高功率尖晶石型LiMn2O4正极材料的固相法制备工艺研究
Research on Solid-State Preparation Methods of Spinel LiMn2O4 Cathode Materials with High Power
DOI: 10.12677/ms.2025.156146, PDF, HTML, XML,   
作者: 李 昂, 曹雯雯, 李子荣, 赵红远*:安徽科技学院化学与材料工程学院,安徽 蚌埠;赵孟元, 王占奎:河南科技学院机电学院,河南 新乡;谭祖宪:安徽赢瑞新能源科技有限公司,安徽 蚌埠;冉淇文:西华师范大学化学化工学院,四川 南充;刘兴泉:电子科技大学材料与能源学院,四川 成都
关键词: 动力锂离子电池高功率尖晶石型LiMn2O4固相法锰源Power Lithium-Ion Battery High Power Spinel LiMn₂O₄ Solid-State Method Manganese Sources
摘要: 高功率尖晶石型LiMn₂O₄正极材料具有锰资源丰富、原料成本低、生产技术成熟、电压平台高、无毒等优点。作为生产合成LiMn₂O₄正极材料最常用的方法,固相法具有显著的生产成本优势,不仅生产设备价格便宜,而且不涉及复杂的专业化操作,使得固相合成工业化生产成本相对较低,有助于实现高功率尖晶石型LiMn₂O₄正极材料的规模化制备。在本文中,阐述了固相法制备高功率尖晶石型LiMn2O4正极材料的基本原理,并对相关的多种固相反应合成策略进行了分析,包括高温固相法、高能球磨法、微波辅助固相法等。此外,本文详细综述了基于不同锰源制备高功率尖晶石型LiMn2O4正极材料的研究现状。最后,对开发低成本、高性能的高功率尖晶石型LiMn2O4正极材料固相合成工艺进行了展望。
Abstract: Spinel LiMn₂O₄ with three-dimensional diffusion channels of lithium ions has several advantages such as high voltage platform, abundant manganese resource, and environmental friendliness, making it the ideal cathode materials for high-power lithium-ion batteries. Solid-state methods are very important for preparing LiMn₂O₄ cathode materials due the simple sintering equipment operations and relatively low industrial production costs, which may achieve the large-scale production. In this work, the basic principle of solid-state preparation of spinel LiMn₂O₄ cathode materials was elucidated, and various solid-state synthesis strategies for spinel LiMn₂O₄ cathode materials were analyzed, including high-temperature solid-state method, high-energy ball milling method, microwave-assisted solid-state method, etc. Moreover, a detailed review was conducted on the research progress of spinel LiMn₂O₄ cathode materials prepared by using different manganese sources. In addition, the prospect of solid-state synthesis methods for developing the low-cost and high-performance LiMn₂O₄ cathode materials was discussed.
文章引用:李昂, 曹雯雯, 赵孟元, 李子荣, 谭祖宪, 王占奎, 冉淇文, 刘兴泉, 赵红远. 高功率尖晶石型LiMn2O4正极材料的固相法制备工艺研究[J]. 材料科学, 2025, 15(6): 1372-1380. https://doi.org/10.12677/ms.2025.156146

1. 引言

尖晶石型LiMn2O4具有三维锂离子扩散通道、电压平台高、锰资源丰富以及环境友好等优点,成为一种理想的高功率动力锂离子电池正极材料[1]-[6]。该材料具有的三维锂离子扩散通道能够实现锂离子在充放电过程中的高效输运,进而表现出良好的电荷传输能力和倍率性能。尖晶石型LiMn2O4正极材料的高电压平台高(约4.1 V vs. Li⁺/Li)有助于提升LiMn₂O₄电池的能量密度[7]-[11]。在相同的动力锂离子电池系统电压下,LiMn2O4电池需要的串联单体数更少,有助于降低电池系统的制造成本,而且在相同电流下实现更高的功率输出,能够适配动力锂离子电池的各种高功率应用场景[2] [12]-[14]。此外,该材料具有的锰资源丰富的优点能够在很大程度上降低规模化生产成本,符合大规模工业化生产的经济性要求,而且该材料无毒的特性也符合现代社会对绿色能源的需求[15]-[18]。这些优异的特征使得高功率尖晶石型LiMn2O4正极材料在动力锂离子电池领域具有广阔的应用前景。然而,需要注意的是该材料在充放电循环过程中存在严重的可逆比容量衰减问题,这主要是因为LiMn2O4正极材料存在Jahn-Teller效应和Mn3+的溶解问题严重影响了该材料的结构稳定性[19]-[24]。尽管这些问题对该材料的规模化应用产生了影响,但是通过材料改性和工艺优化,高功率尖晶石型LiMn2O4正极材料的循环稳定性问题也将得到逐步解决。

