木质素/聚丙烯腈复合膜的激光诱导碳化条件研究
Study on Laser-Induced Carbonization Conditions of Lignin/Polyacrylonitrile Composite Films
DOI: 10.12677/ms.2025.156142, PDF, HTML, XML,    科研立项经费支持
作者: 黄耀珍, 付慧莉*:武汉工程大学材料科学与工程学院,湖北 武汉
关键词: 木质素聚丙烯腈复合膜激光诱导碳化Lignin PAN Composite Film Laser-Induced Carbonization
摘要: 激光可引发生物质基碳源材料热解和重组,将其碳化为石墨烯或类石墨结构以制备精细图案化碳电极。本研究通过激光诱导碳化木质素/PAN复合膜,系统研究了木质素/PAN配比(1:1、1:2、1:3)、激光功率(P = 6%、7%、8%)和激光扫描速率(R = 10、25、40、55、70 mm/s)对碳层的影响。SEM、电阻热图、XRD和Raman测试结果表明,高PAN含量(PL3)、高激光功率(P ≥ 7%)和低激光扫描速率(R ≤ 25 mm/s)可制备致密小孔径碳层,且其石墨化程度较高,导电性较好;而低PAN含量(PL1、PL2)、低激光功率(P ≤ 6%)和高激光扫描速率(R ≥ 40 mm/s)可制备疏松、孔径分布宽碳层,且其石墨化程度较低,导电性较差。本研究为制备可持续图案化碳电极提供了定制化方案和新思路。
Abstract: Laser irradiation drives the pyrolysis and structural reorganization of biomass based carbon precursor materials, converting them into graphene or graphite-like architectures to enable the fabrication of fine patterned carbon electrodes. This study investigated the effects of lignin/PAN ratios (1:1, 1:2, 1:3), laser power (P = 6%, 7%, 8%), and laser scanning rates (R = 10, 25, 40, 55, 70 mm/s) on the carbon layers in carbonized lignin/PAN composite films. SEM, resistance heatmaps, XRD and Raman spectra demonstrated that dense carbon layers with smaller pores, higher graphitization and superior conductivity were produced with higher PAN content (PL3), higher laser power (P ≥ 7%) and lower scanning rates (R ≤ 25 mm/s). Conversely, loose carbon layers with wide pore size distribution, lower graphitization and poor conductivity were produced with lower PAN content (PL1, PL2), lower laser power (P ≤ 6%), and higher scanning rates (R ≥ 40 mm/s). This work proposes a customizable strategy for fabricating sustainable patterned carbon electrodes tailored to diverse requirements.
文章引用:黄耀珍, 付慧莉. 木质素/聚丙烯腈复合膜的激光诱导碳化条件研究[J]. 材料科学, 2025, 15(6): 1340-1349. https://doi.org/10.12677/ms.2025.156142

1. 引言

当今全球能源与环境问题形势严峻,开发绿色、高性能的电子器件已成为材料科学领域的重要研究方向之一[1]。碳材料因其优异的导电性、化学稳定性及可调控的微观结构,在传感器[2] [3]、超级电容器[4] [5]和柔性电子[6]等器件的电极材料中展现出不可替代的作用。

聚丙烯腈(PAN)作为碳纤维的主流前驱体,凭借其高碳化率(>50%)及优异的机械性能,在电极材料领域占据重要地位[7] [8]。然而PAN的生产高度依赖石化资源,制约了其规模化应用的可持续性。生物质衍生碳材料的开发为电子器件的可持续发展提供了新思路。其中木质素作为自然界储量第二大的可再生芳香族聚合物,其高碳含量(约60%)与丰富的官能团特性,使其成为极具潜力的绿色碳前驱体[9]

电极作为电子器件的核心组件,其制备技术直接影响电子器件的性能。传统光刻[10]、化学蚀刻[11]等工艺虽精度高,但存在步骤繁琐、柔性兼容性差等缺陷。激光直写技术以其无掩模、高精度及三维加工的优势,成为新型电极制备的关键技术,尤其在复杂结构碳电极的图案化制备中表现突出[12] [13]。激光直写可通过激光能量引发材料的热解和重组,将有机材料的局部诱导碳化为石墨烯或类石墨结构,形成高度有序的导电网络[14]。生物质基碳材料与激光诱导碳化的融合,将为电子器件的可持续发展和功能化集成带来突破性进展。

