.
https://doi.org/10.3390/s20226694
[7] Zhou, T. and Zhang, T. (2021) Recent Progress of Nanostructured Sensing Materials from 0D to 3D: Overview of Structure-Property-Application Relationship for Gas Sensors. Small Methods, 5, Article ID: 2100515.
https://doi.org/10.1002/smtd.202100515
[8] Li, Z., Li, H., Wu, Z., Wang, M., Luo, J., Torun, H., et al. (2019) Advances in Designs and Mechanisms of Semiconducting Metal Oxide Nanostructures for High-Precision Gas Sensors Operated at Room Temperature. Materials Horizons, 6, 470-506.
https://doi.org/10.1039/c8mh01365a
[9] La Torre, G., Vitello, T., Cocchiara, R.A. and Della Rocca, C. (2023) Relationship between Formaldehyde Exposure, Respiratory Irritant Effects and Cancers: A Review of Reviews. Public Health, 218, 186-196.
https://doi.org/10.1016/j.puhe.2023.03.009
[10] Nielsen, G.D., Larsen, S.T. and Wolkoff, P. (2016) Re-evaluation of the WHO (2010) Formaldehyde Indoor Air Quality Guideline for Cancer Risk Assessment. Archives of Toxicology, 91, 35-61.
https://doi.org/10.1007/s00204-016-1733-8
[11] Mirzaei, A., Leonardi, S.G. and Neri, G. (2016) Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review. Ceramics International, 42, 15119-15141.
https://doi.org/10.1016/j.ceramint.2016.06.145
[12] Ji, H., Zeng, W. and Li, Y. (2019) Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review. Nanoscale, 11, 22664-22684.
https://doi.org/10.1039/c9nr07699a
[13] Zhang, D., Yang, Z., Yu, S., Mi, Q. and Pan, Q. (2020) Diversiform Metal Oxide-Based Hybrid Nanostructures for Gas Sensing with Versatile Prospects. Coordination Chemistry Reviews, 413, Article ID: 213272.
https://doi.org/10.1016/j.ccr.2020.213272
[14] Kumar, R., Liu, X., Zhang, J. and Kumar, M. (2020) Room-Temperature Gas Sensors under Photoactivation: From Metal Oxides to 2D Materials. Nano-Micro Letters, 12, Article No. 164.
https://doi.org/10.1007/s40820-020-00503-4
[15] Chizhov, A., Rumyantseva, M. and Gaskov, A. (2021) Light Activation of Nanocrystalline Metal Oxides for Gas Sensing: Principles, Achievements, Challenges. Nanomaterials, 11, Article 892.
https://doi.org/10.3390/nano11040892
[16] Espid, E. and Taghipour, F. (2017) Development of Highly Sensitive ZnO/In2O3 Composite Gas Sensor Activated by UV-Led. Sensors and Actuators B: Chemical, 241, 828-839.
https://doi.org/10.1016/j.snb.2016.10.129
[17] Song, Y., Yang, B., Ma, Z., Song, Y. and Sun, J. (2023) Fabrication of Sx/In2O3−x Based Microsphere for Photoexcitation Enhancing the NO2 Gas Detection Properties. Sensors and Actuators B: Chemical, 379, Article ID: 133162.
https://doi.org/10.1016/j.snb.2022.133162
[18] Skotadis, E., Mousadakos, D., Katsabrokou, K., Stathopoulos, S. and Tsoukalas, D. (2013) Flexible Polyimide Chemical Sensors Using Platinum Nanoparticles. Sensors and Actuators B: Chemical, 189, 106-112.
https://doi.org/10.1016/j.snb.2013.01.046
[19] Kim, J., Porte, Y., Ko, K.Y., Kim, H. and Myoung, J. (2017) Micropatternable Double-Faced ZnO Nanoflowers for Flexible Gas Sensor. ACS Applied Materials & Interfaces, 9, 32876-32886.
https://doi.org/10.1021/acsami.7b09251
[20] Spencer, J.A., Mock, A.L., Jacobs, A.G., Schubert, M., Zhang, Y. and Tadjer, M.J. (2022) A Review of Band Structure and Material Properties of Transparent Conducting and Semiconducting Oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO, CuO, and Sc2O3. Applied Physics Reviews, 9, Article ID: 011315.