作为制备LiMn2O4正极材料的重要方法,固相法具备烧结设备操作简单,不涉及复杂的控制仪器,锰源来源广泛,工业化生产成本相对较低,易于实现规模化的制备生产[25]-[27]。然而,该制备方法通常需要进行长时间的高温煅烧,能耗较高,而且也容易导致副反应的发生,影响产品的质量。固体反应原材料的研磨混合过程容易出现混合不均匀的情况,导致不同区域产品的成分偏差,进而影响产物结构和性能的一致性。此外,在固相法制备高功率尖晶石型LiMn2O4正极材料的过程中,长时间的高温煅烧容易出现样品颗粒团聚问题,粒径分布不均匀会对锂离子的扩散产生较大的影响,而且还会降低活性材料的比表面积,从而影响该材料电化学性能的发挥。

为了实现低成本、高性能LiMn2O4正极材料的固相法制备,本文阐述了固相法制备高功率尖晶石型LiMn2O4正极材料的基本原理,并对相关的多种固相反应合成策略进行了分析,包括高温固相法、高能球磨法、微波辅助固相法等。此外,本文详细综述了基于不同锰源制备高功率尖晶石型LiMn2O4正极材料的研究现状。最后,对开发低成本、高性能的高功率尖晶石型LiMn2O4正极材料固相合成工艺进行了展望,以期促进高功率尖晶石型LiMn2O4正极材料的规模化生产应用,助力新能源汽车产业的发展。

2. 固相法的基本原理

作为制备高功率尖晶石型LiMn2O4正极材料的最常用方法,固相法通过固体反应原材料之间的扩散作用和化学反应,实现锰源中的锰原子和锂源中的锂原子在一定条件下相互作用,从而合成具有尖晶石结构的高功率LiMn2O4正极材料[28]-[31]。通常情况下,按化学计量比称量一定量的锰源(如MnO2、MnCO3、Mn3O4、MnO等)和锂源(如Li2CO3、LiOH等),并通过球磨等研磨方式实现锰源和锂源的均匀混合。然后,将所得的均匀混合物在高温环境下煅烧处理。在高温条件下,锰源和锂源发生化学反应,锰源中的锰离子与锂源中的锂离子以及氧离子进行旧键断裂和新键重构,从而形成尖晶石结构的LiMn2O4正极材料,其XRD表征结果见图1。从晶体结构的角度分析该材料,氧原子以立方密堆积的方式排列,形成四面体和八面体空隙[32] [33]。在这种结构中,锰原子占据八面体位,锂原子填充在四面体空隙,从而构成三维的锂离子扩散通道,赋予高功率尖晶石型LiMn2O4正极材料的良好的电化学性能[34]-[36]

Figure 1. XRD pattern of (a) LiMn2O4 nanorods and (b) LiMn2O4 particles prepared by solid state method [32]

1. (a) LiMn2O4纳米棒的XRD图谱;(b) LiMn2O4颗粒的XRD谱图[32]

3. 固相法的分类

目前,高功率尖晶石型LiMn2O4正极材料的固相法制备工艺主要包括高温固相法、高能球磨法、微波辅助固相法等[27] [37]-[41]。这些固相反应的驱动力主要来自于固态反应原材料混合物中氧化剂和还原剂之间的化学势差。在高温下,固体反应物颗粒的表面能增加,原子或离子的热运动加剧,从而促进反应的进行。随着故乡合成反应的进行,颗粒内部也会发生扩散,使得固相反应逐步向颗粒内部推进,最终实现固体反应混合物的完全反应,获得LiMn2O4正极材料。

3.1. 高温固相法

高温固相法是制备尖晶石型LiMn2O4正极材料的传统方法,其基本工艺流程简单、设备操作方便、易于实现大规模工业化生产[26] [37]。然而,该方法需在高温下进行长时间的固相反应,能耗较大,而且高温烧结过程易导致产品颗粒团聚,粒径分布不均匀,影响LiMn2O4正极材料的电化学性能。Cao等人使用碳包覆的MnO2作为前驱体,在空气环境下通过高温固态合成方法获得碳包覆的单晶LiMn2O4纳米线[37]。在没有碳涂层的情况下,获得的LiMn2O4是块状的。MnO2上的碳涂层作为空间限制层,在固相反应过程中支撑了LiMn2O4的纳米线形态。由于高度结晶的纳米线形态和紧密涂覆的薄碳层的优点,所制备的LiMn2O4@C纳米线具有大容量和长期循环稳定性。

