综合物探方法在金属矿勘查中的应用
The Application of Integrated Geophysical Methods in Metal Ore Exploration
摘要: Simuku (EL2379)与Nakru (EL1043)项目区位于巴布亚新几内亚新不列颠岛西部地区,是世界最有前景的侵入相关矿床地区之一。随着研究区找矿工作逐渐深入,急需查明该地区的深部结构为深部找矿提供指引研究区域以其丰富的金、铜资源而闻名,地质环境复杂,具有斑岩、浅成低温和矽卡岩矿床特征。研究采用了激发极化法(IP)与电阻率测量结合的方法,结合历史航空电磁法(AEM)数据,对矿区进行了详细的地质调查和数据分析。研究结果表明,Simuku矿区的L03-04-05测线电阻率和激发极化响应显著,L04测线的激电异常集中在171050E,可能存在黄铁矿蚀变,具有较高的找矿前景。Nakru矿区的22200E-22260E,9339000N-9339400N处也存在充电率异常,值得进一步调查。综合物探方法在识别矿化带、验证历史异常和确定钻探目标方面表现出色,为金属矿勘查提供了有效的技术支持。
Abstract: The Simuku (EL2379) and Nakru (EL1043) project areas are situated in the western region of New Britain Island, Papua New Guinea, which is recognized as one of the world’s most prospective regions for intrusion-related mineral deposits. With the ongoing advancement of mineral exploration in the study area, there is an urgent need to delineate the deep-seated structures to guide further exploration efforts. The study area is renowned for its abundant gold and copper resources, characterized by a complex geological setting that includes porphyry, epithermal, and skarn-type mineralization. The study utilized a combination of induced polarization (IP) and resistivity surveys, integrated with historical airborne electromagnetic (AEM) data, to conduct comprehensive geological investigations and data interpretation. The results reveal that the L03-04-05 survey line in the Simuku area exhibits significant resistivity anomalies and strong IP responses. Specifically, the IP anomaly along the L04 line is concentrated at 171050E, indicating potential pyrite alteration zones and highlighting high exploration potential. In the Nakru area, a distinct chargeability anomaly was identified within the coordinates 22200E-22260E and 9339000N-9339400N, warranting further detailed investigation. The integrated geophysical approach has proven highly effective in identifying mineralized zones, validating historical geophysical anomalies, and defining precise drilling targets. This methodology provides robust technical support for metal ore exploration in the region.
文章引用:龚竞未, 张恩龙, 吴田波, 欧阳严严, 周辉. 综合物探方法在金属矿勘查中的应用[J]. 地球科学前沿, 2025, 15(6): 903-917. https://doi.org/10.12677/ag.2025.156086

1. 引言

Simuku (EL2379)与Nakru (EL1043)项目区位于巴布亚新几内亚新不列颠岛富含矿物质地区。新不列颠岛独特的地质环境,其复杂的地层学和构造活动,和其含有丰富的金(Au)、铜(Cu)资源的斑岩、浅成低温和矽卡岩矿床[1]-[3],使其成为矿产勘探的焦点[4] [5]

矿产勘探是一项重要任务,其目的是在开采之前调查矿床的大小和形状等特征。在地质找矿工作中,地球物理方法在地质勘查“攻深找盲”中一直发挥着重要作用。研究使用激发极化法(IP)、电阻率(Res)和航空电磁(AEM)等地球物理方法来搜索矿床,这些技术在检测金属矿物和表征地下结构方面特别有效,为了解新不列颠岛西部地区的地质特征和矿物潜力提供了一个强大的框架。IP是一种广泛用于矿物探测的地球物理技术,特别是在存在硫化物的地区。IP响应主要由岩石中的金属矿物产生,这导致与矿化水平相关的高可充电性值[6] [7]。电阻率测量通常与IP结合使用,通过识别矿化区和周围岩石之间的电阻率差异,对地下提供了关键的见解[8]-[10]。这项技术对硫化金属矿石引起的变化特别敏感,因为硫矿化引起的极化效应导致明显的电阻率对比[11]。IP和电阻率方法的整合在许多研究中被证明是有效的[12]-[16],且2D和3D电阻率成像的发展显著提高了对复杂地质结构进行建模的能力[17]-[19],使进行详细的地下调查成为可能,对电阻率和IP数据提供了更清晰的解释[20] [21]。航空电磁法(AEM)是应用最广泛的航空地球物理勘探之一,可提供大面积或难以进入区域的岩性和风化层信息[22]-[25]。它能够提供数百米深的大量地质结构伪三维信息[26] [27],并已成功应用于浅层地下矿产勘探[28] [29]、地下水研究[23] [30]、工程地质[31]和环境调查[32]等领域。

