[1]
|
Zhang, S., Guan, D., Xue, Z., Shen, C., Shen, Y., Hu, G., et al. (2025) Enhanced Elevated-Temperature Performance of LiMn2O4 Cathodes in Lithium-Ion Batteries via a Multifunctional Electrolyte Additive. Chemical Engineering Journal, 503, Article 158219. https://doi.org/10.1016/j.cej.2024.158219
|
[2]
|
Hu, W., Sun, B., Zhang, X., Du, X., An, X., Gao, F., et al. (2025) New Insights into the Ion/Electron Transfer Mechanisms of LiMn2O4-Based Membrane Electrodes at Different Electron Fluxes. Small, 21, Article 2407656. https://doi.org/10.1002/smll.202407656
|
[3]
|
Ye, X., Fei, X., Liu, M., Gao, H., Qiu, B., Yin, H., et al. (2024) Laser-Induced Regeneration of Spent LiMn2O4 Cathode into High-Performance Ni-Doped LiMn2O4 Cathode. Advanced Materials, 37, Article 2416537. https://doi.org/10.1002/adma.202416537
|
[4]
|
Wang, J., Xu, Y., Wang, J. and Ding, X. (2023) New Strategy for Enhancing the Electrochemical Performance of LiMn2O4 Cathode Material. Journal of Alloys and Compounds, 932, Article 167642. https://doi.org/10.1016/j.jallcom.2022.167642
|
[5]
|
Wang, J., Xu, Y., Niu, Y., Liu, Y. and Yao, X. (2023) Lithium-Ion Conductivity Epitaxial Layer Contributing to the Structure and Cycling Stability of LiMn2O4 Cathodes. ACS Sustainable Chemistry & Engineering, 11, 5408-5419. https://doi.org/10.1021/acssuschemeng.2c06738
|
[6]
|
Torres-Castanedo, C.G., Evmenenko, G., Luu, N.S., Das, P.M., Hyun, W.J., Park, K., et al. (2023) Enhanced LiMn2O4 Thin-Film Electrode Stability in Ionic Liquid Electrolyte: A Pathway to Suppress Mn Dissolution. ACS Applied Materials & Interfaces, 15, 35664-35673. https://doi.org/10.1021/acsami.3c04961
|
[7]
|
Zhang, Y., Liu, Z., Wang, J., Du, H., Sun, Q., Gao, R., et al. (2025) Efficient and High-Selective Lithium Extraction from Waste LiMn2O4 Batteries by Synergetic Pyrolysis with Polyvinyl Chloride. Waste Management, 198, 95-105. https://doi.org/10.1016/j.wasman.2025.02.049
|
[8]
|
Yin, R., Zhao, Z., Xu, W. and He, L. (2025) LiMn2O4 Submicronization: Shorten Li+ Diffusion Pathway for Enhancing Electrochemical Lithium Extraction and Cycle Performance. Separation and Purification Technology, 359, Article 130394. https://doi.org/10.1016/j.seppur.2024.130394
|
[9]
|
Holkar, R., Birje, D., Giri, D.V.V., Lonkar, S., Kalubarme, R. and Arbuj, S. (2025) Utilization of Manganese Ore Waste in Development of Mesoporous Mn3o4 and Spinel LiMn2O4 Octahedrons as a Cathode for Li-Ion Battery. Ceramics International, 51, 2381-2388. https://doi.org/10.1016/j.ceramint.2024.11.220
|
[10]
|
Rada, E., Lima, E., Ruiz, F. and Sergio Moreno, M. (2023) Synthesis of LiMn2O4 Nanostructures with Controlled Morphology. Materials Science and Engineering: B, 292, Article 116410. https://doi.org/10.1016/j.mseb.2023.116410
|
[11]
|
Paparoni, F., Mijit, E., Darjazi, H., Nobili, F., Zitolo, A., Di Cicco, A., et al. (2023) Oxide Coating Role on the Bulk Structural Stability of Active LiMn2O4 Cathodes. The Journal of Physical Chemistry C, 127, 8649-8656. https://doi.org/10.1021/acs.jpcc.3c00342
|
[12]
|
