[1]
|
Cooke, D.R., Hollings, P. and Walshe, J.L. (2005) Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100, 801-818. https://doi.org/10.2113/gsecongeo.100.5.801
|
[2]
|
Sillitoe, R.H. (2010) Porphyry Copper Systems. Economic Geology, 105, 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
|
[3]
|
Richards, J.P. (2013) Giant Ore Deposits Formed by Optimal Alignments and Combinations of Geological Processes. Nature Geoscience, 6, 911-916. https://doi.org/10.1038/ngeo1920
|
[4]
|
Rogerson, R., Williamson, A. and Francis, G. (1986) Recent Advances in the Knowledge of Geology, Energy Resources and Metallogenesis of Papua New Guinea since 1981. https://gsmpubl.wordpress.com/wp-content/uploads/2014/09/bgsm1986b02.pdf
|
[5]
|
Jowitt, S.M., Mudd, G.M. and Weng, Z. (2013) Hidden Mineral Deposits in Cu-Dominated Porphyry-Skarn Systems: How Resource Reporting Can Occlude Important Mineralization Types within MINING Camps. Economic Geology, 108, 1185-1193. https://doi.org/10.2113/econgeo.108.5.1185
|
[6]
|
Sumner, J.S. (2012) Principles of Induced Polarization for Geophysical Exploration. Elsevier.
|
[7]
|
Johnson, I.M. (1984) Spectral Induced Polarization Parameters as Determined through Time‐domain Measurements. Geophysics, 49, 1993-2003. https://doi.org/10.1190/1.1441610
|
[8]
|
Olayinka, A. and Yaramanci, U. (1999) Choice of the Best Model in 2-D Geoelectrical Imaging: Case Study from a Waste Dump Site. European Journal of Environmental and Engineering Geophysics, 3, 221-244.
|
[9]
|
Olayinka, A.I. and Yaramanci, U. (2000) Use of Block Inversion in the 2-D Interpretation of Apparent Resistivity Data and Its Comparison with Smooth Inversion. Journal of Applied Geophysics, 45, 63-81. https://doi.org/10.1016/s0926-9851(00)00019-7
|
[10]
|
Dahlin, T. and Zhou, B. (2004) A Numerical Comparison of 2D Resistivity Imaging with 10 Electrode Arrays. Geophysical Prospecting, 52, 379-398. https://doi.org/10.1111/j.1365-2478.2004.00423.x
|
[11]
|
Parasnis, D.S. (2014) Mining Geophysics. Elsevier.
|
[12]
|
Binley, A. and Kemna, A. (n.d.) DC Resistivity and Induced Polarization Methods. In: Rubin, Y. and Hubbard, S.S., Eds., Water Science and Technology Library, Springer, 129-156. https://doi.org/10.1007/1-4020-3102-5_5
|
[13]
|
Embeng, S.B.N., Meying, A., Ndougsa-Mbarga, T., Moreira, C.A. and Amougou, O.U.O. (2022) Delineation and Quasi-3d Modeling of Gold Mineralization Using Self-Potential (SP), Electrical Resistivity Tomography (ERT), and Induced Polarization (IP) Methods in Yassa Village, Adamawa, Cameroon: A Case Study. Pure and Applied Geophysics, 179, 795-815. https://doi.org/10.1007/s00024-022-02951-y
|
[14]
|
Horo, D., Pal, S.K., Singh, S. and Srivastava, S. (2020) Combined Self-Potential, Electrical Resistivity Tomography and Induced Polarisation for Mapping of Gold Prospective Zones over a Part of Babaikundi-Birgaon Axis, North Singhbhum Mobile Belt, India. Exploration Geophysics, 51, 507-522. https://doi.org/10.1080/08123985.2020.1722026
|
[15]
|
Olsson, P., Dahlin, T., Fiandaca, G. and Auken, E. (2015) Measuring Time-Domain Spectral Induced Polarization in the On-Time: Decreasing Acquisition Time and Increasing Signal-to-Noise Ratio. Journal of Applied Geophysics, 123, 316-321. https://doi.org/10.1016/j.jappgeo.2015.08.009
|
[16]
|
Heritiana A., R., Riva, R., Ralay, R. and Boni, R. (2019) Evaluation of Flake Graphite Ore Using Self-Potential (SP), Electrical Resistivity Tomography (ERT) and Induced Polarization (IP) Methods in East Coast of Madagascar. Journal of Applied Geophysics, 169, 134-141. https://doi.org/10.1016/j.jappgeo.2019.07.001
|
[17]
|
Griffiths, D.H., Turnbull, J. and Olayinka, A.I. (1990) Two-Dimensional Resistivity Mapping with a Computer-Controlled Array. First Break, 8, 121-129. https://doi.org/10.3997/1365-2397.1990008
|
[18]
|
Griffiths, D.H. and Barker, R.D. (1993) Two-Dimensional Resistivity Imaging and Modelling in Areas of Complex Geology. Journal of Applied Geophysics, 29, 211-226. https://doi.org/10.1016/0926-9851(93)90005-j