通过对Simuku矿区的激发极化勘查工作测得的充电率与电阻率异常情况与此前进行的航空磁力测量与空中电磁测量的结果进行对比,验证此前测得的各种异常地区,同时圈定此次的高优先研究区域来找到新的矿化带。对Nakru矿区进行极–偶极(P-DP)配置的激发极化勘查工作来验证此地之前测得的充电率异常区,并对数据进行进一步处理从而进一步圈定此地的高优先调查区域。

2. 区域构造及成矿特征

2.1. 区域构造

Simuku矿区(EL2379)与Nakru矿区(EL1043)位于巴布亚新几内亚新不列颠岛西部,具体位置分布如图1所示。新不列颠岛近代构造历史与俾斯麦海地区的构造历史密切相关,所罗门海板块向北俯冲至新不列颠岛之下,俾斯麦海在新不列颠海沟形成了活跃的东俾斯麦火山弧(图1(a))。新不列颠岛的北部成分包括玄武岩和流纹岩,具有典型的岛弧拉斑玄武岩特征[33] [34] (图1(b))。在3.5 Ma时,菲尼斯特雷地体与新几内亚大陆对接引发了新不列颠弧后破裂,形成了两个独立的构造板块:南俾斯麦板块和北俾斯麦板块[35] [36],而新不列颠岛则是美拉尼西亚弧的一部分[20] [34] [37]

随着早中新世俯冲机制的改变,美拉尼西亚弧逐渐下沉,新不列颠部分地区被早中新世和中中新世石灰岩覆盖[20] [37]-[39]。上新世至全新世期间,河流和海洋火山碎屑广泛沉积,伴随上新世以来新不列颠岛北部海岸火山活动恢复。隆起的更新世至全新世珊瑚礁环绕着该地区许多岛屿[39] [40]。构造走廊或线纹具有悠久的活动历史,与现有的主要地貌构造特征(如新不列颠海沟)呈斜交,并已将渐新世–上新世铜金矿化斑岩侵入体单元的侵位局部化[40]。西部以西北–东南走向的上渐新世–上新世侵入体、火山岩和相关斑岩铜、矽卡岩和金矿化排列为代表[40] [41]。局部结构叠加在明显的西北走向上,控制着晚渐新世岩浆侵位,侵入体的长轴与主要走向正交[40] [42] (图1(b))。

Figure 1. Topography, bathymetry, and major tectonic features of eastern Papua New Guinea and the Solomon Islands region (a), and the geology of New Britain Island with the distribution of study and mining areas (b)

1. 巴布亚新几内亚东部和所罗门群岛地区的地形、水深和主要构造(a),新不列颠岛的地质和研究矿区位置分布(b)

2.2. 矿区地质特征

2.2.1. EL2379 Simuku矿区

Simuku矿区由一系列安山岩到英安岩火山岩和火山碎屑岩组成,这些岩被中到长英质侵入岩墙、岩床和岩株侵入,属于上渐新世–下中新世侵入岩套(图1(b) [43]。NNE-N走向的断层和剪切带位于主要的NNE走向“破碎带”内,破坏了火山序列。这些断层和剪切带与不同程度的强烈断裂、剪切、位错和角砾岩化有关,并以大面积强烈的磁铁矿破坏性粘土化蚀变为特征[43]。在溪流和沟渠中观察到的侵入斑状闪长岩和石英闪长岩体以前被解释为高级火山下侵入岩,年代为晚渐新世[42]。Simuku矿区和区域地质环境与几个包含大量斑岩铜、钼和相关矿床的经典地质环境相似,俾斯麦弧东部最近的火山活动与美拉尼西亚弧岩浆作用无关,导致新不列颠大部分地区(包括部分Simuku财产)上出现了大面积的浮石和火山灰矿化后覆盖[43]-[45]

2.2.2. EL1043 Mt. Nakru矿区

Nakru矿区位于矿化良好的库鲁成矿带内,该成矿带走向西北偏西穿过新不列颠到中部,全长140公里,包含许多斑岩型或浅成热液型铜–金矿床[46] [47]。该区域的地层主要为渐新世晚期火山岩及中酸性侵入岩为主,局部地质以流纹岩“流丘”复合体为主,该复合体覆盖在始新世至渐新世上的安山岩和玄武岩火山上。一层薄薄的覆盖层(2~8米)覆盖着更新世到最近的白垩纪,铜金矿化发生在Nakru两个区域内,地表地球化学异常和诱导极化数据中的强充电率。大多数矿化为脉状和浸染状,由强石英–绢云母蚀变火山角砾岩赋存,有一些细(10~30厘米)的块状硫化物脉状。安山岩到英安岩组成的岩脉横切矿化,厚度从不足1米到10米不等[44] [45] [48] [49]

