[1]
|
Wan, S., Zhang, G., Liu, R., Abbas, M.N. and Cui, H. (2023) Pyroptosis, Ferroptosis, and Autophagy Cross-Talk in Glioblastoma Opens up New Avenues for Glioblastoma Treatment. Cell Communication and Signaling, 21, Article No. 115. https://doi.org/10.1186/s12964-023-01108-1
|
[2]
|
Weller, M., van den Bent, M., Preusser, M., Le Rhun, E., Tonn, J.C., Minniti, G., et al. (2020) EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood. Nature Reviews Clinical Oncology, 18, 170-186. https://doi.org/10.1038/s41571-020-00447-z
|
[3]
|
Glaviano, A., Foo, A.S.C., Lam, H.Y., Yap, K.C.H., Jacot, W., Jones, R.H., et al. (2023) PI3K/AKT/mTOR Signaling Transduction Pathway and Targeted Therapies in Cancer. Molecular Cancer, 22, Article No. 138. https://doi.org/10.1186/s12943-023-01827-6
|
[4]
|
Hao, C., Wei, Y., Meng, W., Zhang, J. and Yang, X. (2025) PI3K/AKT/mTOR Inhibitors for Hormone Receptor-Positive Advanced Breast Cancer. Cancer Treatment Reviews, 132, Article 102861. https://doi.org/10.1016/j.ctrv.2024.102861
|
[5]
|
Terracciano, D., Ferro, M., Terreri, S., Lucarelli, G., D'Elia, C., Musi, G., et al. (2017) Urinary Long Noncoding RNAs in Nonmuscle-Invasive Bladder Cancer: New Architects in Cancer Prognostic Biomarkers. Translational Research, 184, 108-117. https://doi.org/10.1016/j.trsl.2017.03.005
|
[6]
|
Quail, D.F. and Joyce, J.A. (2013) Microenvironmental Regulation of Tumor Progression and Metastasis. Nature Medicine, 19, 1423-1437. https://doi.org/10.1038/nm.3394
|
[7]
|
Zhang, X., Ma, H., Gao, Y., Liang, Y., Du, Y., Hao, S., et al. (2024) The Tumor Microenvironment: Signal Transduction. Biomolecules, 14, Article 438. https://doi.org/10.3390/biom14040438
|
[8]
|
Mafi, S., Mansoori, B., Taeb, S., Sadeghi, H., Abbasi, R., Cho, W.C., et al. (2022) mTOR-Mediated Regulation of Immune Responses in Cancer and Tumor Microenvironment. Frontiers in Immunology, 12, Article 774103. https://doi.org/10.3389/fimmu.2021.774103
|
[9]
|
El Motiam, A., de la Cruz-Herrera, C.F., Vidal, S., Seoane, R., Baz-Martínez, M., Bouzaher, Y.H., et al. (2021) Sumoylation Modulates the Stability and Function of PI3K-p110β. Cellular and Molecular Life Sciences, 78, 4053-4065. https://doi.org/10.1007/s00018-021-03826-6
|
[10]
|
Leroux, A.E., Schulze, J.O. and Biondi, R.M. (2018) AGC Kinases, Mechanisms of Regulation and Innovative Drug Development. Seminars in Cancer Biology, 48, 1-17. https://doi.org/10.1016/j.semcancer.2017.05.011
|
[11]
|
Xue, C., Li, G., Lu, J. and Li, L. (2021) Crosstalk between CircRNAs and the PI3K/AKT Signaling Pathway in Cancer Progression. Signal Transduction and Targeted Therapy, 6, Article No. 400. https://doi.org/10.1038/s41392-021-00788-w
|
[12]
|
Su, R., Shao, Y., Huang, M., Liu, D., Yu, H. and Qiu, Y. (2024) Immunometabolism in Cancer: Basic Mechanisms and New Targeting Strategy. Cell Death Discovery, 10, Article No. 236. https://doi.org/10.1038/s41420-024-02006-2
|
[13]
|
Chen, M., Zhao, Z., Wu, L., Huang, J., Yu, P., Qian, J., et al. (2022) E2F1/CKS2/PTEN Signaling Axis Regulates Malignant Phenotypes in Pediatric Retinoblastoma. Cell Death & Disease, 13, Article No. 784. https://doi.org/10.1038/s41419-022-05222-9