本研究采用激光直写技术激光诱导碳化木质素/PAN复合膜,制备了具有优良导电性能的碳层,并探讨了木质素/PAN配比、激光功率和激光扫描速率等因素对碳层结构和导电性能的影响。

2. 实验部分

2.1. 实验材料

聚丙烯腈(PAN) (150,000 g/mol)购买于上海麦克林生化科技股份有限公司;甲酸木质素购买于圣泉集团股份有限公司;多壁碳纳米管DMF分散液(型号JCDCNDM-3,碳纳米管固含量2.98 Wt%)购买于佳材科技有限公司;聚氨酯(TPU)粒料(型号Elastollan1170A)购买于德国巴斯夫有限公司;N,N-二甲基甲酰胺(DMF) (分析纯)购买于国药集团化学有限公司。

2.2. 木质素/PAN复合膜的制备

将质量比1:1、1:2、1:3的木质素与聚丙烯腈在DMF中80℃水浴溶解5小时,配制木质素/PAN的10%DMF混合溶液。将溶液倒入玻璃培养皿中室温通风自然挥发成膜,并在真空干燥箱中60℃干燥至恒重。将干燥膜在100℃下进行热压,自然冷却至室温得到木质素/PAN复合膜(PL)。木质素与PAN质量比为 1:1、1:2、1:3的复合膜分别命名为:PL1、PL2和PL3。

2.3. 木质素/PAN复合膜碳层制备

采用10.6 μm CO2激光雕刻机(C-3020, 45 W, 1000PPI)对木质素/PAN复合膜进行激光诱导碳化。通过调控激光扫描速率(R = 10、25、40、55、70 mm/s)和相对激光功率(P = 5%、6%、7%、8%)分别制备1 × 1 cm2方块碳层。下文中PLxPyRz表示通过激光功率y%、扫描速率z mm/s激光碳化的PLx复合膜碳层。木质素/PAN复合膜的制备及激光诱导碳化流程图如图1所示。

Figure 1. Preparation and laser-induced carbonization process of Lignin/PAN composite film

1. 木质素/PAN复合膜的制备及激光诱导碳化流程图

2.4. 材料表征

采用傅里叶变换红外光谱仪(Nicolet 6700 FT-IR)对木质素/PAN复合膜的官能团结构进行表征。采用扫描电子显微镜(SEM, Gemini SEM 300)表征复合膜及碳层的表面形貌结构。采用四探针测试仪(RTS-2)对木质素/PAN方块碳层进行电阻阻值测试。采用X射线衍射仪(XRD,D8 ADVANCE)表征木质素/PAN碳层的晶体结构,扫描速率为5˚/min,扫描范围为10˚~80˚。采用激光共焦显微拉曼光谱仪(Raman, DXR3xi)对木质素/PAN碳层的石墨化程度进行表征,测试条件为:入射激光波长532 nm,扫描范围100~3600 cm1

3. 结果与讨论

3.1. 红外谱图分析

木质素、PL1以及PAN的红外谱图如图2所示。木质素特征峰中3431 cm1是酚羟基O-H的伸缩振动峰;1722.1 cm1是分子中C=O的伸缩振动峰,1516.7 cm1、1600.9 cm1是芳香环的C=C伸缩振动峰。PAN特征峰中2243.8 cm1是氰基(C≡N)的伸缩振动峰,为聚丙烯腈的主要特征峰之一。与PAN相比,PL1中该处的特征峰为2237 cm1,发生了明显偏移,表明PL1中PAN的氰基与木质素发生了相互作用。在PL1中木质素3367.3 cm1处酚羟基O-H峰由尖锐峰变为宽峰,与木质素相比发生了明显的偏移,木质素的C=O伸缩振动峰为1711.8 cm1,C=C伸缩振动峰为1590.6 cm1、1510.5 cm1,也发生了明显位移,表明在与PAN混合溶液浇铸成膜之后,木质素与PAN发生了显著的分子间氢键作用,形成了木质素/PAN复合材料。

