[1]
|
Tanase, D.M., Gosav, E.M., Anton, M.I., Floria, M., Seritean Isac, P.N., Hurjui, L.L., et al. (2022) Oxidative Stress and NRF2/KEAP1/ARE Pathway in Diabetic Kidney Disease (DKD): New Perspectives. Biomolecules, 12, Article 1227. https://doi.org/10.3390/biom12091227
|
[2]
|
Meng, X.M., Nikolic-Paterson, D.J. and Lan, H.Y. (2016) TGF-β: The Master Regulator of Fibrosis. Nature Reviews Nephrology, 12, 325-338.
|
[3]
|
Meng, X.M., Tang, P.M., Li, J., et al. (2015) TGF-β/Smad Signaling in Renal Fibrosis. Frontiers in Physiology, 6, Article 82.
|
[4]
|
Park, C.H. and Yoo, T.H. (2022) TGF-β Inhibitors for Therapeutic Management of Kidney Fibrosis. Pharmaceuticals, 15, Article 1485.
|
[5]
|
Dou, L. and Jourde-Chiche, N. (2019) Endothelial Toxicity of High Glucose and Its By-Products in Diabetic Kidney Disease. Toxins, 11, Article 578.
|
[6]
|
Segerer, S., Nelson, P.J. and Schlöndorff, D. (2000) Chemokines, Chemokine Receptors, and Renal Disease from Basic Science to Pathophysiologic and Therapeutic Studies. Journal of the American Society of Nephrology, 11, 152-176. https://doi.org/10.1681/ASN.V111152
|
[7]
|
Ito, Y., Aten, J., Bende, R.J., et al. (1998) Expression of Connective Tissue Growth Factor in Human Renal Fibrosis. Kidney International, 53, 853-61. https://doi.org/10.1046/j.1523-1755.1998.00820.x
|
[8]
|
Ostendorf, T., Boor, P., van Roeyen, C.R., et al. (2014) Platelet-Derived Growth Factors (PDGFs) in Glomerular and Tubulointerstitial Fibro Sis. Kidney International Supplements, 4, 65-69.
|
[9]
|
Moriya, J., Wu, X., Zavala-Solorio, J., Ross, J., Liang, X.H. and Ferrara, N. (2014) Platelet-derived Growth Factor C Promotes Revascularization in Ischemic Limbs of Diabetic Mice. Journal of Vascular Surgery, 59, 1402-1409. https://doi.org/10.1016/j.jvs.2013.04.053
|
[10]
|
Buhl, E.M., Djudjaj, S., Babickova, J., Klinkhammer, B.M., Folestad, E., Borkham-Kamphorst, E., et al. (2016) The Role of PDGF-D in Healthy and Fibrotic Kidneys. Kidney International, 89, 848-861. https://doi.org/10.1016/j.kint.2015.12.037
|
[11]
|
Costache, M.I., Ioana, M., Iordache, S., Ene, D., Costache, C.A. and Săftoiu, A. (2015) VEGF Expression in Pancreatic Cancer and Other Malignancies: A Review of the Literature. Romanian Journal of Internal Medicine, 53, 199-208. https://doi.org/10.1515/rjim-2015-0027
|
[12]
|
Rogers, N.M., Thomson, A.W. and Isenberg, J.S. (2012) Activation of Parenchymal CD47 Promotes Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology, 23, 1538-1550. https://doi.org/10.1681/asn.2012020137
|
[13]
|
Kramann, R., Wongboonsin, J., Chang-Panesso, M., Machado, F.G. and Humphreys, B.D. (2016) Gli1+ Pericyte Loss Induces Capillary Rarefaction and Proximal Tubular Injury. Journal of the American Society of Nephrology, 28, 776-784. https://doi.org/10.1681/asn.2016030297
|
[14]
|
Ruiz-Llorente, L., Gallardo-Vara, E., Rossi, E., Smadja, D.M., Botella, L.M. and Bernabeu, C. (2017) Endoglin and Alk1 as Therapeutic Targets for Hereditary Hemorrhagic Telangiectasia. Expert Opinion on Therapeutic Targets, 21, 933-947. https://doi.org/10.1080/14728222.2017.1365839
|
[15]
|
Grignaschi, S., Sbalchiero, A., Spinozzi, G., Palermo, B.L., Cantarini, C., Nardiello, C., et al. (2022) Endoglin and Systemic Sclerosis: A Prisma-Driven Systematic Review. Frontiers in Medicine, 9, Article 964526. https://doi.org/10.3389/fmed.2022.964526
|
[16]
|
Gerrits, T., Zandbergen, M., Wolterbeek, R., Bruijn, J.A., Baelde, H.J. and Scharpfenecker, M. (2020) Endoglin Promotes Myofibroblast Differentiation and Extracellular Matrix Production in Diabetic Nephropathy. International Journal of Molecular Sciences, 21, Article 7713. https://doi.org/10.3390/ijms21207713
|
[17]
|
Rahimi, Z. (2016) The Role of Renin Angiotensin Aldosterone System Genes in Diabetic Nephropathy. Canadian Journal of Diabetes, 40, 178-183. https://doi.org/10.1016/j.jcjd.2015.08.016
|
[18]
|
邹健, 田丰, 孙圣燕, 等. 肾素-血管紧张素系统与糖尿病肾病[J]. 人民军医, 2012, 55(1): 68-70.