3.2. 高能球磨法

高能球磨法是借助研磨介质的强烈机械作用,使固态反应原材料颗粒细化,并实现二者的均匀混合。通过打破反应物和还原剂颗粒间的团聚体,增大二者的反应比表面积,进而促进固相反应的实现[34] [39]。球磨过程还能够引入缺陷和应力,降低反应物和还原剂的反应活化能,使固相反应在相对较低的温度下也能实现。不过需要注意的是,高能球磨过程可能会引入杂质,而且球磨时间过长可能会导致颗粒过度粉碎或产生结构缺陷,从而对材料性能产生影响。Zhang等人通过球磨结合高温煅烧策略成功合成了一种新型纳米结构LiMn2O4微球[34]。研究结果表明,LiMn2O4微球具有2.8 g∙cm−3的高堆积密度,直径约为0.5~2 mm的微球由重组的纳米粒子组成。作为电极,这些微/纳米结构的LiMn2O4微球显示出优异的速率能力和循环稳定性。在高温环境下,LiMn2O4微球也能表现出较高的体积能量密度。

3.3. 微波辅助固相法

微波辅助固相法是利用微波场的快速加热功能,实现固相反应体系的快速升温,进而促进材料的快速合成[27] [41]。和传统高温固相法相比,该方法不仅缩短了固相反应时间,还能够提高产物的结晶度和纯度,从而提高产物的质量和性能一致性。此外,微波辅助固相法还能有效地减少颗粒的团聚现象,制备的产品颗粒粒径较小且粒径分布均匀。Silva等人使用家用微波炉,通过微波辅助的固态反应方法制备了尖晶石LiMn2O4 [27]。研究结果表明,在微波加热仅3分钟后,尖晶石LiMn2O4就以单相形式获得,而且颗粒具有棱柱形态。当用于电化学性能测试时,合成材料具有尖晶石LiMn2O4的特征伏安曲线,并且能够表现出良好的电化学稳定性和高放电性能。因此,快速简便的微波辅助合成法可以用来用作锂离子电池正极材料的尖晶石型LiMn2O4

4. 不同锰源固相合成尖晶石型LiMn2O4

利用固相法制备高功率尖晶石型LiMn2O4正极材料时,需要选择合适的固相反应策略。同时还需要注意的是,不同的锰源(如MnO2、MnCO3、Mn3O4、MnO等)具有不同的结构和形貌,将其作为固相反应物制备的尖晶石型LiMn2O4正极材料也会表现出不同的电化学性能[25] [31] [38] [42]-[46]。因此,在制备高功率尖晶石型LiMn2O4正极材料时,也要为固相反应选择合适的锰源。

4.1. MnO2为锰源制备尖晶石型LiMn2O4

在制备高功率尖晶石型LiMn2O4正极材料过程中,MnO2作为锰源表现出较强的氧化性,这对于促进固相反应混合物中锰原子与锂原子的氧化还原反应具有重要的作用,从而实现锰元素从+4价到+3价的转变,形成尖晶石型LiMn2O4 [45] [46]。此外,MnO2在自然界中的分布较广,原料来源丰富,这在很大程度上能够降低原材料成本,能够满足大规模工业化生产的需求。Abou-Rjeily等人选用β-MnO2作为锰源,通过固相反应合成尖晶石型LiMn2O4,然后在微棒状锂浸渍条件下进行热煅烧提高产品的结晶度,其合成示意图和循环性能见图2 [45]。研究结果表面,合成的尖晶石型LiMn2O4正极材料表现出良好的电化学性能,能够实现高倍率(高达9C)下的可逆循环,同时保持其初始放电容量的一半,总体放电比容量衰减仅为7%。特别地,该材料在进行500次充电/放电循环后,仍然表现出较好的稳定性,总体放电比容量衰减仅为3%。

Figure 2. Synthesis diagram and cyclic performance of LiMn2O4 prepared by using MnO2 as manganese source [45]