3. 矿区勘查

3.1. Simuku矿区物探工作

Simuku项目区既有大吨位低品位斑岩型铜矿化带,又有近地表高品位次生铜矿化带,这两个矿化带都有未经测试的延伸,且区内的一些历史地球物理异常尚未得到测试。为覆盖司木库现有的矿化带,定义三维地球物理特征,验证历史梯度阵列偶极—偶极(DP-DP)激发极化结果,进一步勘探当前矿化附近的基础模型,并应用于其他目标区域。现跟踪2017年航磁调查中发现的与构造带和侵入复合体相关的几个磁异常与电导率异常区域,对Simuku矿区进行电阻率—激发极化测量(图2)。

Figure 2. Grayscale LiDAR elevation map with resistivity (background base map), electrode locations for induced polarization (IP) surveys, and historical gradient IP array high-power DC chargeability results (color-filled regions)

2. 灰度激光雷达高程电阻率(背景底图)、激发极化测量的电极位置与历史梯度激发极化阵列大功率直流激电法充电率结果(彩色区域)

1) 数据采集

在对Simuku矿区进行电阻率—激发极化测量时,对横跨五个区域的11条东西向线路进行了100米线距的测量。且因多线测量有助于解释当地结构/地质的趋势,所以在每个地区以单线、二线或三线块进行调查。其中L07号线向东延伸,以覆盖司木库资源区并与L06号线相匹配,L04线向西延伸,测量线路分布见图2

Table 1. Locations of the infinite electrodes used for each survey line in the DP measurements

1. DP测量各测线所用无限电极的位置

测线

东WGS84 Z56S

北WGS84 Z56S

L1,L2,L3,L4,L5

170005

9366842

L6,L7,L8

171389

9369833

L9,L10,L14

170829

9368698

注:所有UTM坐标均为WGS 84,56 S区。

测量工作由三名工作人员在20~30名工作人员的协助下进行,通过链条和指南针从每条线上的手持GPS确定的位置向外建立测量线,具体电极位置见表1。测量设备包括由科勒ZMG-9发生器供电的Zonge GGT-10发射器、GDD GRx-32接收器、作为接收器电极的CuSO 4多孔罐和作为发射电极的含盐铝箔。

2) 测量配置选择

(a)

(b)

Figure 3. Induced polarization decay for P-DP and DP-DP at the same location

3. 同一位置的P-DP激发极化衰减和DP-DP衰减

为了验证电极位置的手持式GPS坐标是否适合建模目的,将手持式GPS单元的高程与每个电极处的激光雷达高程进行了比较,两组高程之间未观察到峰或谷的横向移动。在每个Tx站点进行重复读数,如果电压低且衰减噪声最多,则最多4个读数。在偶极–偶极(DP-DP)测量的电压较低时,激发极化衰减开始在最长(n = 6至8)偏移时变得有噪声,但即使在最长的偏移量下,使用极–偶极(P-DP)配置的激发极化衰减非常干净(图3),所以P-DP在接收器处能提供质量更高的信号。在实际测量中,前两条测线(L06和L07)采用DP-DP配置,然后发现在实现建立/维护无限电极的后勤工作比预期更容易时,剩余测线为P-DP配置。

3) 测量结果

用Res2dinv反演软件对充电率实测数据进行反演,将反演得到的数据依次导入Surfer软件中绘制出各测线的电阻率与充电率等值线剖面图。

Figure 4. Chargeability results at 100-meter depth from the 3D induced polarization survey, overlaid on LiDAR topography

4. 本次3D激发极化100米深度充电率结果与激光雷达地形

图4中明亮的颜色显示了覆盖在激光雷达地形上的异常充电率区,黄色虚线表示由激发极化数据的新解释生成的高优先级钻井目标,圆圈代表历史钻探,红色多边形是围绕矿产资源的矿化带的表面轮廓,背景图像为激光雷达地形。深度褶皱是从三维模型中提取的在地形以下恒定深度的切片平面视图图像。白线“A”为通过司木库中心的激发极化剖面L06位置,白线“B”是通过司木库东部的激发极化段的L04位置。