|
[14]
|
Wang, X., Zhang, Y., Li, W. and Liu, X. (2021) Knockdown of Cir-RNA PVT1 Elevates Gastric Cancer Cisplatin Sensitivity via Sponging miR-152-3p. Journal of Surgical Research, 261, 185-195. https://doi.org/10.1016/j.jss.2020.12.013
|
[15]
|
Chen, J., Alduais, Y., Zhang, K., Zhu, X. and Chen, B. (2021) CCAT1/FABP5 Promotes Tumour Progression through Mediating Fatty Acid Metabolism and Stabilizing PI3K/AKT/mTOR Signalling in Lung Adenocarcinoma. Journal of Cellular and Molecular Medicine, 25, 9199-9213. https://doi.org/10.1111/jcmm.16815
|
[16]
|
Xiao, Y. and Yu, D. (2021) Tumor Microenvironment as a Therapeutic Target in Cancer. Pharmacology & Therapeutics, 221, Article 107753. https://doi.org/10.1016/j.pharmthera.2020.107753
|
[17]
|
Galli, F., Aguilera, J.V., Palermo, B., Markovic, S.N., Nisticò, P. and Signore, A. (2020) Relevance of Immune Cell and Tumor Microenvironment Imaging in the New Era of Immunotherapy. Journal of Experimental & Clinical Cancer Research, 39, Article No. 89. https://doi.org/10.1186/s13046-020-01586-y
|
[18]
|
Prakash, J. and Shaked, Y. (2024) The Interplay between Extracellular Matrix Remodeling and Cancer Therapeutics. Cancer Discovery, 14, 1375-1388. https://doi.org/10.1158/2159-8290.cd-24-0002
|
[19]
|
Strating, E., Verhagen, M.P., Wensink, E., Dünnebach, E., Wijler, L., Aranguren, I., et al. (2023) Co-Cultures of Colon Cancer Cells and Cancer-Associated Fibroblasts Recapitulate the Aggressive Features of Mesenchymal-Like Colon Cancer. Frontiers in Immunology, 14, Article 1053920. https://doi.org/10.3389/fimmu.2023.1053920
|
[20]
|
Tabe, S., Takeuchi, K., Aoshima, K., Okumura, A., Yamamoto, Y., Yanagisawa, K., et al. (2025) A Pancreatic Cancer Organoid Incorporating Macrophages Reveals the Correlation between the Diversity of Tumor-Associated Macrophages and Cancer Cell Survival. Biomaterials, 314, Article 122838. https://doi.org/10.1016/j.biomaterials.2024.122838
|
[21]
|
Liu, Z., Chen, H., Zheng, L., Sun, L. and Shi, L. (2023) Angiogenic Signaling Pathways and Anti-Angiogenic Therapy for Cancer. Signal Transduction and Targeted Therapy, 8, Article No. 198. https://doi.org/10.1038/s41392-023-01460-1
|
[22]
|
Shi, S., Ou, X., Liu, C., Wen, H. and Ke, J. (2025) Research Progress of HIF-1a on Immunotherapy Outcomes in Immune Vascular Microenvironment. Frontiers in Immunology, 16, Article 1549276. https://doi.org/10.3389/fimmu.2025.1549276
|
[23]
|
Palazon, A., Tyrakis, P.A., Macias, D., Veliça, P., Rundqvist, H., Fitzpatrick, S., et al. (2017) An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression. Cancer Cell, 32, 669-683. https://doi.org/10.1016/j.ccell.2017.10.003
|
[24]
|
Xiao, C., Xiong, W., Xu, Y., Zou, J., Zeng, Y., Liu, J., et al. (2023) Immunometabolism: A New Dimension in Immunotherapy Resistance. Frontiers of Medicine, 17, 585-616. https://doi.org/10.1007/s11684-023-1012-z
|
[25]
|
Han, B., Lin, X. and Hu, H. (2024) Regulation of PI3K Signaling in Cancer Metabolism and PI3K-Targeting Therapy. Translational Breast Cancer Research, 5, 33-33. https://doi.org/10.21037/tbcr-24-29