2. MnO2作为锰源制备LiMn2O4的合成示意图和循环性能[45]

4.2. MnCO3为锰源制备尖晶石型LiMn2O4

MnCO3具有较高的化学反应活性,能够在相对较低的烧结温度下与锂源固相反应,生成尖晶石型 LiMn2O4 [25] [47]。这有助于降低固相反应的能耗,能在一定程度上减少因高温反应导致的副反应的发生和颗粒团聚现象。MnCO3作为一种碳酸盐,在制备过程中不会释放出对生态环境有害的物质,完全符合绿色环保的要求,这能够在很大程度上减少对生态环境的污染,促进动力锂离子电池行业的可持续发展。Zhou等人选用碳酸锰作为锰源,柠檬酸为燃料,通过固态燃烧法制备尖晶石型LiMn2O4正极材料,其循环性能见图3 [25]。研究结果表明,所获得的LiMn2O4粉末具有良好的结构和物理化学性质。单相LiMn2O4产物的成功合成在很大程度上取决于第二阶段的煅烧温度。经过第二阶段700℃下煅烧制备的LiMn2O4粉末粒径分布均匀,电荷转移阻抗最低,具有最佳的电化学活性和最高的放电容量(119.1 mAh/g)。

Figure 3. Cycling performance of the LiMn2O4 samples prepared at different temperatures with MnCO3 as manganese source [25]

3. MnCO3为锰源在不同温度下制备LiMn2O4样品的循环性能[25]

4.3. Mn3O4为锰源制备尖晶石型LiMn2O4

Mn3O4的工艺制备较为成熟,生产成本相对较低,来源广泛,这为Mn3O4作为锰源实现LiMn2O4的大规模工业化生产提供了一定的经济基础[31] [38]。Mn3O4属于无毒无害物质,其在制备尖晶石型LiMn2O4正极材料过程中不会对生态环境造成污染。基于Mn3O4锰源制备尖晶石型LiMn2O4正极材料的合成工艺与现有的锂离子电池正极材料生产工艺相兼容,这为基于Mn3O4锰源实现LiMn2O4正极材料的大规模工业化生产提供了可能。Zawrah等人选用从锰矿中浸出的Mn3O4或由纯化学品制备的Mn3O4作为锰源,通过固态法制备LiMn2O4尖晶石正极材料[38]。研究结果表明,基于锰矿中浸出的Mn3O4作为锰源制备的LiMn2O4纯度达到82%,而基于纯化学品中制备的Mn3O4作为锰源制备的LiMn2O4纯度达到99.1%。

4.4. MnO为锰源制备尖晶石型LiMn2O4

MnO的化学性质较为稳定,这有助于实现MnO作为锰源制备尖晶石型LiMn2O4正极材料的安全生产,能够降低工业化生产过程中的安全风险[30] [43]。通过控制反应物浓度和搅拌速率等条件,能够实现对MnO颗粒形貌的有效调控,进而调控目标产物LiMn2O4的形貌和性能。此外,MnO来源广泛,原料价格相对较低,有助于降低尖晶石型LiMn2O4正极材料的生产成本,进而提升动力锂离子电池行业的整体经济效益。Kitta等人选用MnO晶片作为锰源,通过固态反应成功制备了具有原子级平坦表面的单晶LiMn2O4薄膜[43]。研究结果表面,LiMn2O4薄膜的单晶生长取决于MnO晶片的取向。合成的LiMn2O4薄膜具有原子级平坦表面,具有层间高度的台阶。循环伏安法和恒电流实验结果表明,合成的LiMn2O4薄膜具有良好的电化学活性。

