|
[1]
|
Wang, X., Fan, L., Zhang, X., Liu, J., Chen, J., Fan, Y., et al. (2025) Bifunctional ZIF-8/Carbon Black Modified MXene with Honeycomb Sandwich Structure for Simultaneous Electrochemical Sensing of Hydroquinone and Catechol. Talanta, 288, Article 127721. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ibrahim, M., Temerk, Y., Ibrahim, H. and Salah, M. (2025) A Facile and Ultrasensitive Electrochemical Sensor Based on Nanosized Gold Anchored to Conductive Acetylene Black for the Detection of Phosphodiesterase Inhibitor Vardenafil and Its Interaction with the Antihypertensive Doxazosin Drug. Microchemical Journal, 212, Article 113233. [Google Scholar] [CrossRef]
|
|
[3]
|
Yang, Z. (2024) Voltammetry for Quantitative Determination of Trace Mercury Ions in Water via Acetylene Black Modified Carbon Paste Electrode. Alexandria Engineering Journal, 87, 107-113. [Google Scholar] [CrossRef]
|
|
[4]
|
Santos-Neto, D.R., Lopes, C.E.C., Silva, G.P., Castro, L.N., Silva, J.P.C., Ferreira, D.C.M., et al. (2024) Highly Sensitive Voltammetric Determination of Hydrochlorothiazide Using a Glassy Carbon Electrode Modified with Super P Carbon Black Nanoparticles. Analytical Methods, 16, 6271-6278. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
da Silva, R., Cervini, P. and Cavalheiro, É. (2024) A Simple and Sensitive Non-Modified Acetylene Black-Polyurethane Composite Electrode in the Determination of Bisphenol-A in Water Samples. Journal of the Brazilian Chemical Society, 35, e20230179. [Google Scholar] [CrossRef]
|
|
[6]
|
Jin, Y., Zhang, R., Song, X., Tong, D., Shang, H., Han, F., et al. (2025) High-Catalytic-Activity Conductive Cu-MOF Coupled with Carbon Black Super-P for the Rapid Electrochemical Detection of Methylglyoxal in Food and Biological Fluid. Microchemical Journal, 213, Article 113584. [Google Scholar] [CrossRef]
|
|
[7]
|
Zhao, M., Liu, Y., Li, F., Han, J., Dubovyk, V. and Zhao, H. (2024) Fabrication of Highly Conductive VXC-72R Carbon Nanoparticles Decorated Zr (IV)-Based Metal-Organic Framework for Highly Sensitive Detection of Methyl Parathion. International Journal of Electrochemical Science, 19, Article 100767. [Google Scholar] [CrossRef]
|
|
[8]
|
Trachioti, M.G., Lazanas, A.C. and Prodromidis, M.I. (2024) Cooperative Interaction of Ketjen Black Coating and Electrical Discharge Post-Treatment Towards Advanced Screen-Printed Electrodes for Hydroquinone and Catechol. Sensors and Actuators B: Chemical, 401, Article 134947. [Google Scholar] [CrossRef]
|
|
[9]
|
Li, X., Yang, K., Han, F., Jin, Y., Zhang, H. and Gao, H. (2024) Simultaneous and Sensitive Detection of Dopamine and Acetaminophen at a Glassy Carbon Electrode Modified with a Carbonized-ZIF-67/super P Nanocomposite. New Journal of Chemistry, 48, 3294-3303. [Google Scholar] [CrossRef]
|
|
[10]
|
Gnanamuthu, R. and Lee, C.W. (2011) Electrochemical Properties of Super P Carbon Black as an Anode Active Material for Lithium-Ion Batteries. Materials Chemistry and Physics, 130, 831-834. [Google Scholar] [CrossRef]
|
|
[11]
|
Crapnell, R.D., Arantes, I.V.S., Camargo, J.R., Bernalte, E., Whittingham, M.J., Janegitz, B.C., et al. (2024) Multi-Walled Carbon Nanotubes/carbon Black/RPLA for High-Performance Conductive Additive Manufacturing Filament and the Simultaneous Detection of Acetaminophen and Phenylephrine. Microchimica Acta, 191, Article No. 96. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Xu, X., Li, S., Luan, X., Xuan, C., Zhao, P., Zhou, T., et al. (2023) Sensitivity Enhancement of a Cu (II) Metal Organic Framework-Acetylene Black-Based Electrochemical Sensor for Ultrasensitive Detection of Imatinib in Clinical Samples. Frontiers in Chemistry, 11, Article 1191075. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, X., Ma, Y., Zhou, Z., Zhang, Z., Zhang, J., Fan, L., et al. (2023) Ultrarapid Synthesis of Dumbbell-Shaped Carbon Black-Doped Ce (III, IV)-MOF Composites for Fabrication of Simultaneous Electrochemical Sensor of Dopamine and Acetaminophen. Microchemical Journal, 195, Article 109430. [Google Scholar] [CrossRef]
|
|
[14]
|
Zhang, Y., Chen, X., Liu, J. and Yang, F. (2021) Detection of Chromium (VI) in Water Using an Electrochemical Sensor Based on Ketjen Black-Modified Carbon Cloth. Nature Environment and Pollution Technology, 20, 775-783. [Google Scholar] [CrossRef]
|
|
[15]
|