|
[19]
|
Dahlin, T. and Loke, M.H. (1998) Resolution of 2D Wenner Resistivity Imaging as Assessed by Numerical Modelling. Journal of Applied Geophysics, 38, 237-249. https://doi.org/10.1016/s0926-9851(97)00030-x
|
[20]
|
Madsen, J.A. and Lindley, I.D. (1994) Large‐Scale Structures on Gazelle Peninsula, New Britain: Implications for the Evolution of the New Britain Arc. Australian Journal of Earth Sciences, 41, 561-569. https://doi.org/10.1080/08120099408728166
|
[21]
|
Martín-Crespo, T., Gómez-Ortiz, D., Martín-Velázquez, S., Martínez-Pagán, P., De Ignacio, C., Lillo, J., et al. (2018) Geoenvironmental Characterization of Unstable Abandoned Mine Tailings Combining Geophysical and Geochemical Methods (Cartagena-La Union District, Spain). Engineering Geology, 232, 135-146. https://doi.org/10.1016/j.enggeo.2017.11.018
|
[22]
|
Baroň, I., Supper, R., Winkler, E., Motschka, K., Ahl, A., Čarman, M., et al. (2013) Airborne Geophysical Survey of the Catastrophic Landslide at Stože, Log Pod Mangrtom, as a Test of an Innovative Approach for Landslide Mapping in Steep Alpine Terrains. Natural Hazards and Earth System Sciences, 13, 2543-2550. https://doi.org/10.5194/nhess-13-2543-2013
|
[23]
|
Siemon, B., Christiansen, A.V. and Auken, E. (2009) A Review of Helicopter‐Borne Electromagnetic Methods for Groundwater Exploration. Near Surface Geophysics, 7, 629-646. https://doi.org/10.3997/1873-0604.2009043
|
[24]
|
Auken, E., Boesen, T. and Christiansen, A.V. (2017) A Review of Airborne Electromagnetic Methods with Focus on Geotechnical and Hydrological Applications from 2007 to 2017. In: Advances in Geophysics, Elsevier, 47-93. https://doi.org/10.1016/bs.agph.2017.10.002
|
[25]
|
Reninger, P.-A., Martelet, G., Deparis, J., Perrin, J. and Chen, Y. (2011) Singular Value Decomposition as a Denoising Tool for Airborne Time Domain Electromagnetic Data. Journal of Applied Geophysics, 75, 264-276. https://doi.org/10.1016/j.jappgeo.2011.06.034
|
[26]
|
Dumont, M., Peltier, A., Roblin, E., Reninger, P., Barde-Cabusson, S., Finizola, A., et al. (2019) Imagery of Internal Structure and Destabilization Features of Active Volcano by 3D High Resolution Airborne Electromagnetism. Scientific Reports, 9, Article No. 18280. https://doi.org/10.1038/s41598-019-54415-4
|
[27]
|
Dumont, M., Reninger, P.A., Pryet, A., Martelet, G., Aunay, B. and Join, J.L. (2018) Agglomerative Hierarchical Clustering of Airborne Electromagnetic Data for Multi-Scale Geological Studies. Journal of Applied Geophysics, 157, 1-9. https://doi.org/10.1016/j.jappgeo.2018.06.020
|
[28]
|
Roach, I.C., Jaireth, S. and Costelloe, M.T. (2014) Applying Regional Airborne Electromagnetic (AEM) Surveying to Understand the Architecture of Sandstone-Hosted Uranium Mineral Systems in the Callabonna Sub-Basin, Lake Frome Region, South Australia. Australian Journal of Earth Sciences, 61, 659-688. https://doi.org/10.1080/08120099.2014.908951
|
[29]
|
Smith, R., Fountain, D. and Allard, M. (2003) The MEGATEM Fixed-Wing Transient EM System Applied to Mineral Exploration: A Discovery Case History. First Break, 21, 391-399. https://doi.org/10.3997/1365-2397.21.7.25570
|
[30]
|
Mikucki, J.A., Auken, E., Tulaczyk, S., Virginia, R.A., Schamper, C., Sørensen, K.I., et al. (2015) Deep Groundwater and Potential Subsurface Habitats beneath an Antarctic Dry Valley. Nature Communications, 6, Article No. 6831. https://doi.org/10.1038/ncomms7831
|
[31]
|
Okazaki, K., Mogi, T., Utsugi, M., Ito, Y., Kunishima, H., Yamazaki, T., et al. (2011) Airborne Electromagnetic and Magnetic Surveys for Long Tunnel Construction Design. Physics and Chemistry of the Earth, Parts A/B/C, 36, 1237-1246. https://doi.org/10.1016/j.pce.2011.05.008
|
[32]
|
Pfaffhuber, A.A., Persson, L., Lysdahl, A.O.K., Kåsin, K., Anschütz, H., Bastani, M., et al. (2017) Integrated Scanning for Quick Clay with AEM and Ground-Based Investigations. First Break, 35, 73-79. https://doi.org/10.3997/1365-2397.35.8.89808