激发极化测量数据的建模显示(图4),在测量的每条线上都有多个异常的充电率和电阻率响应,这些响应与已知的硫化物产状密切相关,并可以推断到其他未测试的区域。Simuku矿区在建模中呈现为高电阻率–弱带电性特征,它被强烈升高的充电能力所包围,特别是沿着南北走向的电阻率低限制了它的西部和东部。充电率的趋势与电阻率建模中观察到的趋势不同,充电率趋势主要是N-S向。本次调查确定的优先目标是沿L03-04-05区块东端的一个突出山脊,结果显示在这个地区观察到整个调查研究的充电率峰值模型,电阻率低,显示为一个明显的圆形磁复合体,异常充电率是南北开放的(图5下)。高极化率、电阻率低的区域可能是“典型”斑岩模型的目标矿化外围的潜在叶状区域,且许多充电率升高的区域都在或接近表面。

Figure 5. This L06 (upper figure)/L04 (lower figure) 3D induced polarization model profile

5. 本次L06 (图上)/L04 (图下) 3D激发极化模型剖面

4) 历史测量结果验证

Figure 6. Comparison between the historical DP-DP induced polarization model cross-section and the current 3D induced polarization model cross-section for survey line L06

6. L06 历史DP-DP激发极化模型剖面与本次3D激发极化模型剖面比较

历史测量中记录的两个可充电性高的异常区域也将通过此次的测量进行验证。之前,在L06 DP-DP的西端进行了测量,发现了一个以168875E为中心的宽无定形充电率高(图6)。此次工作DP-DP的建模证实了L06上存在异常充电率,并发现其来自两个独立的区域。

本次工作调查验证的第二个异常充电率区来自大型梯度阵列调查。梯度阵列在L06-07-08区块的西侧发现了一个宽100 m长的N-S趋势高充电率区域。本次工作的3D激发极化模型表面以下150 m处的平面切片证实了这个梯度阵列的充电率高,以及在梯度数据中观察到的其他几个高充电率区域(图7)。测量结果证实了历史DP-DP和梯度阵列调查中记录的异常带分辨率较高,覆盖广泛区域(11. 5平方公里)的历史梯度阵列调查结果可以被纳入。

Figure 7. Comparison between the historical gradient IP array high-power DC chargeability results and the current 3D induced polarization chargeability results at 150-meter depth

7. 历史梯度激发极化阵列大功率直流激电法充电率结果与本次3D激发极化150米深度充电率结果比较

5) 结合前人航磁数据资料解释

此次激发极化调查选择的区域是基于对2017年航磁调查中生成的电导率深度图像(CDI)的解释(图2),结合此前的航磁工作测得的电导率数据与电导率深度图像,并与本次的物探工作结果进行对比。

除了覆盖从航磁数据解释的异常区域外,测线L06足够长,可以穿过Simuku资源区,作为定位线,用于建立矿化的电阻率和充电率特征。矿化范围从L06的169775E到169925E,被一个地表以下的低电阻率–高充电率的区域所包围(图8左)。L04的激电异常集中在171050E。在与这些弱异常航磁电导率深度图像特征重合或接近的地面测量数据建模中,观察到电阻率降低,地面数据模型中的电阻率值相对较高(约20欧姆) (图8右叠加剖面图)。因为航磁方法有其固有电阻率低(通常<10欧姆),对可能产生二次电磁响应的特征更敏感,因此与电导率深度图像区的相关性不明显。

Figure 8. L06 Line Stacked Profile (left figure; the dashed box indicates the Simuku mineralized zone with high resistivity and moderate chargeability response), L04 Line Stacked Profile (right figure)

8. L06测线叠加剖面(图左,虚线框为具有高电阻率–中等充电率响应的司木库矿化区),L04测线叠加剖面(图右)

Figure 9. Plan view slice of the 3D magnetic model at 50-meter depth (with the 3D induced polarization model outlined in white at 150 meters below the surface)

9. 50m 深度处的3D磁模型平面切片(3D激发极化模型在地表下150 m处为白色轮廓)

矿化被一个地表以下的低电阻率–高充电率的区域所包围。与电阻率低不同,可充电性延伸到深部。东部区域与从L06开始向北–西北向的深部磁性特征大致一致(图9图10)。在西部,矿化被该剖面浅部的中等电阻率–低充电率所包围,资源区位于一个突出的N-NE向构造的西侧(图9)。表生带与3D建模中定义的磁性相吻合(图9)。

Figure 10. Vertical derivative map of the reduced-to-pole magnetic data (with the 3D induced polarization model outlined in white at 150 meters below the surface)

10. 航磁化极磁性的垂直导数图(3D激发极化模型在地表下150 m处为白色轮廓)

Figure 11. Plan view slice of resistivity at 150 meters below the surface, overlaid on the 3D magnetic model