5. 结论

尖晶石型LiMn2O4正极材料因其高功率和和优异的倍率性能在混合动力汽车启停系统和纯电动汽车的快速加速场景中有着重要的应用。该材料在电动工具、轻型电动车以及储能领域也发挥着越来越重要的作用。然而,LiMn2O4的Jahn-Teller效应和Mn3+溶解问题对其规模化生产应用产生了严重的影响。作为制备高功率尖晶石型LiMn2O4正极材料的最常用方法,固相法通过固体反应原材料之间的扩散作用和化学反应,实现锰源中的锰原子和锂源中的锂原子在一定条件下相互作用,从而合成具有尖晶石结构的高功率LiMn2O4正极材料。本文探讨了高功率尖晶石型LiMn2O4正极材料的各种固相合成策略,包括高温固相法、高能球磨法、微波辅助固相法等。高温固相法制备高功率尖晶石型LiMn2O4正极材料具有设备简单,工艺成熟,易于工业化的优点,但该方法存在能耗高、副反应多、颗粒团聚等问题。高能球磨法能实现固相反应物的均匀混合,但高能球磨设备成本高。微波辅助固相法具有快速加热和能源效率高的优点,但是该方法面临着微波加热设备复杂性和局部过热的挑战。不同的锰源(MnO2, MnCO3, Mn3O4, MnO)具有不同的结构和形貌,也会对尖晶石型LiMn2O4正极材料的电化学性能产生较大的影响。MnO2具有很强的氧化性和广泛的可用性,MnCO3具有高反应性和环保性,Mn3O₄成本低且无毒,MnO具有稳定的化学性质和可控的颗粒形态。未来的研究工作可重点考虑优化固态合成路径,采用低温预烧和高温煅烧相结合的方式,并选择相匹配的锰源,实现增强LiMn2O4正极材料电化学性能的同时,降低固相反应原材料成本和生产能耗,促进该材料的规模化生产应用,从而推动新能源汽车产业的发展。