|
[19]
|
Zhang, C., Zhu, X., Li, L., Ma, T., Shi, M., Yang, Y., et al. (2019) A Small Molecule Inhibitor MCC950 Ameliorates Kidney Injury in Diabetic Nephropathy by Inhibiting NLRP3 Inflammasome Activation. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 1297-1309. https://doi.org/10.2147/dmso.s199802
|
[20]
|
Tang, S.C.W. and Yiu, W.H. (2020) Innate Immunity in Diabetic Kidney Disease. Nature Reviews Nephrology, 16, 206-222. https://doi.org/10.1038/s41581-019-0234-4
|
[21]
|
张金鑫, 高绪霞, 马立萍. 炎症因子对糖尿病肾脏疾病作用的研究进展[J]. 中国糖尿病杂志, 2024, 32(10): 788-790.
|
[22]
|
Maeda, Y., Inoguchi, T., Takei, R., Sawada, F., Sasaki, S., Fujii, M., et al. (2010) Inhibition of Chymase Protects against Diabetes-Induced Oxidative Stress and Renal Dysfunction in Hamsters. American Journal of Physiology-Renal Physiology, 299, F1328-F1338. https://doi.org/10.1152/ajprenal.00337.2010
|
[23]
|
Duan, S., Sun, L., Nie, G., Chen, J., Zhang, C., Zhu, H., et al. (2020) Association of Glomerular Complement C4c Deposition with the Progression of Diabetic Kidney Disease in Patients with Type 2 Diabetes. Frontiers in Immunology, 11, Article 2073. https://doi.org/10.3389/fimmu.2020.02073
|
[24]
|
Su, H., Wan, C., Song, A., Qiu, Y., Xiong, W. and Zhang, C. (2019) Oxidative Stress and Renal Fibrosis: Mechanisms and Therapies. In: Advances in Experimental Medicine and Biology, Springer, 585-604. https://doi.org/10.1007/978-981-13-8871-2_29
|
[25]
|
Rhee, E.P. (2016) NADPH Oxidase 4 at the Nexus of Diabetes, Reactive Oxygen Species, and Renal Metabolism. Journal of the American Society of Nephrology, 27, 337-339. https://doi.org/10.1681/asn.2015060698
|
[26]
|
Wu, X., Wang, H., Chen, H., Lin, H., Li, M., Yue, Z., et al. (2021) Overexpression of Smad7 Inhibits the TGF-β/Smad Signaling Pathway and EMT in Nphp1-Defective MDCK Cells. Biochemical and Biophysical Research Communications, 582, 57-63. https://doi.org/10.1016/j.bbrc.2021.10.037
|
[27]
|
Schunk, S.J., Floege, J., Fliser, D. and Speer, T. (2020) Wnt-β-Catenin Signalling—A Versatile Player in Kidney Injury and Repair. Nature Reviews Nephrology, 17, 172-184. https://doi.org/10.1038/s41581-020-00343-w
|
[28]
|
Meurette, O. and Mehlen, P. (2018) Notch Signaling in the Tumor Microenvironment. Cancer Cell, 34, 536-548. https://doi.org/10.1016/j.ccell.2018.07.009
|
[29]
|
Wang, J.Y., Gao, Y.B., Zhang, N., et al. (2014) miR-21 Overexpression Enhances TGF-β1-Induced Epithelial-to-Mesenchymal Transition by Target Smad7 and Aggravates Renal Damage in Diabetic Nephropathy. Molecular and Cellular Endocrinology, 392, 163-172.
|
[30]
|
张小燕, 王若楠, 孙嘉星, 等. 内皮间质转化在肾纤维化中的作用及机制研究进展[J]. 空军军医大学学报, 2022, 43(7): 359-364.
|
[31]
|
Livingston, M.J., Ding, H., Huang, S., Hill, J.A., Yin, X. and Dong, Z. (2016) Persistent Activation of Autophagy in Kidney Tubular Cells Promotes Renal Interstitial Fibrosis during Unilateral Ureteral Obstruction. Autophagy, 12, 976-998. https://doi.org/10.1080/15548627.2016.1166317
|
[32]
|
Lenoir, O., Jasiek, M., Hénique, C., Guyonnet, L., Hartleben, B., Bork, T., et al. (2015) Endothelial Cell and Podocyte Autophagy Synergistically Protect from Diabetes-Induced Glomerulosclerosis. Autophagy, 11, 1130-1145. https://doi.org/10.1080/15548627.2015.1049799
|
[33]
|
魏琪, 王菊宁, 刘利敏. 慢性缺氧通过激活缺氧诱导因子1α/microRNA-96通路诱导小管上皮细胞自噬异常参与肾间质纤维化[J]. 肾脏病与透析肾移植杂志, 2024, 33(1): 22-28.
|
[34]
|
杨林燕, 陈洁, 侯世杰, 等. 白芍总苷对糖尿病肾病小鼠肾纤维化及RhoA/ROCK1信号通路的影响[J/OL]. 中医学报, 1-11. http://kns.cnki.net/kcms/detail/41.1411.R.20240829.0926.012.html, 2025-06-24.
|
[35]
|
唐洗敏, 杨勇琴, 杨琇雯, 等. 地龙提取物蚓激酶对SD大鼠肾间质纤维化的改善作用[J]. 平顶山学院学报, 2024, 39(5): 123-128.
|
[36]
|
袁玲, 王蕾, 王宏, 等. 淫羊藿苷调控TGF-β1诱导的DNA高甲基化抑制5/6肾切除大鼠肾间质肌成纤维细胞增殖研究[J]. 药物评价研究, 2024, 47(12): 2770-2777.
|
[37]
|
沈鑫蕾, 朱清如, 余文凯, 等. 盐炙车前子调控肾小管上皮-间充质转化改善肾纤维化的机制研究[J]. 中国中药杂志, 2025, 50(5): 1195-1208.
|
[38]
|
吴朋烊, 赵铃, 李秋月, 等. 三白草酮对UUO 小鼠肾组织纤维化的抑制作用及其机制[J]. 中国实验动物学报, 2024, 32(10): 1270-1280.
|