11. 三维磁模型上地表下150 m的电阻率平面图切片

在L01-02测区区块,在区块东半部观察到异常的充电率,在三维磁模型中与磁源在空间上对齐(图9)。考虑到Simuku资源特征,磁性与充电率高(169550E, 9369150N)之间的区域需要进一步验证,它是一个低电阻率区。在该区块的西端,在化极磁性的垂直导数图像中,升高的充电率与明显的北东向磁性相平行(图10)。这里电阻率模型的趋势与充电率趋势不同,与3D磁性模型的趋势方向相似(图11)。

L03-04-05测区区块东端的这一区域是一个值得进一步调查的高优先区域,存在一个突出山脊,其电阻率和激发极化响应非常明显。但在三维磁模型中,振幅向南增加,并向磁性高方向增加(图9)。化极垂直导数的峰值与三维磁模型之间的偏移表明存在剩磁效应(图10)。应考虑可能为磁性复合物的圆形形态、升高的充电率响应且脊上表面强烈的黄铁矿蚀变。

在L9-L10区块,电阻率和充电率之间也观察到不同的趋势方向,异常充电率趋势为北向南,而电阻率趋势更偏向北东,与磁性趋势平行(图11)。

Simuku矿区的资源在建模中呈现为高电阻率–弱带电性特征,它被强烈升高的充电能力所包围,特别是沿着南北走向的电阻率低限制了它的西部和东部。表生区域与3D磁性建模中的一个突出磁源一致,磁源形成(垂直导数)航磁数据中定义的明显圆形磁性复合体的北方边缘的一部分。充电率的趋势与电阻率建模中观察到的趋势不同,充电率趋势主要是N-S,而电阻率趋势大致遵循3D磁性模型中观察到的趋势。

3.2. Nakru矿区物探工作

本次调查的目的是评估位于晚渐新世挤压/侵入复合体中的矿产潜力,特别是提供有关推断斑岩铜矿化侵入物存在的信息,并协助确定未来钻探的可行目标。

Figure 12. Location map of survey lines in the Nakru mining area

12. Nakru矿区测线布置的位置图

1) 数据采集

在整个调查中,偶极子阵列由一种改进的P-DP配置—双偏置极偶极阵列组成,该配置由12个100米和200米的偶极子组合使用,总阵列长度为1600米。本次调查总共测量了14条线,总长25.125公里,测线具体分布图如图12所示。

2) 数据处理及与历史激发极化数据比较

依据历史激发极化数据对本次测量数据进行反演处理,总共经历三次反演。首先在调查期间使用程序重新反演前人测量数据图13左中的紫色区域重新反演,再对图13左内红色线轮廓区域进行三维反演,最后,一个经过严格质量控制的数据集使用程序进行了反演,其反演结果如图13右所示。

研究结果显示,数据的重新处理和反演产生了与之前的工作大体一致的结果(见图13右)。中心的大异常位于同一位置,并且具有相似的幅度(>20 mV/V)。反演之间的差异是由于移除了不良数据。重新处理的反演(左方)显示出比原始反演(右方)更复杂的结构。异常的东翼也有所削减(与之前的反演相比,见下方的轮廓)。此外,网格西南方向的离散顶点也更加清晰(在原始反演中被平滑掉了)。由于它靠近勘探线的末端,网格东北方向的充电率特征没有很好地解析出来。

Figure 13. Historical chargeability slice at 600 m depth (left; green = 18 mV/V recent inversion, red = 18 mV/V past inversion), and current survey’s 600m chargeability slice (right)

13. 历史测量数据的600米深度充电率切片(图左,绿色轮廓是最近反演中18 mV/V的值,红色轮廓是前人反演中18 mV/V的值),本次测量数据的600米深度充电率切片(图右)

4. 结论

1) Simuku矿区L03-04-05测线电阻率和激发极化响应非常明显,L04测线的激电异常集中在171050E,此处岩层可能存在黄铁矿蚀变,是一个较好的找矿前景是值得调查的高优先区。

2) Simuku矿区L01-02测线东半部观察到异常的充电率。在L09-10测线,异常充电率趋势为北向南,而电阻率趋势更偏向北东,与磁性趋势平行。在L06-07测线,矿化范围从L06的169775E到169925E,被一个地表以下的低电阻率–高充电率的区域所包围。