NOTES

*通讯作者。

参考文献

[1] Zhang, S., Guan, D., Xue, Z., Shen, C., Shen, Y., Hu, G., et al. (2025) Enhanced Elevated-Temperature Performance of LiMn2O4 Cathodes in Lithium-Ion Batteries via a Multifunctional Electrolyte Additive. Chemical Engineering Journal, 503, Article 158219.
https://doi.org/10.1016/j.cej.2024.158219
[2] Hu, W., Sun, B., Zhang, X., Du, X., An, X., Gao, F., et al. (2025) New Insights into the Ion/Electron Transfer Mechanisms of LiMn2O4-Based Membrane Electrodes at Different Electron Fluxes. Small, 21, Article 2407656.
https://doi.org/10.1002/smll.202407656
[3] Ye, X., Fei, X., Liu, M., Gao, H., Qiu, B., Yin, H., et al. (2024) Laser-Induced Regeneration of Spent LiMn2O4 Cathode into High-Performance Ni-Doped LiMn2O4 Cathode. Advanced Materials, 37, Article 2416537.
https://doi.org/10.1002/adma.202416537
[4] Wang, J., Xu, Y., Wang, J. and Ding, X. (2023) New Strategy for Enhancing the Electrochemical Performance of LiMn2O4 Cathode Material. Journal of Alloys and Compounds, 932, Article 167642.
https://doi.org/10.1016/j.jallcom.2022.167642
[5] Wang, J., Xu, Y., Niu, Y., Liu, Y. and Yao, X. (2023) Lithium-Ion Conductivity Epitaxial Layer Contributing to the Structure and Cycling Stability of LiMn2O4 Cathodes. ACS Sustainable Chemistry & Engineering, 11, 5408-5419.
https://doi.org/10.1021/acssuschemeng.2c06738
[6] Torres-Castanedo, C.G., Evmenenko, G., Luu, N.S., Das, P.M., Hyun, W.J., Park, K., et al. (2023) Enhanced LiMn2O4 Thin-Film Electrode Stability in Ionic Liquid Electrolyte: A Pathway to Suppress Mn Dissolution. ACS Applied Materials & Interfaces, 15, 35664-35673.
https://doi.org/10.1021/acsami.3c04961
[7] Zhang, Y., Liu, Z., Wang, J., Du, H., Sun, Q., Gao, R., et al. (2025) Efficient and High-Selective Lithium Extraction from Waste LiMn2O4 Batteries by Synergetic Pyrolysis with Polyvinyl Chloride. Waste Management, 198, 95-105.
https://doi.org/10.1016/j.wasman.2025.02.049
[8] Yin, R., Zhao, Z., Xu, W. and He, L. (2025) LiMn2O4 Submicronization: Shorten Li+ Diffusion Pathway for Enhancing Electrochemical Lithium Extraction and Cycle Performance. Separation and Purification Technology, 359, Article 130394.
https://doi.org/10.1016/j.seppur.2024.130394
[9] Holkar, R., Birje, D., Giri, D.V.V., Lonkar, S., Kalubarme, R. and Arbuj, S. (2025) Utilization of Manganese Ore Waste in Development of Mesoporous Mn3o4 and Spinel LiMn2O4 Octahedrons as a Cathode for Li-Ion Battery. Ceramics International, 51, 2381-2388.
https://doi.org/10.1016/j.ceramint.2024.11.220
[10] Rada, E., Lima, E., Ruiz, F. and Sergio Moreno, M. (2023) Synthesis of LiMn2O4 Nanostructures with Controlled Morphology. Materials Science and Engineering: B, 292, Article 116410.
https://doi.org/10.1016/j.mseb.2023.116410
[11] Paparoni, F., Mijit, E., Darjazi, H., Nobili, F., Zitolo, A., Di Cicco, A., et al. (2023) Oxide Coating Role on the Bulk Structural Stability of Active LiMn2O4 Cathodes. The Journal of Physical Chemistry C, 127, 8649-8656.
https://doi.org/10.1021/acs.jpcc.3c00342
[12] Yan, G., Li, P., Xie, S., Li, J., Li, W., Zheng, J., et al. (2025) Enhancing Structure and Cycling Stability of LiMn2O4 Cathode Materials via MgAl2O4 Surface Modification. Ceramics International, 51, 12029-12034.
https://doi.org/10.1016/j.ceramint.2025.01.054
[13] Pei, Z., Wang, J., Wang, H., Zheng, K., Wang, Q., Zhou, X., et al. (2025) Zn2⁺ Doping Regulates the Surface Morphology and Mn Dissolution of Spinel LiMn2O4 Significantly Enhancing Its Electrochemical Performance. Ceramics International, 51, 14575-14585.
https://doi.org/10.1016/j.ceramint.2025.01.294
[14] Kim, E., Lee, J., Park, J., Kim, H. and Nam, K.W. (2025) Conductive MOF-Derived Coating for Suppressing the Mn Dissolution in LiMn2O4 toward Long-Life Lithium-Ion Batteries. Nano Letters, 25, 619-627.
https://doi.org/10.1021/acs.nanolett.4c03482
[15] Margarette, S.J., Bangeppagari, M., Vijaya Babu, K., Madhuri Sailaja, J., Veeraiah, V., Sangaraju, S., et al. (2024) Ce and Cu Co-Doped LiMn2O4 Cathode Material: Synthesis, Characterization and Electrochemical Performances. Ceramics International, 50, 4955-4964.
https://doi.org/10.1016/j.ceramint.2023.11.238