https://doi.org/10.1063/5.0078037
[21] Liu, X., Zheng, M., Chen, G., Dang, Z. and Zha, J. (2022) High-Temperature Polyimide Dielectric Materials for Energy Storage: Theory, Design, Preparation and Properties. Energy & Environmental Science, 15, 56-81.
https://doi.org/10.1039/d1ee03186d
[22] Li, Y., Sun, G., Zhou, Y., Liu, G., Wang, J. and Han, S. (2022) Progress in Low Dielectric Polyimide Film—A Review. Progress in Organic Coatings, 172, Article ID: 107103.
https://doi.org/10.1016/j.porgcoat.2022.107103
[23] Kadiyala, A.K., Sharma, M. and Bijwe, J. (2016) Exploration of Thermoplastic Polyimide as High Temperature Adhesive and Understanding the Interfacial Chemistry Using XPS, ToF-SIMS and Raman Spectroscopy. Materials & Design, 109, 622-633.
https://doi.org/10.1016/j.matdes.2016.07.108
[24] Kato, T., Yamada, Y., Nishikawa, Y., Ishikawa, H. and Sato, S. (2021) Carbonization Mechanisms of Polyimide: Methodology to Analyze Carbon Materials with Nitrogen, Oxygen, Pentagons, and Heptagons. Carbon, 178, 58-80.
https://doi.org/10.1016/j.carbon.2021.02.090
[25] Vo, T.S. and Vo, T.T.B.C. (2022) Surface Characterization of Polyimide and Polyethylene Terephthalate Membranes toward Plasma and UV Treatments. Progress in Natural Science: Materials International, 32, 314-327.
https://doi.org/10.1016/j.pnsc.2022.03.010
[26] Korotcenkov, G., Boris, I., Cornet, A., Rodriguez, J., Cirera, A., Golovanov, V., et al. (2007) The Influence of Additives on Gas Sensing and Structural Properties of In2O3-Based Ceramics. Sensors and Actuators B: Chemical, 120, 657-664.
https://doi.org/10.1016/j.snb.2006.03.027
[27] Guo, L., Shen, X., Zhu, G. and Chen, K. (2011) Preparation and Gas-Sensing Performance of In2O3 Porous Nanoplatelets. Sensors and Actuators B: Chemical, 155, 752-758.
https://doi.org/10.1016/j.snb.2011.01.042
[28] Hafeezullah, Yamani, Z.H., Iqbal, J., Qurashi, A. and Hakeem, A. (2014) Rapid Sonochemical Synthesis of In2O3 Nanoparticles Their Doping Optical, Electrical and Hydrogen Gas Sensing Properties. Journal of Alloys and Compounds, 616, 76-80.
https://doi.org/10.1016/j.jallcom.2014.07.015
[29] Tuzluca, F.N., Yesilbag, Y.O. and Ertugrul, M. (2018) Synthesis of In2O3 Nanostructures with Different Morphologies as Potential Supercapacitor Electrode Materials. Applied Surface Science, 427, 956-964.
https://doi.org/10.1016/j.apsusc.2017.08.127
[30] Wang, X., Chen, Z., Saito, K., Tanaka, T., Nishio, M. and Guo, Q. (2017) Temperature-Dependent Raman Scattering in Cubic (InGa)2O3 Thin Films. Journal of Alloys and Compounds, 690, 287-292.
https://doi.org/10.1016/j.jallcom.2016.08.129
[31] Ni, H., Liu, J., Wang, Z. and Yang, S. (2015) A Review on Colorless and Optically Transparent Polyimide Films: Chemistry, Process and Engineering Applications. Journal of Industrial and Engineering Chemistry, 28, 16-27.
https://doi.org/10.1016/j.jiec.2015.03.013
[32] Sanaeepur, H., Ebadi Amooghin, A., Bandehali, S., Moghadassi, A., Matsuura, T. and Van der Bruggen, B. (2019) Polyimides in Membrane Gas Separation: Monomer’s Molecular Design and Structural Engineering. Progress in Polymer Science, 91, 80-125.
https://doi.org/10.1016/j.progpolymsci.2019.02.001
[33] Huang, C.C. and Yeh, C.S. (2008) Porous Cube-Like In2O3 Nanoparticles and Their Sensing Characteristics toward Ethanol. Journal of Materials Science & Technology, 24, 667-674.