[1]
|
Lohmann, P., Galldiks, N., Kocher, M., Heinzel, A., Filss, C.P., Stegmayr, C., et al. (2021) Radiomics in Neuro-Oncology: Basics, Workflow, and Applications. Methods, 188, 112-121. https://doi.org/10.1016/j.ymeth.2020.06.003
|
[2]
|
Kocher, M., Ruge, M.I., Galldiks, N. and Lohmann, P. (2020) Applications of Radiomics and Machine Learning for Radiotherapy of Malignant Brain Tumors. Strahlentherapie und Onkologie, 196, 856-867. https://doi.org/10.1007/s00066-020-01626-8
|
[3]
|
Zhou, M., Scott, J., Chaudhury, B., Hall, L., Goldgof, D., Yeom, K.W., et al. (2017) Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. American Journal of Neuroradiology, 39, 208-216. https://doi.org/10.3174/ajnr.a5391
|
[4]
|
Sun, Q., Chen, Y., Liang, C., Zhao, Y., Lv, X., Zou, Y., et al. (2021) Biologic Pathways Underlying Prognostic Radiomics Phenotypes from Paired MRI and RNA Sequencing in Glioblastoma. Radiology, 301, 654-663. https://doi.org/10.1148/radiol.2021203281
|
[5]
|
Xia, T., Zhao, B., Li, B., Lei, Y., Song, Y., Wang, Y., et al. (2023) MRI‐Based Radiomics and Deep Learning in Biological Characteristics and Prognosis of Hepatocellular Carcinoma: Opportunities and Challenges. Journal of Magnetic Resonance Imaging, 59, 767-783. https://doi.org/10.1002/jmri.28982
|
[6]
|
Qi, Y., Su, G., You, C., Zhang, X., Xiao, Y., Jiang, Y., et al. (2024) Radiomics in Breast Cancer: Current Advances and Future Directions. Cell Reports Medicine, 5, Article ID: 101719. https://doi.org/10.1016/j.xcrm.2024.101719
|
[7]
|
Chen, M., Copley, S.J., Viola, P., Lu, H. and Aboagye, E.O. (2023) Radiomics and Artificial Intelligence for Precision Medicine in Lung Cancer Treatment. Seminars in Cancer Biology, 93, 97-113. https://doi.org/10.1016/j.semcancer.2023.05.004
|
[8]
|
Monti, S. (2022) Precision Medicine in Radiomics and Radiogenomics. Journal of Personalized Medicine, 12, Article 1806. https://doi.org/10.3390/jpm12111806
|
[9]
|
Fajemisin, J.A., Gonzalez, G., Rosenberg, S.A., Ullah, G., Redler, G., Latifi, K., et al. (2024) Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction. Tomography, 10, 1439-1454. https://doi.org/10.3390/tomography10090107
|
[10]
|
Liu, L., Zhang, H., Rekik, I., Chen, X., Wang, Q. and Shen, D. (2016) Outcome Prediction for Patient with High-Grade Gliomas from Brain Functional and Structural Networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G. and Wells, W., Eds., Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016., Springer, 26-34. https://doi.org/10.1007/978-3-319-46723-8_4
|
[11]
|
Fathi Kazerooni, A., Bagley, S.J., Akbari, H., Saxena, S., Bagheri, S., Guo, J., et al. (2021) Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine. Cancers, 13, Article 5921. https://doi.org/10.3390/cancers13235921
|
[12]
|
Wang, S., Xiao, F., Sun, W., Yang, C., Ma, C., Huang, Y., et al. (2022) Radiomics Analysis Based on Magnetic Resonance Imaging for Preoperative Overall Survival Prediction in Isocitrate Dehydrogenase Wild-Type Glioblastoma. Frontiers in Neuroscience, 15, Article 791776. https://doi.org/10.3389/fnins.2021.791776
|
[13]
|
Lao, J., Chen, Y., Li, Z., Li, Q., Zhang, J., Liu, J., et al. (2017) A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme. Scientific Reports, 7, Article No. 10353. https://doi.org/10.1038/s41598-017-10649-8
|
[14]
|
Choi, Y., Ahn, K., Nam, Y., Jang, J., Shin, N., Choi, H.S., et al. (2019) Analysis of Heterogeneity of Peritumoral T2 Hyperintensity in Patients with Pretreatment Glioblastoma: Prognostic Value of MRI-Based Radiomics. European Journal of Radiology, 120, Article ID: 108642. https://doi.org/10.1016/j.ejrad.2019.108642
|
[15]
|
Bathla, G., Soni, N., Ward, C., Pillenahalli Maheshwarappa, R., Agarwal, A. and Priya, S. (2023) Clinical and Magnetic Resonance Imaging Radiomics-Based Survival Prediction in Glioblastoma Using Multiparametric Magnetic Resonance Imaging. Journal of Computer Assisted Tomography, 47, 919-923. https://doi.org/10.1097/rct.0000000000001493
|
[16]
|