Yan, G., Li, P., Xie, S., Li, J., Li, W., Zheng, J., et al. (2025) Enhancing Structure and Cycling Stability of LiMn2O4 Cathode Materials via MgAl2O4 Surface Modification. Ceramics International, 51, 12029-12034. https://doi.org/10.1016/j.ceramint.2025.01.054
|
[13]
|
Pei, Z., Wang, J., Wang, H., Zheng, K., Wang, Q., Zhou, X., et al. (2025) Zn2⁺ Doping Regulates the Surface Morphology and Mn Dissolution of Spinel LiMn2O4 Significantly Enhancing Its Electrochemical Performance. Ceramics International, 51, 14575-14585. https://doi.org/10.1016/j.ceramint.2025.01.294
|
[14]
|
Kim, E., Lee, J., Park, J., Kim, H. and Nam, K.W. (2025) Conductive MOF-Derived Coating for Suppressing the Mn Dissolution in LiMn2O4 toward Long-Life Lithium-Ion Batteries. Nano Letters, 25, 619-627. https://doi.org/10.1021/acs.nanolett.4c03482
|
[15]
|
Margarette, S.J., Bangeppagari, M., Vijaya Babu, K., Madhuri Sailaja, J., Veeraiah, V., Sangaraju, S., et al. (2024) Ce and Cu Co-Doped LiMn2O4 Cathode Material: Synthesis, Characterization and Electrochemical Performances. Ceramics International, 50, 4955-4964. https://doi.org/10.1016/j.ceramint.2023.11.238
|
[16]
|
Li, F., Jiao, Y., Yang, S., Mao, W., Tao, Q., Bai, C., et al. (2024) Electrochemical Activation Inducing Rocksalt-to-Spinel Transformation for Prolonged Service Life of LiMn2O4 Cathodes. Small, 20, Article 2406116. https://doi.org/10.1002/smll.202406116
|
[17]
|
Karoui, K., Trabelsi, K. and Drissi, N. (2024) Investigation of the Optical, Electric Properties, and Conduction Mechanism of the Cubic Spinel LiMn2O4. Applied Organometallic Chemistry, 39, e7911. https://doi.org/10.1002/aoc.7911
|
[18]
|
Erraji, A., Masrour, R. and Xu, L. (2024) Ab Initio Study of LiMn2O4 Cathode: Electrochemical and Optical Properties for Li-Ion Batteries and Optoelectronic Devices. Ionics, 30, 7917-7928. https://doi.org/10.1007/s11581-024-05841-6
|
[19]
|
Yang, M., Liang, Q., Guo, Y., Guo, J., Xiang, M., Bai, W., et al. (2023) Boosting High-Rate Capacity and Long-Cycle Stability of Spinel LiMn2O4 by the Cr Al Co-Doping Strategy. Journal of Energy Storage, 72, Article 108528. https://doi.org/10.1016/j.est.2023.108528
|
[20]
|
Xu, W., Li, Q., Sui, F., Guo, S., Qi, R., Yan, C., et al. (2023) Unveiling the Role of Ni Doping in the Electrochemical Performance Improvement of the LiMn2O4 Cathodes. Applied Surface Science, 624, Article 157142. https://doi.org/10.1016/j.apsusc.2023.157142
|
[21]
|
Xu, J., Zhu, S., Xu, Z. and Zhu, H. (2023) The Basic Physical Properties of Li2MnO3 and LiMn2O4 Cathode Materials. Computational Materials Science, 229, Article 112426. https://doi.org/10.1016/j.commatsci.2023.112426
|
[22]
|
Wu, C., Xu, M., Zhang, C., Ye, L., Zhang, K., Cong, H., et al. (2023) Cost-Effective Recycling of Spent LiMn2O4 Cathode via a Chemical Lithiation Strategy. Energy Storage Materials, 55, 154-165. https://doi.org/10.1016/j.ensm.2022.11.043
|
[23]
|
Hou, X., Liu, X., Wang, H., Zhang, X., Zhou, J. and Wang, M. (2023) Specific Countermeasures to Intrinsic Capacity Decline Issues and Future Direction of LiMn2O4 Cathode. Energy Storage Materials, 57, 577-606. https://doi.org/10.1016/j.ensm.2023.02.015
|
[24]
|