3) Nakru矿区的22200E-22260E,9339000N-9339400N处存在充电率异常,是一个找矿的好前景应当深入调查。

参考文献

[1] Cooke, D.R., Hollings, P. and Walshe, J.L. (2005) Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100, 801-818.
https://doi.org/10.2113/gsecongeo.100.5.801
[2] Sillitoe, R.H. (2010) Porphyry Copper Systems. Economic Geology, 105, 3-41.
https://doi.org/10.2113/gsecongeo.105.1.3
[3] Richards, J.P. (2013) Giant Ore Deposits Formed by Optimal Alignments and Combinations of Geological Processes. Nature Geoscience, 6, 911-916.
https://doi.org/10.1038/ngeo1920
[4] Rogerson, R., Williamson, A. and Francis, G. (1986) Recent Advances in the Knowledge of Geology, Energy Resources and Metallogenesis of Papua New Guinea since 1981.
https://gsmpubl.wordpress.com/wp-content/uploads/2014/09/bgsm1986b02.pdf
[5] Jowitt, S.M., Mudd, G.M. and Weng, Z. (2013) Hidden Mineral Deposits in Cu-Dominated Porphyry-Skarn Systems: How Resource Reporting Can Occlude Important Mineralization Types within MINING Camps. Economic Geology, 108, 1185-1193.
https://doi.org/10.2113/econgeo.108.5.1185
[6] Sumner, J.S. (2012) Principles of Induced Polarization for Geophysical Exploration. Elsevier.
[7] Johnson, I.M. (1984) Spectral Induced Polarization Parameters as Determined through Time‐domain Measurements. Geophysics, 49, 1993-2003.
https://doi.org/10.1190/1.1441610
[8] Olayinka, A. and Yaramanci, U. (1999) Choice of the Best Model in 2-D Geoelectrical Imaging: Case Study from a Waste Dump Site. European Journal of Environmental and Engineering Geophysics, 3, 221-244.
[9] Olayinka, A.I. and Yaramanci, U. (2000) Use of Block Inversion in the 2-D Interpretation of Apparent Resistivity Data and Its Comparison with Smooth Inversion. Journal of Applied Geophysics, 45, 63-81.
https://doi.org/10.1016/s0926-9851(00)00019-7
[10] Dahlin, T. and Zhou, B. (2004) A Numerical Comparison of 2D Resistivity Imaging with 10 Electrode Arrays. Geophysical Prospecting, 52, 379-398.
https://doi.org/10.1111/j.1365-2478.2004.00423.x
[11] Parasnis, D.S. (2014) Mining Geophysics. Elsevier.
[12] Binley, A. and Kemna, A. (n.d.) DC Resistivity and Induced Polarization Methods. In: Rubin, Y. and Hubbard, S.S., Eds., Water Science and Technology Library, Springer, 129-156.
https://doi.org/10.1007/1-4020-3102-5_5
[13] Embeng, S.B.N., Meying, A., Ndougsa-Mbarga, T., Moreira, C.A. and Amougou, O.U.O. (2022) Delineation and Quasi-3d Modeling of Gold Mineralization Using Self-Potential (SP), Electrical Resistivity Tomography (ERT), and Induced Polarization (IP) Methods in Yassa Village, Adamawa, Cameroon: A Case Study. Pure and Applied Geophysics, 179, 795-815.
https://doi.org/10.1007/s00024-022-02951-y
[14] Horo, D., Pal, S.K., Singh, S. and Srivastava, S. (2020) Combined Self-Potential, Electrical Resistivity Tomography and Induced Polarisation for Mapping of Gold Prospective Zones over a Part of Babaikundi-Birgaon Axis, North Singhbhum Mobile Belt, India. Exploration Geophysics, 51, 507-522.
https://doi.org/10.1080/08123985.2020.1722026
[15] Olsson, P., Dahlin, T., Fiandaca, G. and Auken, E. (2015) Measuring Time-Domain Spectral Induced Polarization in the On-Time: Decreasing Acquisition Time and Increasing Signal-to-Noise Ratio. Journal of Applied Geophysics, 123, 316-321.
https://doi.org/10.1016/j.jappgeo.2015.08.009
[16] Heritiana A., R., Riva, R., Ralay, R. and Boni, R. (2019) Evaluation of Flake Graphite Ore Using Self-Potential (SP), Electrical Resistivity Tomography (ERT) and Induced Polarization (IP) Methods in East Coast of Madagascar. Journal of Applied Geophysics, 169, 134-141.
https://doi.org/10.1016/j.jappgeo.2019.07.001
[17] Griffiths, D.H., Turnbull, J. and Olayinka, A.I. (1990) Two-Dimensional Resistivity Mapping with a Computer-Controlled Array. First Break, 8, 121-129.
https://doi.org/10.3997/1365-2397.1990008
[18] Griffiths, D.H. and Barker, R.D. (1993) Two-Dimensional Resistivity Imaging and Modelling in Areas of Complex Geology. Journal of Applied Geophysics, 29, 211-226.