Figure 2. Infrared spectra of lignin, PL1 and PAN

2. 木质素、PL1和PAN的红外谱图

3.2. SEM表面形貌分析

图3(a)~(c)分别为木质素/PAN复合膜PL1、PL2和PL3的表面形貌扫描电镜图。由图可见,三种复合膜表面均平滑致密,膜中木质素和聚丙烯腈混合均匀,未观察到明显的相分离现象,表明木质素与聚丙烯腈相容性良好。图3(d)~(f)分别为PL1、PL2和PL3复合膜在8%激光功率和25 mm/s激光扫描速率下制备的1 × 1 cm2方块碳层表面形貌。三种碳层的表面都表现出不同程度的褶皱和孔隙,其中PL2表面更加疏松,孔径分布更宽;而PL3表面结构更加致密,孔径更小更均匀。

Figure 3. SEM of the surfaces of Lignin/PAN composite films and laser-induced carbonized layers: (a) PL1, (b) PL2, (c) PL3, (d) PL1P8R25, (e) PL2P8R25, (f) PL3P8R25

3. 木质素/PAN复合膜及激光诱导碳层表面SEM图:(a) PL1,(b) PL2,(c) PL3,(d) PL1P8R25,(e) PL2P8R25,(f) PL3P8R25

图4图5展示了不同激光碳化参数下PL3碳层表面的SEM图像。通过调控激光功率(P = 6%、7%、8%)和扫描速率(R = 10、25、40、55、70 mm/s),研究了两种参数的变化对PL3碳层表面形貌的影响。

Figure 4. SEM of the carbonized PL3 surfaces at the same laser power (P = 8%) with different scanning rates (R = 10, 25, 40, 55, 70 mm/s): (a) PL3P8R10, (b) PL3P8R25, (c) PL3P8R40, (d) PL3P8R55, (e) PL3P8R70

4. 相同激光功率(P = 8%)不同激光扫描速率(R = 10、25、40、55、70 mm/s)下碳化的PL3碳层表面SEM图:(a) PL3P8R10,(b) PL3P8R25,(c) PL3P8R40,(d) PL3P8R55,(e) PL3P8R70

图4为在相同激光功率(P = 8%)、不同扫描速率(R = 10、25、40、55、70 mm/s)下碳化的PL3碳层的表面形貌。在8%激光功率下,激光扫描速率越低,碳层越完整和致密,碳层孔径越小;扫描速率越高,碳层越疏松,碳层孔径越大、分布越宽。这可能是由于在较低扫描速率下,允许更多的激光能量作用于材料,从而使材料碳化更完全、碳层更致密[15] [16]

Figure 5. SEM of the carbonized PL3 surfaces at different laser power (P = 6%, 7%, 8%) with the same scanning rates (R = 25 mm/s): (a) PL3P6R25, (b) PL3P7R25, (c) PL3P8R25

5. 不同激光功率(P = 6%、7%、8%)相同激光扫描速率(R = 25 mm/s)下碳化的PL3碳层表面SEM图:(a) PL3P6R25,(b) PL3P7R25,(c) PL3P8R25

图5为不同激光功率(P = 6%、7%、8%)相同激光扫描速率(R = 25 mm/s)下PL3碳层表面的SEM图。随着激光功率从6%增加到8%,碳层表面形貌由凹凸不平和孔径分布较宽,变得致密光滑和孔径分布较窄,表明在25 mm/s激光扫描速率下,较低激光功率易形成粗糙和孔径大小不一的碳层结构,而较高激光功率易形成致密小孔的碳层结构。

作为电极材料,疏松多孔的碳层结构有利于增强电极的柔韧性,提高电子器件的抗疲劳性,还有助于与电解液充分接触,有效提高电容器的效率[17];而致密的碳层结构有利于增强电极的力学强度,降低电极初始电阻,有效提高电子器件的稳定性和灵敏度[18]。因此,通过调控激光功率和激光扫描速率等激光碳化制备参数,可制备具有不同性能适合不同需求的电极材料。