[16] Li, F., Jiao, Y., Yang, S., Mao, W., Tao, Q., Bai, C., et al. (2024) Electrochemical Activation Inducing Rocksalt-to-Spinel Transformation for Prolonged Service Life of LiMn2O4 Cathodes. Small, 20, Article 2406116.
https://doi.org/10.1002/smll.202406116
[17] Karoui, K., Trabelsi, K. and Drissi, N. (2024) Investigation of the Optical, Electric Properties, and Conduction Mechanism of the Cubic Spinel LiMn2O4. Applied Organometallic Chemistry, 39, e7911.
https://doi.org/10.1002/aoc.7911
[18] Erraji, A., Masrour, R. and Xu, L. (2024) Ab Initio Study of LiMn2O4 Cathode: Electrochemical and Optical Properties for Li-Ion Batteries and Optoelectronic Devices. Ionics, 30, 7917-7928.
https://doi.org/10.1007/s11581-024-05841-6
[19] Yang, M., Liang, Q., Guo, Y., Guo, J., Xiang, M., Bai, W., et al. (2023) Boosting High-Rate Capacity and Long-Cycle Stability of Spinel LiMn2O4 by the Cr Al Co-Doping Strategy. Journal of Energy Storage, 72, Article 108528.
https://doi.org/10.1016/j.est.2023.108528
[20] Xu, W., Li, Q., Sui, F., Guo, S., Qi, R., Yan, C., et al. (2023) Unveiling the Role of Ni Doping in the Electrochemical Performance Improvement of the LiMn2O4 Cathodes. Applied Surface Science, 624, Article 157142.
https://doi.org/10.1016/j.apsusc.2023.157142
[21] Xu, J., Zhu, S., Xu, Z. and Zhu, H. (2023) The Basic Physical Properties of Li2MnO3 and LiMn2O4 Cathode Materials. Computational Materials Science, 229, Article 112426.
https://doi.org/10.1016/j.commatsci.2023.112426
[22] Wu, C., Xu, M., Zhang, C., Ye, L., Zhang, K., Cong, H., et al. (2023) Cost-Effective Recycling of Spent LiMn2O4 Cathode via a Chemical Lithiation Strategy. Energy Storage Materials, 55, 154-165.
https://doi.org/10.1016/j.ensm.2022.11.043
[23] Hou, X., Liu, X., Wang, H., Zhang, X., Zhou, J. and Wang, M. (2023) Specific Countermeasures to Intrinsic Capacity Decline Issues and Future Direction of LiMn2O4 Cathode. Energy Storage Materials, 57, 577-606.
https://doi.org/10.1016/j.ensm.2023.02.015
[24] Gu, J., Zhou, G., Chen, L., Li, X., Luo, G., Fan, L., et al. (2023) Particle Size Control and Electrochemical Lithium Extraction Performance of LiMn2O4. Journal of Electroanalytical Chemistry, 940, Article 117487.
https://doi.org/10.1016/j.jelechem.2023.117487
[25] Zhou, X., Chen, M., Bai, H., Su, C., Feng, L. and Guo, J. (2014) Preparation and Electrochemical Properties of Spinel LiMn2O4 Prepared by Solid-State Combustion Synthesis. Vacuum, 99, 49-55.
https://doi.org/10.1016/j.vacuum.2013.04.011
[26] Zhan, D., Yang, F., Zhang, Q., Hu, X. and Peng, T. (2014) Effect of Solid-State Reaction Temperature on Electrochemical Performance of LiMn2O4 Submicro-Rods as Cathode Material for Li-Ion Battery by Using Γ-Mnooh Submicro-Rods as Self-Template. Electrochimica Acta, 129, 364-372.
https://doi.org/10.1016/j.electacta.2014.02.141
[27] Silva, J.P., Biaggio, S.R., Bocchi, N. and Rocha-Filho, R.C. (2014) Practical Microwave-Assisted Solid-State Synthesis of the Spinel LiMn2O4. Solid State Ionics, 268, 42-47.
https://doi.org/10.1016/j.ssi.2014.09.025
[28] Lv, X., Chen, S., Chen, C., Liu, L., Liu, F. and Qiu, G. (2014) One-Step Hydrothermal Synthesis of LiMn2O4 Cathode Materials for Rechargeable Lithium Batteries. Solid State Sciences, 31, 16-23.
https://doi.org/10.1016/j.solidstatesciences.2014.02.015
[29] Kakuda, T., Uematsu, K., Toda, K. and Sato, M. (2007) Electrochemical Performance of Al-Doped LiMn2O4 Prepared by Different Methods in Solid-State Reaction. Journal of Power Sources, 167, 499-503.
https://doi.org/10.1016/j.jpowsour.2007.01.035
[30] Massarotti, V., Capsoni, D. and Bini, M. (2006) Nanosized LiMn2O4 from Mechanically Activated Solid-State Synthesis. Journal of Solid State Chemistry, 179, 590-596.
https://doi.org/10.1016/j.jssc.2005.11.019
[31] Berbenni, V. and Marini, A. (2003) Solid State Synthesis of Lithiated Manganese Oxides from Mechanically Activated Li2CO3-Mn3O4 Mixtures. Journal of Analytical and Applied Pyrolysis, 70, 437-456.
https://doi.org/10.1016/s0165-2370(03)00003-2
[32] Zhao, H., Li, F., Liu, X., Xiong, W., Chen, B., Shao, H., et al. (2015) A Simple, Low-Cost and Eco-Friendly Approach to Synthesize Single-Crystalline LiMn2O4 Nanorods with High Electrochemical Performance for Lithium-Ion Batteries. Electrochimica Acta, 166, 124-133.