|
[26]
|
Brennan, C.W., Verhaak, R.G.W., McKenna, A., Campos, B., Noushmehr, H., Salama, S.R., et al. (2013) The Somatic Genomic Landscape of Glioblastoma. Cell, 155, 462-477. https://doi.org/10.1016/j.cell.2013.09.034
|
[27]
|
Colardo, M., Segatto, M. and Di Bartolomeo, S. (2021) Targeting RTK-PI3K-mTOR Axis in Gliomas: An Update. International Journal of Molecular Sciences, 22, Article 4899. https://doi.org/10.3390/ijms22094899
|
[28]
|
Zahonero, C. and Sánchez-Gómez, P. (2014) EGFR-Dependent Mechanisms in Glioblastoma: Towards a Better Therapeutic Strategy. Cellular and Molecular Life Sciences, 71, 3465-3488. https://doi.org/10.1007/s00018-014-1608-1
|
[29]
|
Du, L., Zhang, Q., Li, Y., Li, T., Deng, Q., Jia, Y., et al. (2024) Research Progress on the Role of PTEN Deletion or Mutation in the Immune Microenvironment of Glioblastoma. Frontiers in Oncology, 14, Article 1409519. https://doi.org/10.3389/fonc.2024.1409519
|
[30]
|
Dillon, L. and Miller, T. (2014) Therapeutic Targeting of Cancers with Loss of PTEN Function. Current Drug Targets, 15, 65-79. https://doi.org/10.2174/1389450114666140106100909
|
[31]
|
Lai, G., Wang, F., Nie, D., Lei, S., Wu, Z., Cao, J., et al. (2022) Correlation of Glucose Metabolism with Cancer and Intervention with Traditional Chinese Medicine. Evidence-Based Complementary and Alternative Medicine, 2022, 1-17. https://doi.org/10.1155/2022/2192654
|
[32]
|
Tian, Y., Zhao, L., Gui, Z., Liu, S., Liu, C., Yu, T., et al. (2023) PI3K/AKT Signaling Activates HIF1α to Modulate the Biological Effects of Invasive Breast Cancer with Microcalcification. npj Breast Cancer, 9, Article No. 93. https://doi.org/10.1038/s41523-023-00598-z
|
[33]
|
Zhang, Z., Yao, L., Yang, J., Wang, Z. and Du, G. (2018) PI3K/AKT and HIF‑1 Signaling Pathway in Hypoxia‑Ischemia (Review). Molecular Medicine Reports, 18, 3547-3554. https://doi.org/10.3892/mmr.2018.9375
|
[34]
|
Peng, Y., Wang, Y., Zhou, C., Mei, W. and Zeng, C. (2022) PI3K/AKT/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Frontiers in Oncology, 12, Article 819128. https://doi.org/10.3389/fonc.2022.819128
|
[35]
|
Bejarano, L., Jordāo, M.J.C. and Joyce, J.A. (2021) Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 11, 933-959. https://doi.org/10.1158/2159-8290.cd-20-1808
|
[36]
|
Aoki, M. and Fujishita, T. (2017) Oncogenic Roles of the PI3K/AKT/mTOR Axis. In: Current Topics in Microbiology and Immunology, Springer, 153-189. https://doi.org/10.1007/82_2017_6
|
[37]
|
Pan, J., Sheng, S., Ye, L., Xu, X., Ma, Y., Feng, X., et al. (2022) Extracellular Vesicles Derived from Glioblastoma Promote Proliferation and Migration of Neural Progenitor Cells via PI3K-AKT Pathway. Cell Communication and Signaling, 20, Article No. 7. https://doi.org/10.1186/s12964-021-00760-9
|
[38]
|
Cui, Y., Fan, S., Pan, D. and Chao, Q. (2022) Atorvastatin Inhibits Malignant Behaviors and Induces Apoptosis in Human Glioma Cells by Up-Regulating miR-146a and Inhibiting the PI3K/Akt Signaling Pathway. Journal of Southern Medical University, 42, 899-904.