3.3. 电阻热图分析

图6为PL1、PL2和PL3复合膜碳层的可视化电阻热图。通过电阻热图可以了解不同激光碳化制备参数对碳层导电性的影响。从图中可知,在不同的激光功率和扫描速率下,PL1、PL2和PL3碳层均表现出良好的导电性(方块电阻值范围为3.21~263.35 Ω/sq)。在相同激光扫描速率下,随着激光功率的增加,复合膜碳层方块电阻值逐渐减小,导电性逐渐增强;在相同激光功率下,随着激光扫描速率的减小,复合膜碳层方块电阻值也逐渐减小,导电性逐渐增强。值得注意的是,当激光功率过低(如P = 5%)且激光扫描速率过快时(R = 70 mm/s),复合膜的碳化效果不佳,碳层方块电阻值过高,导电性较差;而当激光功率过高(如P = 10%)且激光扫描速率过慢时(R = 10 mm/s)时,复合膜上激光能量密度过高,碳层被烧毁。此外,纯PAN膜在激光功率为8%、激光扫描速率为25 mm/s下碳化碳层的方块电阻值为85 Ω/sq。与其相比,木质素/PAN复合膜在该条件下碳化碳层的方块电阻值为7.14~7.64 Ω/sq,远低于PAN膜,较大程度改善了该制备方法下PAN膜碳层的导电性;而木质素本身因为其三维网状分子结构及较宽的分子量分布,往往难以单独成膜。因此用木质素与PAN复合成膜,联合激光诱导碳化的方式,为制备导电性可调控的碳基电极材料提供了新思路和有效途径。

(a) (b)

(c)

Figure 6. The visual resistance heatmaps of laser-induced carbonized: (a) PL1, (b) PL2 and (c) PL3 (N.E.: Invalid;the numerical value in the color squares represent the sheet resistance values of corresponding carbonized layers)

6. 复合膜碳层可视化电阻热图:(a) PL1,(b) PL2,(c) PL3 (N.E.:无效;颜色块中的数值为对应碳层方块电阻值)

3.4. XRD和拉曼谱图分析

图7(a)图7(b)分别为P = 8%,R = 25 mm/s条件下碳化的PL1、PL2和PL3碳层的XRD谱图和拉曼光谱。图7(a) XRD谱图中的(002)峰和(100)峰是石墨化碳的晶面衍射特征峰。其中002峰与碳的石墨化程度直接相关,反映碳材料中石墨微晶层面的堆叠情况。尖锐峰表明层状结构有序性高,较窄的半高宽(FWHM)表明具有更好的结晶度和更高的石墨化程度[19]。石墨结构具有良好的电子传导能力,电子可以在层间相对自由地移动,因此高石墨化程度的碳材料往往具有较好的导电性。图7(b)拉曼光谱中的D 峰与无序碳相关,G峰与石墨化有序结构对应,ID/IG的值可以用来表征碳材料的无序程度。无序程度越低,石墨化程度越高,一般材料的导电性越好。

(a) (b)

Figure 7. XRD (a) and Raman (b) spectra of laser-induced carbonized PL1, PL2 and PL3 at laser power of 8% with scanning rate of 25 mm/s

7. 在P = 8%,R = 25 mm/s条件下碳化的PL1、PL2和PL3碳层的(a) XRD谱图和(b) 拉曼光谱

图7(a)可知,在P = 8%,R = 25 mm/s碳化条件下,PL1、PL2和PL3碳层均表现出明显的(002)峰和(100)峰,表明该条件下碳化的三种碳层均表现出较高的石墨化程度。随着PAN含量的增加,002峰的半高宽FWHM明显逐渐变窄,表明石墨化程度逐渐提高,晶体结构更加有序。从材料本身组成来看,PAN分子排列和连接方式较为规则,碳结构相对更加有序,而木质素是无定形的三维网状结构,分子排列和连接较为复杂,碳结构有序性较差,有序的碳结构在高能量密度下能够更容易重新排列成石墨晶体结构[20]。由图7(b)可知,随着PAN含量增加,PL1、PL2和PL3碳层的ID/IG比值分别为0.93,0.83和0.75,依次降低,2D峰越来越明显,意味着石墨化程度逐渐提高,无序碳结构依次减少[21] [22]

图8为在P = 6%、7%、8%,R = 25 mm/s条件下碳化的PL3碳层的XRD谱图和拉曼光谱。图8(a)中,激光功率越大,(002)峰半峰宽越窄,表明碳材料的石墨化程度越高。激光功率增大可促进碳材料内部晶体的规整排列和完整生长,导致晶粒尺寸增大[23]。依据谢乐公式(B = Kλ/Lcosθ),较大的晶粒尺寸会导致XRD峰的半峰宽变窄。图8(b)中,随着激光功率增大,ID/IG的值依次减小,表明材料的无序碳结构减少,石墨化程度提高。较高的激光能量密度可使无定形碳向有序石墨结构转变,从而降低了无序碳相关的D峰强度,同时石墨结构对应的G峰强度相对增加[24]