Sun, Y., Jiang, X., Jin, H. and Gui, R. (2019) Ketjen Black/Ferrocene Dual-Doped MOFs and Aptamer-Coupling Gold Nanoparticles Used as a Novel Ratiometric Electrochemical Aptasensor for Vanillin Detection. Analytica Chimica Acta, 1083, 101-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Xu, N., Ding, Y., Ai, H. and Fei, J. (2010) Acetylene Black-Ionic Liquids Composite Electrode: A Novel Platform for Electrochemical Sensing. Microchimica Acta, 170, 165-170. [Google Scholar] [CrossRef]
|
|
[17]
|
Song, J., Yang, J., Zeng, J., Tan, J. and Zhang, L. (2010) Acetylene Black Nanoparticle-Modified Electrode as an Electrochemical Sensor for Rapid Determination of Rutin. Microchimica Acta, 171, 283-287. [Google Scholar] [CrossRef]
|
|
[18]
|
Liu, Y., Han, J., Mishchenko, Y., Butenko, A., Kovalenko, V. and Zhao, H. (2023) Facile Synthesis of β-Cyclodextrin Decorated Super P Li Carbon Black for the Electrochemical Determination of Methyl Parathion. Materials Research Innovations, 28, 146-153. [Google Scholar] [CrossRef]
|
|
[19]
|
Liang, J., Song, Y., Zhao, Y., Gao, Y., Hou, J. and Yang, G. (2023) A Sensitive Electrochemical Sensor for Chiral Detection of Tryptophan Enantiomers by Using Carbon Black and β‑Cyclodextrin. Microchimica Acta, 190, Article No. 433. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, S., Tian, Q., Xu, X., Xuan, C., Yang, X., Sun, S., et al. (2023) Facile and Sensitive Acetylene Black-Based Electrochemical Sensor for the Detection of Imatinib. International Journal of Analytical Chemistry, 2023, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Javaid, S., Azhar, M.R., Li, X., Phillips, J.I., Hussain, T., Abid, H., et al. (2023) Metal Organic Frameworks with Carbon Black for the Enhanced Electrochemical Detection of 2,4,6-Trinitrotoluene. Materials Today Chemistry, 34, Article 101759. [Google Scholar] [CrossRef]
|
|
[22]
|
Guo, M., Li, F., Ran, Q., Zhu, G., Liu, Y., Han, J., et al. (2023) Facile Fabrication of Zr-Based Metal-Organic Framework/Ketjen Black-Carbon Nanotubes Composite Sensor for Highly Sensitive Detection of Methyl Parathion. Microchemical Journal, 190, Article 108709. [Google Scholar] [CrossRef]
|
|
[23]
|
Li, D., Hu, X., Zhao, H., Ding, K., Li, F., Han, S., et al. (2022) One-Step Ultrasonication-Assisted Synthesis of Graphitized Multi-Walled Carbon Nanotubes@Super P Li Nanocomposite for the Determination of Isoproturon. Journal of Porous Materials, 29, 629-640. [Google Scholar] [CrossRef]
|
|
[24]
|
Deng, P., Xu, Z. and Feng, Y. (2014) Acetylene Black Paste Electrode Modified with Graphene as the Voltammetric Sensor for Selective Determination of Tryptophan in the Presence of High Concentrations of Tyrosine. Materials Science and Engineering: C, 35, 54-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Deng, P., Xu, Z. and Kuang, Y. (2013) Electrochemically Reduced Graphene Oxide Modified Acetylene Black Paste Electrode for the Sensitive Determination of Bisphenol A. Journal of Electroanalytical Chemistry, 707, 7-14. [Google Scholar] [CrossRef]
|
|
[26]
|
Li, D., Zhao, H., Wang, G., Rinklebe, J., Lam, S.S., Liu, R., et al. (2022) Ultrasensitive Determination of Diquat Using a Novel Nanohybrid Sensor Based on Super-P Nanoparticles Dispersed Palygorskite Nanofibers. Sensors and Actuators B: Chemical, 367, Article 132142. [Google Scholar] [CrossRef]
|
|
[27]
|
Hu, R., Mu, Z., Gong, F., Qing, M., Yuan, Y. and Bai, L. (2023) A Signal-On Electrochemical Aptasensor for Sensitive Detection of Human Epididymis Protein 4 Based on Functionalized Metal-Organic Framework/Ketjen Black Nano-composite. Journal of Materials Science, 58, 9633-9645. [Google Scholar] [CrossRef]
|
|
[28]
|
Hu, N., Zhu, G., Li, F., Ran, Q. and Zhao, H. (2023) Highly Sensitive Electrochemical Determination of Methyl Parathion Based on Ketjenblack Carbon@Cerium Dioxide Nanocomposite with Pearl Chain-Like Carbon Conductive Network. Ionics, 29, 3781-3793. [Google Scholar] [CrossRef]
|
|
[29]
|
Arantes, I.V.S., Crapnell, R.D., Bernalte, E., Whittingham, M.J., Paixão, T.R.L.C. and Banks, C.E. (2023) Mixed Graphite/Carbon Black Recycled PLA Conductive Additive Manufacturing Filament for the Electrochemical Detection of Oxalate. Analytical Chemistry, 95, 15086-15093. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Sun, S., Xu, X., Niu, A., Sun, Z., Zhai, Y., Li, S., et al. (2022) Novel Electrochemical Sensor Based on Acetylene Black for the Determination of Doxorubicin in Serum Samples. International Journal of Electrochemical Science, 17, Article 221187.