https://doi.org/10.1016/0926-9851(93)90005-j
[19] Dahlin, T. and Loke, M.H. (1998) Resolution of 2D Wenner Resistivity Imaging as Assessed by Numerical Modelling. Journal of Applied Geophysics, 38, 237-249.
https://doi.org/10.1016/s0926-9851(97)00030-x
[20] Madsen, J.A. and Lindley, I.D. (1994) Large‐Scale Structures on Gazelle Peninsula, New Britain: Implications for the Evolution of the New Britain Arc. Australian Journal of Earth Sciences, 41, 561-569.
https://doi.org/10.1080/08120099408728166
[21] Martín-Crespo, T., Gómez-Ortiz, D., Martín-Velázquez, S., Martínez-Pagán, P., De Ignacio, C., Lillo, J., et al. (2018) Geoenvironmental Characterization of Unstable Abandoned Mine Tailings Combining Geophysical and Geochemical Methods (Cartagena-La Union District, Spain). Engineering Geology, 232, 135-146.
https://doi.org/10.1016/j.enggeo.2017.11.018
[22] Baroň, I., Supper, R., Winkler, E., Motschka, K., Ahl, A., Čarman, M., et al. (2013) Airborne Geophysical Survey of the Catastrophic Landslide at Stože, Log Pod Mangrtom, as a Test of an Innovative Approach for Landslide Mapping in Steep Alpine Terrains. Natural Hazards and Earth System Sciences, 13, 2543-2550.
https://doi.org/10.5194/nhess-13-2543-2013
[23] Siemon, B., Christiansen, A.V. and Auken, E. (2009) A Review of Helicopter‐Borne Electromagnetic Methods for Groundwater Exploration. Near Surface Geophysics, 7, 629-646.
https://doi.org/10.3997/1873-0604.2009043
[24] Auken, E., Boesen, T. and Christiansen, A.V. (2017) A Review of Airborne Electromagnetic Methods with Focus on Geotechnical and Hydrological Applications from 2007 to 2017. In: Advances in Geophysics, Elsevier, 47-93.
https://doi.org/10.1016/bs.agph.2017.10.002
[25] Reninger, P.-A., Martelet, G., Deparis, J., Perrin, J. and Chen, Y. (2011) Singular Value Decomposition as a Denoising Tool for Airborne Time Domain Electromagnetic Data. Journal of Applied Geophysics, 75, 264-276.
https://doi.org/10.1016/j.jappgeo.2011.06.034
[26] Dumont, M., Peltier, A., Roblin, E., Reninger, P., Barde-Cabusson, S., Finizola, A., et al. (2019) Imagery of Internal Structure and Destabilization Features of Active Volcano by 3D High Resolution Airborne Electromagnetism. Scientific Reports, 9, Article No. 18280.
https://doi.org/10.1038/s41598-019-54415-4
[27] Dumont, M., Reninger, P.A., Pryet, A., Martelet, G., Aunay, B. and Join, J.L. (2018) Agglomerative Hierarchical Clustering of Airborne Electromagnetic Data for Multi-Scale Geological Studies. Journal of Applied Geophysics, 157, 1-9.
https://doi.org/10.1016/j.jappgeo.2018.06.020
[28] Roach, I.C., Jaireth, S. and Costelloe, M.T. (2014) Applying Regional Airborne Electromagnetic (AEM) Surveying to Understand the Architecture of Sandstone-Hosted Uranium Mineral Systems in the Callabonna Sub-Basin, Lake Frome Region, South Australia. Australian Journal of Earth Sciences, 61, 659-688.
https://doi.org/10.1080/08120099.2014.908951
[29] Smith, R., Fountain, D. and Allard, M. (2003) The MEGATEM Fixed-Wing Transient EM System Applied to Mineral Exploration: A Discovery Case History. First Break, 21, 391-399.
https://doi.org/10.3997/1365-2397.21.7.25570
[30] Mikucki, J.A., Auken, E., Tulaczyk, S., Virginia, R.A., Schamper, C., Sørensen, K.I., et al. (2015) Deep Groundwater and Potential Subsurface Habitats beneath an Antarctic Dry Valley. Nature Communications, 6, Article No. 6831.
https://doi.org/10.1038/ncomms7831
[31] Okazaki, K., Mogi, T., Utsugi, M., Ito, Y., Kunishima, H., Yamazaki, T., et al. (2011) Airborne Electromagnetic and Magnetic Surveys for Long Tunnel Construction Design. Physics and Chemistry of the Earth, Parts A/B/C, 36, 1237-1246.
https://doi.org/10.1016/j.pce.2011.05.008
[32] Pfaffhuber, A.A., Persson, L., Lysdahl, A.O.K., Kåsin, K., Anschütz, H., Bastani, M., et al. (2017) Integrated Scanning for Quick Clay with AEM and Ground-Based Investigations. First Break, 35, 73-79.