图9为在相同激光功率P = 8%,不同扫描速率(R = 10、25、40、55、70 mm/s)下碳化PL3碳层的XRD谱图和拉曼光谱。在较高激光功率下(P = 8%),当激光光束以不同速率对材料表面进行扫描碳化时,材料在短时间内受到较大能量冲击,这种快速的能量作用使得材料没有足够的时间形成无序结构,抑制了晶

(a) (b)

Figure 8. XRD (a) and Raman (b) spectra of laser-induced carbonized PL3 at different laser powers (P = 6%, 7%, 8%) with scanning rate of 25 mm/s

8. 在P = 6%、7%、8%,R = 25 mm/s条件下激光诱导碳化PL3的(a) XRD谱图和(b) 拉曼光谱

(a) (b)

Figure 9. XRD (a) and Raman (b) spectra of laser-induced carbonized PL3 at laser power of 8% with different scanning rates (R = 10, 25, 40, 55, 70 mm/s)

9. 在P = 8%,不同扫描速率(R = 10、25、40、55、70 mm/s)下碳化的PL3碳层的(a) XRD谱图和(b) 拉曼光谱

体生长过程中缺陷的形成,使得晶体结构更加有序[25] [26],从而使得晶粒尺寸较大,(002)半峰宽较窄。激光能量的快速作用能够使材料发生碳化,如PAN在高能量下迅速发生环化[27]等反应形成石墨化有序结构,但当激光扫描速率过快时(R ≥ 40 mm/s),材料表面的激光能量密度过低,可能导致材料石墨化不完全,材料整体的石墨化程度降低。图6电阻热图中碳层方阻值随扫描速率加快而明显增大,也从侧面验证了这一点。因此图9(a)中在较高激光扫描速率(R ≥ 40 mm/s)下,2θ = 16.5˚附近出现了与PAN分子链间距相关的尖锐(100)强衍射峰。图9(b)中,在不同激光扫描速率下,碳层拉曼光谱均出现了明显且尖锐的G峰,表明复合膜石墨化程度较高。但由于高扫描速率下材料石墨化不完全,与低速率(R ≤ 25 mm/s)相比,D峰逐渐变宽,峰面积逐渐变大。

4. 结论

本研究用溶液浇铸和热压成膜的方法制备了PL1、PL2和PL3系列木质素/PAN复合膜,通过激光诱导碳化的方式制备了复合膜碳层,并系统研究了木质素/PAN配比(1:1、1:2、1:3)、激光功率(P = 6%、7%、8%)和激光扫描速率(R = 10、25、40、55、70 mm/s)等因素对复合膜碳层的影响。SEM、电阻热图、XRD和Raman等测试结果表明,PL1、PL2和PL3系列木质素/PAN复合膜均能够通过激光诱导碳化的方式制备碳层,三种碳层的表面都表现出不同程度的褶皱和孔隙。其中较高的PAN含量(PL3)、较高的激光功率(P ≥ 7%)和较慢的激光扫描速率(R ≤ 25 mm/s),可制备表面结构更加致密、孔径更小更均匀的碳层,且碳层的石墨化程度较高,导电性较好;而较低的PAN含量、较低的激光功率和较快的激光扫描速率,可制备表面更加疏松,孔径分布更宽的碳层,且碳层的石墨化程度较低,导电性较差。本研究为激光诱导碳化制备木质素/PAN复合碳材料提供了实验基础,为制备适合不同需求的复杂碳基电极提供了定制化方案和新思路。