Tsougos, I., Vamvakas, A., Kappas, C., Fezoulidis, I. and Vassiou, K. (2018) Application of Radiomics and Decision Support Systems for Breast MR Differential Diagnosis. Computational and Mathematical Methods in Medicine, 2018, Article ID: 7417126. https://doi.org/10.1155/2018/7417126
|
[17]
|
Bortolotto, C., Lancia, A., Stelitano, C., Montesano, M., Merizzoli, E., Agustoni, F., et al. (2020) Radiomics Features as Predictive and Prognostic Biomarkers in NSCLC. Expert Review of Anticancer Therapy, 21, 257-266. https://doi.org/10.1080/14737140.2021.1852935
|
[18]
|
Liao, C., Lee, C., Yang, H., Chen, C., Chung, W., Wu, H., et al. (2021) Enhancement of Radiosurgical Treatment Outcome Prediction Using MRI Radiomics in Patients with Non-Small Cell Lung Cancer Brain Metastases. Cancers, 13, Article 4030. https://doi.org/10.3390/cancers13164030
|
[19]
|
Forouzannezhad, P., Maes, D., Hippe, D.S., Thammasorn, P., Iranzad, R., Han, J., et al. (2022) Multitask Learning Radiomics on Longitudinal Imaging to Predict Survival Outcomes Following Risk-Adaptive Chemoradiation for Non-Small Cell Lung Cancer. Cancers, 14, Article 1228. https://doi.org/10.3390/cancers14051228
|
[20]
|
Chen, W., Qiao, X., Yin, S., Zhang, X. and Xu, X. (2022) Integrating Radiomics with Genomics for Non-Small Cell Lung Cancer Survival Analysis. Journal of Oncology, 2022, Article ID: 5131170. https://doi.org/10.1155/2022/5131170
|
[21]
|
Liao, C., Lee, C., Yang, H., Chen, C., Chung, W., Wu, H., et al. (2023) Predicting Survival after Radiosurgery in Patients with Lung Cancer Brain Metastases Using Deep Learning of Radiomics and EGFR Status. Physical and Engineering Sciences in Medicine, 46, 585-596. https://doi.org/10.1007/s13246-023-01234-7
|
[22]
|
Hao, D., Li, Q., Feng, Q., Qi, L., Liu, X., Arefan, D., et al. (2022) Identifying Prognostic Markers from Clinical, Radiomics, and Deep Learning Imaging Features for Gastric Cancer Survival Prediction. Frontiers in Oncology, 11, Article 725889. https://doi.org/10.3389/fonc.2021.725889
|
[23]
|
Guo, W., Li, H., Zhu, Y., Lan, L., Yang, S., Drukker, K., et al. (2015) Prediction of Clinical Phenotypes in Invasive Breast Carcinomas from the Integration of Radiomics and Genomics Data. Journal of Medical Imaging, 2, Article ID: 041007. https://doi.org/10.1117/1.jmi.2.4.041007
|
[24]
|
Chu, Y., Li, J., Zeng, Z., Huang, B., Zhao, J., Liu, Q., et al. (2020) A Novel Model Based on CXCL8-Derived Radiomics for Prognosis Prediction in Colorectal Cancer. Frontiers in Oncology, 10, Article 575422. https://doi.org/10.3389/fonc.2020.575422
|
[25]
|
Zhang, Z., Chen, J., Jiang, H., Wei, Y., Zhang, X., Cao, L., et al. (2020) Gadoxetic Acid-Enhanced MRI Radiomics Signature: Prediction of Clinical Outcome in Hepatocellular Carcinoma after Surgical Resection. Annals of Translational Medicine, 8, 870-870. https://doi.org/10.21037/atm-20-3041
|
[26]
|
Parr, E., Du, Q., Zhang, C., Lin, C., Kamal, A., McAlister, J., et al. (2020) Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy. Cancers, 12, Article 1051. https://doi.org/10.3390/cancers12041051
|
[27]
|
Horvat, N., Bates, D.D.B. and Petkovska, I. (2019) Novel Imaging Techniques of Rectal Cancer: What Do Radiomics and Radiogenomics Have to Offer? A Literature Review. Abdominal Radiology, 44, 3764-3774. https://doi.org/10.1007/s00261-019-02042-y
|
[28]
|
Marti-Bonmati, L., Cerdá-Alberich, L., Pérez-Girbés, A., Díaz Beveridge, R., Montalvá Orón, E., Pérez Rojas, J., et al. (2022) Pancreatic Cancer, Radiomics and Artificial Intelligence. The British Journal of Radiology, 95, Article ID: 20220072. https://doi.org/10.1259/bjr.20220072
|
[29]
|
Shahzadi, I., Zwanenburg, A., Lattermann, A., Linge, A., Baldus, C., Peeken, J.C., et al. (2022) Analysis of MRI and CT-Based Radiomics Features for Personalized Treatment in Locally Advanced Rectal Cancer and External Validation of Published Radiomics Models. Scientific Reports, 12, Article No. 10192. https://doi.org/10.1038/s41598-022-13967-8
|
[30]
|