https://doi.org/10.3997/1365-2397.35.8.89808
[33] Jakesˇ, P. and Gill, J. (1970) Rare Earth Elements and the Island Arc Tholeiitic Series. Earth and Planetary Science Letters, 9, 17-28.
https://doi.org/10.1016/0012-821x(70)90018-x
[34] Woodhead, J.D., Eggins, S.M. and Johnson, R.W. (1998) Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes. Journal of Petrology, 39, 1641-1668.
https://doi.org/10.1093/petroj/39.9.1641
[35] Taylor, B. (1979) Bismarck Sea: Evolution of a Back-Arc Basin. Geology, 7, 171-174.
https://doi.org/10.1130/0091-7613(1979)7<171:bseoab>2.0.co;2
[36] Findlay, R.H. (2003) Collision Tectonics of Northern Papua New Guinea: Key Field Relationships Demand a New Model. In: Hillis, R.R. and Müller, R.D., Eds., Evolution and Dynamics of the Australian Plate, Geological Society of America, Geological Society of America, 291-306.
https://doi.org/10.1130/0-8137-2372-8.291
[37] Wallace, L.M., Stevens, C., Silver, E., McCaffrey, R., Loratung, W., Hasiata, S., et al. (2004) GPS and Seismological Constraints on Active Tectonics and Arc‐Continent Collision in Papua New Guinea: Implications for Mechanics of Microplate Rotations in a Plate Boundary Zone. Journal of Geophysical Research: Solid Earth, 109, B05404.
https://doi.org/10.1029/2003jb002481
[38] Audra, P., Lauritzen, S. and Rochette, P. (2011) Speleogenesis in the Hyperkarst of the Nakanai Mountains (New Britain, Papua New Guinea). Evolution Model of a Juvenile System (Muruk Cave) Inferred from U/Th and Paleomagnetic Dating. Speleogenesis and Evolution of Karst Aquifers, 10, 25-30.
[39] Christopher, P. (2002) Technical Report on the Mt Nakru, Simuku, Sinivit, Normanby and Feni Properties, Papua New Guinea. In Technical Report Prepared for New Guinea Gold Corporation.
[40] Lindley, I.D. (2006) Extensional and Vertical Tectonics in the New Guinea Islands: Implications for Island Arc Evolution. Annals of Geophysics, 49, 403-426.
[41] Titley, S.R. (1978) Geologic History, Hypogene Features, and Processes of Secondary Sulfide Enrichment at the Plesyumi Copper Prospect, New Britain, Papua New Guinea. Economic Geology, 73, 768-784.
https://doi.org/10.2113/gsecongeo.73.5.768
[42] Hine, R. and Mason, D.R. (1978) Intrusive Rocks Associated with Porphyry Copper Mineralization, New Britain, Papua New Guinea. Economic Geology, 73, 749-760.
https://doi.org/10.2113/gsecongeo.73.5.749
[43] Hutchinson, D. and Swiridiuk, P. (2006) Simuku Property: West New Britain Province, Papua New Guinea. In Technical Report to New Guinea Gold Corporation.
[44] Holm, R.J., Spandler, C. and Richards, S.W. (2013) Melanesian Arc Far-Field Response to Collision of the Ontong Java Plateau: Geochronology and Petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea. Tectonophysics, 603, 189-212.
https://doi.org/10.1016/j.tecto.2013.05.029
[45] Holm, R.J., Tapster, S., Jelsma, H.A., Rosenbaum, G. and Mark, D.F. (2019) Tectonic Evolution and Copper-Gold Metallogenesis of the Papua New Guinea and Solomon Islands Region. Ore Geology Reviews, 104, 208-226.
https://doi.org/10.1016/j.oregeorev.2018.11.007
[46] Garwin, S., Hall, R. and Watanabe, Y. (2005) Tectonic Setting, Geology, and Gold and Copper Mineralization in Cenozoic Magmatic Arcs of Southeast Asia and the West Pacific. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J. and Richards, J.P., Eds., One Hundredth Anniversary Volume, Society of Economic Geologists, Society of Economic Geologists, 27-70.
https://doi.org/10.5382/av100.27
[47] Singer, D.A., Berger, V.I. and Moring, B.C. (2008) Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models, 2008. US Geological Survey.
https://doi.org/10.3133/ofr20081155
[48] 宋学信, 信迪, 王天刚, 等. 巴布亚新几内亚铜金矿床成矿时代及成矿控制因素[J]. 地质通报, 2014, 33(2): 283-298.
[49] 李文光, 傅朝义, 姚仲友, 等. 巴布亚新几内亚铜金矿床大地构造背景、成因类型与成矿特征[J]. 地质通报, 2014, 33(2): 270-282.