基金项目

国家自然科学基金(51603157);湖北省自然科学基金(2016CFB296);武汉工程大学教学研究项目(X2022021)。

NOTES

*通讯作者。

参考文献

[1] Lan, L., Ping, J., Xiong, J. and Ying, Y. (2022) Sustainable Natural Bio-Origin Materials for Future Flexible Devices. Advanced Science, 9, Article 2200560.
https://doi.org/10.1002/advs.202200560
[2] Eivazzadeh-Keihan, R., Bahojb Noruzi, E., Chidar, E., Jafari, M., Davoodi, F., Kashtiaray, A., et al. (2022) Applications of Carbon-Based Conductive Nanomaterials in Biosensors. Chemical Engineering Journal, 442, Article 136183.
https://doi.org/10.1016/j.cej.2022.136183
[3] Jian, M., Wang, C., Wang, Q., Wang, H., Xia, K., Yin, Z., et al. (2017) Advanced Carbon Materials for Flexible and Wearable Sensors. Science China Materials, 60, 1026-1062.
https://doi.org/10.1007/s40843-017-9077-x
[4] Li, Y., Zhao, F., Liu, L., Xu, Z., Xie, G., Li, J., et al. (2022) Carbon Nanomaterials-Enabled High-Performance Supercapacitors: A Review. Advanced Energy and Sustainability Research, 4, Article 2200152.
https://doi.org/10.1002/aesr.202200152
[5] Xie, P., Yuan, W., Liu, X., Peng, Y., Yin, Y., Li, Y., et al. (2021) Advanced Carbon Nanomaterials for State-of-the-Art Flexible Supercapacitors. Energy Storage Materials, 36, 56-76.
https://doi.org/10.1016/j.ensm.2020.12.011
[6] Kumar, V., Parvin, N., Park, S., Joo, S.W. and Mandal, T.K. (2024) Review on Cutting-Edge Innovations in Carbon Nanomaterials Reinforced Silicone Rubber Composites for Flexible Electronics and Healthcare Devices. ACS Applied Polymer Materials, 6, 14235-14259.
https://doi.org/10.1021/acsapm.4c02511
[7] Khayyam, H., Jazar, R.N., Nunna, S., Golkarnarenji, G., Badii, K., Fakhrhoseini, S.M., et al. (2020) PAN Precursor Fabrication, Applications and Thermal Stabilization Process in Carbon Fiber Production: Experimental and Mathematical Modelling. Progress in Materials Science, 107, Article 100575.
https://doi.org/10.1016/j.pmatsci.2019.100575
[8] Huang, Y., Shi, L., Chen, X., Zhu, L., Mao, X., Xu, T., et al. (2023) A Novel Cost-Effective Flow-Through Electrode Based on Polyacrylonitrile Carbon Fiber for Enhancing Micropollutant Degradation via Electro-Fenton. Chemical Engineering Journal, 477, Article 147130.
https://doi.org/10.1016/j.cej.2023.147130
[9] Yang, Y., Guan, Y., Li, C., Xu, T., Dai, L., Xu, J., et al. (2024) Application and Carbon Footprint Evaluation of Lignin-Based Composite Materials. Advanced Composites and Hybrid Materials, 7, Article No. 6.
https://doi.org/10.1007/s42114-024-00873-y
[10] Li, Y., Huang, L., Zhong, M., Wei, Z. and Li, J. (2016) An Efficient and Low-Cost Photolithographic-Pattern-Transfer Technique to Fabricate Electrode Arrays for Micro‐/Nanoelectronics. Advanced Materials Technologies, 1, Article 1600001.
https://doi.org/10.1002/admt.201600001
[11] Philipsen, H., Pasquali, M., Geraerts, N. and Armini, S. (2025) Wet-Chemical Etching of Metals for Advanced Semiconductor Technology Nodes: Cu Recess Etching and Electrochemistry of Nanopatterned Metal Electrodes. Advanced Engineering Materials, 27, Article 2402250.
https://doi.org/10.1002/adem.202402250
[12] Vo, T.S., Jeon, B., Nguyen, V.P.T., Hoang, T., Lwin, K.M., Han, S., et al. (2024) A Comprehensive Review of Laser Processing-Assisted 2D Functional Materials and Their Specific Applications. Materials Today Physics, 47, Article 101536.
https://doi.org/10.1016/j.mtphys.2024.101536
[13] Huang, Y., Yang, R. and Li, M.G. (2024) Recent Advances in Laser Manufacturing: Multifunctional Integrative Sensing Systems for Human Health and Gas Monitoring. Advanced Functional Materials, 34, Article 2407503.
https://doi.org/10.1002/adfm.202407503