Nie, K., Hu, P., Zheng, J., Zhang, Y., Yang, P., Jabbour, S.K., et al. (2022) Incremental Value of Radiomics in 5-Year Overall Survival Prediction for Stage II-III Rectal Cancer. Frontiers in Oncology, 12, Article 779030. https://doi.org/10.3389/fonc.2022.779030
|
[31]
|
Hao, D., Li, Q., Feng, Q., Qi, L., Liu, X., Arefan, D., et al. (2022) Survivalcnn: A Deep Learning-Based Method for Gastric Cancer Survival Prediction Using Radiological Imaging Data and Clinicopathological Variables. Artificial Intelligence in Medicine, 134, Article ID: 102424. https://doi.org/10.1016/j.artmed.2022.102424
|
[32]
|
Wan, S., Zhou, T., Che, R., Li, Y., Peng, J., Wu, Y., et al. (2023) CT-Based Machine Learning Radiomics Predicts CCR5 Expression Level and Survival in Ovarian Cancer. Journal of Ovarian Research, 16, Article No. 1. https://doi.org/10.1186/s13048-022-01089-8
|
[33]
|
Wang, T., Wang, H., Wang, Y., Liu, X., Ling, L., Zhang, G., et al. (2022) MR-Based Radiomics-Clinical Nomogram in Epithelial Ovarian Tumor Prognosis Prediction: Tumor Body Texture Analysis across Various Acquisition Protocols. Journal of Ovarian Research, 15, Article No. 6. https://doi.org/10.1186/s13048-021-00941-7
|
[34]
|
Rahmim, A., Huang, P., Shenkov, N., Fotouhi, S., Davoodi-Bojd, E., Lu, L., et al. (2017) Improved Prediction of Outcome in Parkinson’s Disease Using Radiomics Analysis of Longitudinal DAT SPECT Images. NeuroImage: Clinical, 16, 539-544. https://doi.org/10.1016/j.nicl.2017.08.021
|
[35]
|
Bevilacqua, R., Barbarossa, F., Fantechi, L., Fornarelli, D., Paci, E., Bolognini, S., et al. (2023) Radiomics and Artificial Intelligence for the Diagnosis and Monitoring of Alzheimer’s Disease: A Systematic Review of Studies in the Field. Journal of Clinical Medicine, 12, Article 5432. https://doi.org/10.3390/jcm12165432
|
[36]
|
Shahidi, R., Baradaran, M., Asgarzadeh, A., Bagherieh, S., Tajabadi, Z., Farhadi, A., et al. (2023) Diagnostic Performance of MRI Radiomics for Classification of Alzheimer’s Disease, Mild Cognitive Impairment, and Normal Subjects: A Systematic Review and Meta-analysis. Aging Clinical and Experimental Research, 35, 2333-2348. https://doi.org/10.1007/s40520-023-02565-x
|
[37]
|
Liu, Y., Dong, D., Zhang, L., Zang, Y., Duan, Y., Qiu, X., et al. (2019) Radiomics in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder. European Radiology, 29, 4670-4677. https://doi.org/10.1007/s00330-019-06026-w
|
[38]
|
Wu, T., Liu, Y., Chen, J., Ho, C., Zhang, Y. and Su, M. (2022) Prediction of Poor Outcome in Stroke Patients Using Radiomics Analysis of Intraparenchymal and Intraventricular Hemorrhage and Clinical Factors. Neurological Sciences, 44, 1289-1300. https://doi.org/10.1007/s10072-022-06528-4
|
[39]
|
Chen, Q., Pan, T., Wang, Y.N., Schoepf, U.J., Bidwell, S.L., Qiao, H., et al. (2023) A Coronary CT Angiography Radiomics Model to Identify Vulnerable Plaque and Predict Cardiovascular Events. Radiology, 307, e221693. https://doi.org/10.1148/radiol.221693
|
[40]
|
Antonopoulos, A.S., Angelopoulos, A., Tsioufis, K., Antoniades, C. and Tousoulis, D. (2021) Cardiovascular Risk Stratification by Coronary Computed Tomography Angiography Imaging: Current State-of-the-Art. European Journal of Preventive Cardiology, 29, 608-624. https://doi.org/10.1093/eurjpc/zwab067
|
[41]
|
Nakamori, S., Amyar, A., Fahmy, A.S., Ngo, L.H., Ishida, M., Nakamura, S., et al. (2024) Cardiovascular Magnetic Resonance Radiomics to Identify Components of the Extracellular Matrix in Dilated Cardiomyopathy. Circulation, 150, 7-18. https://doi.org/10.1161/circulationaha.123.067107
|
[42]
|
Cui, Y. and Yin, F. (2022) Impact of Image Quality on Radiomics Applications. Physics in Medicine & Biology, 67, 15TR03. https://doi.org/10.1088/1361-6560/ac7fd7
|
[43]
|
Severn, C., Suresh, K., Görg, C., Choi, Y.S., Jain, R. and Ghosh, D. (2022) A Pipeline for the Implementation and Visualization of Explainable Machine Learning for Medical Imaging Using Radiomics Features. Sensors, 22, Article 5205. https://doi.org/10.3390/s22145205
|