|
[39]
|
Li, H., Prever, L., Hirsch, E. and Gulluni, F. (2021) Targeting PI3K/AKT/mTOR Signaling Pathway in Breast Cancer. Cancers, 13, Article 3517. https://doi.org/10.3390/cancers13143517
|
[40]
|
Iksen, P.S. and Pongrakhananon, V. (2021) Targeting the PI3K/AKT/mTOR Signaling Pathway in Lung Cancer: An Update Regarding Potential Drugs and Natural Products. Molecules, 26, Article 4100. https://doi.org/10.3390/molecules26134100
|
[41]
|
Zhao, R., Pan, Z., Qiu, J., Li, B., Qi, Y., Gao, Z., et al. (2025) Blocking ITGA5 Potentiates the Efficacy of Anti-pd-1 Therapy on Glioblastoma by Remodeling Tumor-Associated Macrophages. Cancer Communications, 2025, 1-25. https://doi.org/10.1002/cac2.70016
|
[42]
|
Kang, W., Mo, Z., Li, W., Ma, H. and Zhang, Q. (2023) Heterogeneity and Individualized Treatment of Microenvironment in Glioblastoma (Review). Oncology Reports, 50, Article No. 217. https://doi.org/10.3892/or.2023.8654
|
[43]
|
Widodo, S.S., Dinevska, M., Furst, L.M., Stylli, S.S. and Mantamadiotis, T. (2021) IL-10 in Glioma. British Journal of Cancer, 125, 1466-1476. https://doi.org/10.1038/s41416-021-01515-6
|
[44]
|
Lin, H., Liu, C., Hu, A., Zhang, D., Yang, H. and Mao, Y. (2024) Understanding the Immunosuppressive Microenvironment of Glioma: Mechanistic Insights and Clinical Perspectives. Journal of Hematology & Oncology, 17, Article No. 31. https://doi.org/10.1186/s13045-024-01544-7
|
[45]
|
Long, G.V., Shklovskaya, E., Satgunaseelan, L., Mao, Y., da Silva, I.P., Perry, K.A., et al. (2025) Neoadjuvant Triplet Immune Checkpoint Blockade in Newly Diagnosed Glioblastoma. Nature Medicine, 31, 1557-1566. https://doi.org/10.1038/s41591-025-03512-1
|
[46]
|
O'Connell, B.C., Hubbard, C., Zizlsperger, N., Fitzgerald, D., Kutok, J.L., Varner, J., et al. (2024) Eganelisib Combined with Immune Checkpoint Inhibitor Therapy and Chemotherapy in Frontline Metastatic Triple-Negative Breast Cancer Triggers Macrophage Reprogramming, Immune Activation and Extracellular Matrix Reorganization in the Tumor Microenvironment. Journal for Immuno Therapy of Cancer, 12, e009160. https://doi.org/10.1136/jitc-2024-009160
|
[47]
|
Gupta, T., Sahoo, R.K., Singh, H., Katke, S., Chaurasiya, A. and Gupta, U. (2023) Lipid-Based Nanocarriers in the Treatment of Glioblastoma Multiforme (GBM): Challenges and Opportunities. AAPS PharmSciTech, 24, Article No. 102. https://doi.org/10.1208/s12249-023-02555-2
|
[48]
|
Pouyan, A., Ghorbanlo, M., Eslami, M., Jahanshahi, M., Ziaei, E., Salami, A., et al. (2025) Glioblastoma Multiforme: Insights into Pathogenesis, Key Signaling Pathways, and Therapeutic Strategies. Molecular Cancer, 24, Article No. 58. https://doi.org/10.1186/s12943-025-02267-0
|
[49]
|
Barzegar Behrooz, A., Talaie, Z., Jusheghani, F., Łos, M.J., Klonisch, T. and Ghavami, S. (2022) Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. International Journal of Molecular Sciences, 23, Article 1353. https://doi.org/10.3390/ijms23031353
|
[50]
|
Zhang, X., Zhao, L., Zhang, H., Zhang, Y., Ju, H., Wang, X., et al. (2022) The Immunosuppressive Microenvironment and Immunotherapy in Human Glioblastoma. Frontiers in Immunology, 13, Article 1003651. https://doi.org/10.3389/fimmu.2022.1003651
|