[14] Ye, X., Yang, Z., Zheng, X., Qiang, H., Wei, M., Li, Y., et al. (2024) A Review on the Laser-Induced Synthesis of Graphene and Its Applications in Sensors. Journal of Materials Science, 59, 11644-11668.
https://doi.org/10.1007/s10853-024-09883-z
[15] Kuo, H.H., Lin, J.H.C. and Ju, C.P. (2005) Effect of Carbonization Rate on the Properties of a Pan/Phenolic-Based Carbon/Carbon Composite. Carbon, 43, 229-239.
https://doi.org/10.1016/j.carbon.2004.08.024
[16] Xie, L., Chen, X., Yan, H., Xie, H. and Lin, Z. (2020) Experimental Research on the Technical Parameters of Laser Engraving. Journal of Physics: Conference Series, 1646, Article 012091.
https://doi.org/10.1088/1742-6596/1646/1/012091
[17] Lee, S., Lee, H. and Kim, K. (2022) Micromachined Dimples on Carbon Electrode for Enhancing Electrochemical Reaction. Energy Conversion and Management, 255, Article 115320.
https://doi.org/10.1016/j.enconman.2022.115320
[18] Nikonov, A., Pavzderin, N. and Khrustov, V. (2022) Dense Electrode Layers-Supported Microtubular Oxygen Pump. Membranes, 12, Article 1114.
https://doi.org/10.3390/membranes12111114
[19] Zhang, K., Zou, A., Wang, L., Cheng, Y., Liu, C. and Li, W. (2022) Morphological Characterization of the Microcrystalline Structure of Tectonic Coal and Its Intrinsic Connection with Ultra-Micropore Evolution. Energy & Fuels, 36, 1482-1494.
https://doi.org/10.1021/acs.energyfuels.1c03950
[20] Zhai, P., Liu, J., Zeng, J., Duan, J., Xu, L., Yao, H., et al. (2016) Evidence for Re-Crystallization Process in the Irradiated Graphite with Heavy Ions Obtained by Raman Spectroscopy. Carbon, 101, 22-27.
https://doi.org/10.1016/j.carbon.2016.01.076
[21] Wang, Y., Zhang, J., Zang, J., Ge, E. and Huang, H. (2011) Etching and Cutting of Multi-Walled Carbon Nanotubes in Molten Nitrate. Corrosion Science, 53, 3764-3770.
https://doi.org/10.1016/j.corsci.2011.07.025
[22] Samoilov, V.M., Verbets, D.B., Bubnenkov, I.A., Steparyova, N.N., Nikolaeva, A.V., Danilov, E.A., et al. (2018) Influence of Graphitization Conditions at 3000°C on Structural and Mechanical Properties of High-Modulus Polyacrylonitrile-Based Carbon Fibers. Inorganic Materials: Applied Research, 9, 890-899.
https://doi.org/10.1134/s2075113318050258
[23] Yang, H., Meng, L., Luo, S. and Wang, Z. (2020) Microstructural Evolution and Mechanical Performances of Selective Laser Melting Inconel 718 from Low to High Laser Power. Journal of Alloys and Compounds, 828, Article 154473.
https://doi.org/10.1016/j.jallcom.2020.154473
[24] Cheng, N., Pan, J., Shi, M., Hou, Q. and Han, Y. (2022) Using Raman Spectroscopy to Evaluate Coal Maturity: The Problem. Fuel, 312, Article 122811.
https://doi.org/10.1016/j.fuel.2021.122811
[25] Thomann, C.A., Wittrock, A., Wittig, A., Lopes Dias, N.F., Stangier, D., Tillmann, W., et al. (2023) Tuning of Solid-To-Solid Structural Transitions in Amorphous Carbon Films by Optical Pumping and Chemical Modification. APL Materials, 11, Article 031106.
https://doi.org/10.1063/5.0138362
[26] Peng, H., Zhou, C., Zhao, L., Jin, Z., Zhang, B., Chen, B., et al. (2005) Effect of the Laser Power Density on the Properties and Structures of the Diamond-Like Carbon Films Deposited by Pulsed Laser Ablation of Graphite. Acta Physica Sinica, 54, 4294-4299.
https://doi.org/10.7498/aps.54.4294
[27] Fu, Z., Liu, B., Liu, Y., Li, B. and Zhang, H. (2018) Detailed Cyclization Pathways Identification of Polyacrylonitrile and Poly(Acrylonitrile-co-Itaconic Acid) by in Situ FTIR and Two-Dimensional Correlation Analysis. Industrial & Engineering Chemistry Research, 57, 8348-8359.
https://doi.org/10.1021/acs.iecr.8b01162