|
[33]
|
Jakesˇ, P. and Gill, J. (1970) Rare Earth Elements and the Island Arc Tholeiitic Series. Earth and Planetary Science Letters, 9, 17-28. https://doi.org/10.1016/0012-821x(70)90018-x
|
[34]
|
Woodhead, J.D., Eggins, S.M. and Johnson, R.W. (1998) Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes. Journal of Petrology, 39, 1641-1668. https://doi.org/10.1093/petroj/39.9.1641
|
[35]
|
Taylor, B. (1979) Bismarck Sea: Evolution of a Back-Arc Basin. Geology, 7, 171-174. https://doi.org/10.1130/0091-7613(1979)7<171:bseoab>2.0.co;2
|
[36]
|
Findlay, R.H. (2003) Collision Tectonics of Northern Papua New Guinea: Key Field Relationships Demand a New Model. In: Hillis, R.R. and Müller, R.D., Eds., Evolution and Dynamics of the Australian Plate, Geological Society of America, Geological Society of America, 291-306. https://doi.org/10.1130/0-8137-2372-8.291
|
[37]
|
Wallace, L.M., Stevens, C., Silver, E., McCaffrey, R., Loratung, W., Hasiata, S., et al. (2004) GPS and Seismological Constraints on Active Tectonics and Arc‐Continent Collision in Papua New Guinea: Implications for Mechanics of Microplate Rotations in a Plate Boundary Zone. Journal of Geophysical Research: Solid Earth, 109, B05404. https://doi.org/10.1029/2003jb002481
|
[38]
|
Audra, P., Lauritzen, S. and Rochette, P. (2011) Speleogenesis in the Hyperkarst of the Nakanai Mountains (New Britain, Papua New Guinea). Evolution Model of a Juvenile System (Muruk Cave) Inferred from U/Th and Paleomagnetic Dating. Speleogenesis and Evolution of Karst Aquifers, 10, 25-30.
|
[39]
|
Christopher, P. (2002) Technical Report on the Mt Nakru, Simuku, Sinivit, Normanby and Feni Properties, Papua New Guinea. In Technical Report Prepared for New Guinea Gold Corporation.
|
[40]
|
Lindley, I.D. (2006) Extensional and Vertical Tectonics in the New Guinea Islands: Implications for Island Arc Evolution. Annals of Geophysics, 49, 403-426.
|
[41]
|
Titley, S.R. (1978) Geologic History, Hypogene Features, and Processes of Secondary Sulfide Enrichment at the Plesyumi Copper Prospect, New Britain, Papua New Guinea. Economic Geology, 73, 768-784. https://doi.org/10.2113/gsecongeo.73.5.768
|
[42]
|
Hine, R. and Mason, D.R. (1978) Intrusive Rocks Associated with Porphyry Copper Mineralization, New Britain, Papua New Guinea. Economic Geology, 73, 749-760. https://doi.org/10.2113/gsecongeo.73.5.749
|
[43]
|
Hutchinson, D. and Swiridiuk, P. (2006) Simuku Property: West New Britain Province, Papua New Guinea. In Technical Report to New Guinea Gold Corporation.
|
[44]
|
Holm, R.J., Spandler, C. and Richards, S.W. (2013) Melanesian Arc Far-Field Response to Collision of the Ontong Java Plateau: Geochronology and Petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea. Tectonophysics, 603, 189-212. https://doi.org/10.1016/j.tecto.2013.05.029
|
[45]
|
Holm, R.J., Tapster, S., Jelsma, H.A., Rosenbaum, G. and Mark, D.F. (2019) Tectonic Evolution and Copper-Gold Metallogenesis of the Papua New Guinea and Solomon Islands Region. Ore Geology Reviews, 104, 208-226. https://doi.org/10.1016/j.oregeorev.2018.11.007
|
[46]
|
Garwin, S., Hall, R. and Watanabe, Y. (2005) Tectonic Setting, Geology, and Gold and Copper Mineralization in Cenozoic Magmatic Arcs of Southeast Asia and the West Pacific. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J. and Richards, J.P., Eds., One Hundredth Anniversary Volume, Society of Economic Geologists, Society of Economic Geologists, 27-70. https://doi.org/10.5382/av100.27
|
[47]
|
Singer, D.A., Berger, V.I. and Moring, B.C. (2008) Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models, 2008. US Geological Survey. https://doi.org/10.3133/ofr20081155
|
[48]
|
宋学信, 信迪, 王天刚, 等. 巴布亚新几内亚铜金矿床成矿时代及成矿控制因素[J]. 地质通报, 2014, 33(2): 283-298.
|
[49]
|
李文光, 傅朝义, 姚仲友, 等. 巴布亚新几内亚铜金矿床大地构造背景、成因类型与成矿特征[J]. 地质通报, 2014, 33(2): 270-282.
|