https://doi.org/10.1016/j.electacta.2015.03.040
[33] Zhao, H., Li, F., Liu, X., Cheng, C., Zhang, Z., Wu, Y., et al. (2015) Effects of Equimolar Mg (II) and Si (IV) Co-Doping on the Electrochemical Properties of Spinel LiMn2-2xmgxsixo4 Prepared by Citric Acid Assisted Sol-Gel Method. Electrochimica Acta, 151, 263-269.
https://doi.org/10.1016/j.electacta.2014.11.095
[34] Zhang, H., Xu, Y. and Liu, D. (2015) Novel Nanostructured LiMn2O4 Microspheres for High Power Li-Ion Batteries. RSC Advances, 5, 11091-11095.
https://doi.org/10.1039/c4ra13041c
[35] Liu, Q., Wang, S., Tan, H., Yang, Z. and Zeng, J. (2013) Preparation and Doping Mode of Doped LiMn2O4 for Li-Ion Batteries. Energies, 6, 1718-1730.
https://doi.org/10.3390/en6031718
[36] Ding, Y., Xie, J., Cao, G., Zhu, T., Yu, H. and Zhao, X. (2010) Single-Crystalline LiMn2O4 Nanotubes Synthesized via Template-Engaged Reaction as Cathodes for High-Power Lithium-Ion Batteries. Advanced Functional Materials, 21, 348-355.
https://doi.org/10.1002/adfm.201001448
[37] Cao, J., Guo, S., Yan, R., Zhang, C., Guo, J. and Zheng, P. (2018) Carbon-Coated Single-Crystalline LiMn2O4 Nanowires Synthesized by High-Temperature Solid-State Reaction with High Capacity for Li-Ion Battery. Journal of Alloys and Compounds, 741, 1-6.
https://doi.org/10.1016/j.jallcom.2018.01.107
[38] Zawrah, M.F., El Fadaly, E.A., Khattab, R.M., Aly, M.H. and El Shafei, H. (2020) Synthesis and Characterization of Nano Mn3O4 and LiMn2O4 Spinel from Manganese Ore and Pure Materials. Ceramics International, 46, 17514-17522.
https://doi.org/10.1016/j.ceramint.2020.04.049
[39] Zhao, Q., Li, X., Shao, Z., Xu, B., Liu, C. and Jiang, M. (2018) Effect of Molar Ratio of Li2CO3/MnO2 on Characteristic of the Lithium Manganate Synthesized via High Temperature Ball Milling Method. International Journal of Electrochemical Science, 13, 3691-3699.
https://doi.org/10.20964/2018.04.46
[40] Becker, D., Haberkorn, R. and Kickelbick, G. (2019) Reactive Milling Induced Structure Changes in Phenylphosphonic Acid Functionalized LiMn2O4 Nanocrystals—Synthesis, Rietveld Refinement, and Thermal Stability. European Journal of Inorganic Chemistry, 2019, 4835-4845.
https://doi.org/10.1002/ejic.201900946
[41] Tian, L., Su, C., Wang, Y., Wen, B., Bai, W. and Guo, J. (2019) Electrochemical Properties of Spinel LiMn2O4 Cathode Material Prepared by a Microwave-Induced Solution Flameless Combustion Method. Vacuum, 164, 153-157.
https://doi.org/10.1016/j.vacuum.2019.03.011
[42] Xie, S., Yuan, M., Wang, T., Liu, J., Yan, J., Li, Z., et al. (2022) Sodium Dodecyl Sulfate (SDS)-Assisted Preparation of Homogeneous Monodisperse MnCO3 Microspheres and Its Application to the Synthesis of LiMn2O4. Ceramics International, 48, 10113-10119.
https://doi.org/10.1016/j.ceramint.2021.12.221
[43] Kitta, M., Akita, T. and Kohyama, M. (2013) Preparation of a Spinel LiMn2O4 Single Crystal Film from a MNO Wafer. Journal of Power Sources, 232, 7-11.
https://doi.org/10.1016/j.jpowsour.2012.12.096
[44] Wang, H., Qian, D., Lu, Z., Li, Y., Cheng, R. and Li, Y. (2007) Facile Synthesis and Electrochemical Properties of Hierarchical MnO2 Submicrospheres and LiMn2O4 Microspheres. Journal of Physics and Chemistry of Solids, 68, 1422-1427.
https://doi.org/10.1016/j.jpcs.2007.02.041
[45] Abou-Rjeily, J., Bezza, I., Laziz, N.A., Autret-Lambert, C., Sougrati, M.T. and Ghamouss, F. (2020) High-Rate Cyclability and Stability of LiMn2O4 Cathode Materials for Lithium-Ion Batteries from Low-Cost Natural β-MnO2. Energy Storage Materials, 26, 423-432.
https://doi.org/10.1016/j.ensm.2019.11.015
[46] Zhan, D., Zhang, Q., Hu, X., Zhu, G. and Peng, T. (2013) Single-Crystalline LiMn2O4 Nanorods as Cathode Material with Enhanced Performance for Li-Ion Battery Synthesized via Template-Engaged Reaction. Solid State Ionics, 239, 8-14.
https://doi.org/10.1016/j.ssi.2013.03.015
[47] Wan, C., Cheng, M. and Wu, D. (2011) Synthesis of Spherical Spinel LiMn2O4 with Commercial Manganese Carbonate. Powder Technology, 210, 47-51.
https://doi.org/10.1016/j.powtec.2011.02.017