Gu, J., Zhou, G., Chen, L., Li, X., Luo, G., Fan, L., et al. (2023) Particle Size Control and Electrochemical Lithium Extraction Performance of LiMn2O4. Journal of Electroanalytical Chemistry, 940, Article 117487. https://doi.org/10.1016/j.jelechem.2023.117487
|
[25]
|
Zhou, X., Chen, M., Bai, H., Su, C., Feng, L. and Guo, J. (2014) Preparation and Electrochemical Properties of Spinel LiMn2O4 Prepared by Solid-State Combustion Synthesis. Vacuum, 99, 49-55. https://doi.org/10.1016/j.vacuum.2013.04.011
|
[26]
|
Zhan, D., Yang, F., Zhang, Q., Hu, X. and Peng, T. (2014) Effect of Solid-State Reaction Temperature on Electrochemical Performance of LiMn2O4 Submicro-Rods as Cathode Material for Li-Ion Battery by Using Γ-Mnooh Submicro-Rods as Self-Template. Electrochimica Acta, 129, 364-372. https://doi.org/10.1016/j.electacta.2014.02.141
|
[27]
|
Silva, J.P., Biaggio, S.R., Bocchi, N. and Rocha-Filho, R.C. (2014) Practical Microwave-Assisted Solid-State Synthesis of the Spinel LiMn2O4. Solid State Ionics, 268, 42-47. https://doi.org/10.1016/j.ssi.2014.09.025
|
[28]
|
Lv, X., Chen, S., Chen, C., Liu, L., Liu, F. and Qiu, G. (2014) One-Step Hydrothermal Synthesis of LiMn2O4 Cathode Materials for Rechargeable Lithium Batteries. Solid State Sciences, 31, 16-23. https://doi.org/10.1016/j.solidstatesciences.2014.02.015
|
[29]
|
Kakuda, T., Uematsu, K., Toda, K. and Sato, M. (2007) Electrochemical Performance of Al-Doped LiMn2O4 Prepared by Different Methods in Solid-State Reaction. Journal of Power Sources, 167, 499-503. https://doi.org/10.1016/j.jpowsour.2007.01.035
|
[30]
|
Massarotti, V., Capsoni, D. and Bini, M. (2006) Nanosized LiMn2O4 from Mechanically Activated Solid-State Synthesis. Journal of Solid State Chemistry, 179, 590-596. https://doi.org/10.1016/j.jssc.2005.11.019
|
[31]
|
Berbenni, V. and Marini, A. (2003) Solid State Synthesis of Lithiated Manganese Oxides from Mechanically Activated Li2CO3-Mn3O4 Mixtures. Journal of Analytical and Applied Pyrolysis, 70, 437-456. https://doi.org/10.1016/s0165-2370(03)00003-2
|
[32]
|
Zhao, H., Li, F., Liu, X., Xiong, W., Chen, B., Shao, H., et al. (2015) A Simple, Low-Cost and Eco-Friendly Approach to Synthesize Single-Crystalline LiMn2O4 Nanorods with High Electrochemical Performance for Lithium-Ion Batteries. Electrochimica Acta, 166, 124-133. https://doi.org/10.1016/j.electacta.2015.03.040
|
[33]
|
Zhao, H., Li, F., Liu, X., Cheng, C., Zhang, Z., Wu, Y., et al. (2015) Effects of Equimolar Mg (II) and Si (IV) Co-Doping on the Electrochemical Properties of Spinel LiMn2-2xmgxsixo4 Prepared by Citric Acid Assisted Sol-Gel Method. Electrochimica Acta, 151, 263-269. https://doi.org/10.1016/j.electacta.2014.11.095
|
[34]
|
Zhang, H., Xu, Y. and Liu, D. (2015) Novel Nanostructured LiMn2O4 Microspheres for High Power Li-Ion Batteries. RSC Advances, 5, 11091-11095. https://doi.org/10.1039/c4ra13041c
|
[35]
|
Liu, Q., Wang, S., Tan, H., Yang, Z. and Zeng, J. (2013) Preparation and Doping Mode of Doped LiMn2O4 for Li-Ion Batteries. Energies, 6, 1718-1730. https://doi.org/10.3390/en6031718
|
[36]
|
Ding, Y., Xie, J., Cao, G., Zhu, T., Yu, H. and Zhao, X. (2010) Single-Crystalline LiMn2O4 Nanotubes Synthesized via Template-Engaged Reaction as Cathodes for High-Power Lithium-Ion Batteries. Advanced Functional Materials, 21, 348-355. https://doi.org/10.1002/adfm.201001448
|
[37]
|
Cao, J., Guo, S., Yan, R., Zhang, C., Guo, J. and Zheng, P. (2018) Carbon-Coated Single-Crystalline LiMn2O4 Nanowires Synthesized by High-Temperature Solid-State Reaction with High Capacity for Li-Ion Battery. Journal of Alloys and Compounds, 741, 1-6. https://doi.org/10.1016/j.jallcom.2018.01.107
|
[38]
|
Zawrah, M.F., El Fadaly, E.A., Khattab, R.M., Aly, M.H. and El Shafei, H. (2020) Synthesis and Characterization of Nano Mn3O4 and LiMn2O4 Spinel from Manganese Ore and Pure Materials. Ceramics International, 46, 17514-17522. https://doi.org/10.1016/j.ceramint.2020.04.049
|
[39]
|
Zhao, Q., Li, X., Shao, Z., Xu, B., Liu, C. and Jiang, M. (2018) Effect of Molar Ratio of Li2CO3/MnO2 on Characteristic of the Lithium Manganate Synthesized via High Temperature Ball Milling Method. International Journal of Electrochemical Science, 13, 3691-3699. https://doi.org/10.20964/2018.04.46
|
[40]
|
Becker, D., Haberkorn, R. and Kickelbick, G. (2019) Reactive Milling Induced Structure Changes in Phenylphosphonic Acid Functionalized LiMn2O4 Nanocrystals—Synthesis, Rietveld Refinement, and Thermal Stability. European Journal of Inorganic Chemistry, 2019, 4835-4845. https://doi.org/10.1002/ejic.201900946
|
[41]
|
Tian, L., Su, C., Wang, Y., Wen, B., Bai, W. and Guo, J. (2019) Electrochemical Properties of Spinel LiMn2O4 Cathode Material Prepared by a Microwave-Induced Solution Flameless Combustion Method. Vacuum, 164, 153-157. https://doi.org/10.1016/j.vacuum.2019.03.011
|
[42]
|
Xie, S., Yuan, M., Wang, T., Liu, J., Yan, J., Li, Z., et al. (2022) Sodium Dodecyl Sulfate (SDS)-Assisted Preparation of Homogeneous Monodisperse MnCO3 Microspheres and Its Application to the Synthesis of LiMn2O4. Ceramics International, 48, 10113-10119. https://doi.org/10.1016/j.ceramint.2021.12.221
|
[43]
|
Kitta, M., Akita, T. and Kohyama, M. (2013) Preparation of a Spinel LiMn2O4 Single Crystal Film from a MNO Wafer. Journal of Power Sources, 232, 7-11. https://doi.org/10.1016/j.jpowsour.2012.12.096
|
[44]
|
Wang, H., Qian, D., Lu, Z., Li, Y., Cheng, R. and Li, Y. (2007) Facile Synthesis and Electrochemical Properties of Hierarchical MnO2 Submicrospheres and LiMn2O4 Microspheres. Journal of Physics and Chemistry of Solids, 68, 1422-1427. https://doi.org/10.1016/j.jpcs.2007.02.041
|
[45]
|
Abou-Rjeily, J., Bezza, I., Laziz, N.A., Autret-Lambert, C., Sougrati, M.T. and Ghamouss, F. (2020) High-Rate Cyclability and Stability of LiMn2O4 Cathode Materials for Lithium-Ion Batteries from Low-Cost Natural β-MnO2. Energy Storage Materials, 26, 423-432. https://doi.org/10.1016/j.ensm.2019.11.015
|
[46]
|
Zhan, D., Zhang, Q., Hu, X., Zhu, G. and Peng, T. (2013) Single-Crystalline LiMn2O4 Nanorods as Cathode Material with Enhanced Performance for Li-Ion Battery Synthesized via Template-Engaged Reaction. Solid State Ionics, 239, 8-14. https://doi.org/10.1016/j.ssi.2013.03.015
|
[47]
|
Wan, C., Cheng, M. and Wu, D. (2011) Synthesis of Spherical Spinel LiMn2O4 with Commercial Manganese Carbonate. Powder Technology, 210, 47-51. https://doi.org/10.1016/j.powtec.2011.02.017
|