|
|
[31]
|
Liu, Z., Liu, Q., Liao, D., Yu, J. and Jiang, X. (2022) Simultaneous Electrochemical Determination of Catechol and Hydroquinone Using a Flower-Like Ni-Al Layered Double Hydroxide/carbon Black Nanocomposite-Modified Electrode. Journal of the Electrochemical Society, 169, Article 117501. [Google Scholar] [CrossRef]
|
|
[32]
|
Liu, R., Hu, X., Cao, Y., Pang, H., Hou, W., Shi, Y., et al. (2022) Highly Sensitive Electrochemical Determination of Isoproturon Based on Acetylene Black Nanoparticles Modified Glassy Carbon Electrode. International Journal of Electrochemical Science, 17, Article 220676. [Google Scholar] [CrossRef]
|
|
[33]
|
Kubendhiran, S., Sakthivel, R., Chen, S., Mutharani, B. and Chen, T. (2018) Innovative Strategy Based on a Novel Carbon-Black-β-Cyclodextrin Nanocomposite for the Simultaneous Determination of the Anticancer Drug Flutamide and the Environmental Pollutant 4-Nitrophenol. Analytical Chemistry, 90, 6283-6291. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Luan, F., Wang, Y., Zhang, S., Zhuang, X., Tian, C., Fu, X., et al. (2020) Facile Synthesis of a Cyclodextrin-Metal Organic Framework Decorated with Ketjen Black and Platinum Nanoparticles and Its Application in the Electrochemical Detection of Ofloxacin. The Analyst, 145, 1943-1949. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Thomas, A. and Kumar, K.G. (2018) Acetylene Black-Chitosan Mediated Electro-Oxidation of Serotonin and Melatonin: An Efficient Platform for Simultaneous Voltammetric Sensing. Ionics, 25, 2337-2349. [Google Scholar] [CrossRef]
|
|
[36]
|
Jin, Y.F., Ge, C.Y., Li, X.B., Zhang, M., Xu, G.R. and Li, D.H. (2018) A Sensitive Electrochemical Sensor Based on ZIF-8-Acetylene Black-Chitosan Nanocomposites for Rutin Detection. RSC Advances, 8, 32740-32746.
|
|
[37]
|
Ibrahim, H., Temerk, Y. and Farhan, N. (2018) A Novel Sensor Based on Nanobiocomposite AuIn2O3-Chitosan Modified Acetylene Black Paste Electrode for Sensitive Detection of Antimycotic Ciclopirox Olamine. Talanta, 179, 75-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kane, S., Storer, A., Xu, W., Ryan, C. and Stadie, N.P. (2022) Biochar as a Renewable Substitute for Carbon Black in Lithium-Ion Battery Electrodes. ACS Sustainable Chemistry & Engineering, 10, 12226-12233. [Google Scholar] [CrossRef]
|
|
[39]
|
Yi, Y., Kingsford, O.J., Ma, Y., Wu, Y. and Zhu, G. (2020) Simultaneous Electrochemical Sensing of 1-Chloro-4-Nitrobenzene and N-(4-Hydroxyphenyl) Acetamide Based on Nitrogen-Doped Carbon Black. Microchemical Journal, 159, Article 105346. [Google Scholar] [CrossRef]
|
|
[40]
|
Zhao, H., Chang, Y., Liu, R., Li, B., Li, F., Zhang, F., et al. (2021) Facile Synthesis of Vulcan XC-72 Nanoparticles-Decorated Halloysite Nanotubes for the Highly Sensitive Electrochemical Determination of Niclosamide. Food Chemistry, 343, Article 128484.
|
|
[41]
|
Feng, J., Deng, P., Xiao, J., Li, J., Tian, Y., Wu, Y., et al. (2021) New Voltammetric Method for Determination of Tyrosine in Foodstuffs Using an Oxygen-Functionalized Multi-Walled Carbon Nanotubes Modified Acetylene Black Paste Electrode. Journal of Food Composition and Analysis, 96, Article 103708. [Google Scholar] [CrossRef]
|
|
[42]
|
Deng, Z., Li, H., Tian, Q., Zhou, Y., Yang, X., Yu, Y., et al. (2020) Electrochemical Detection of Methotrexate in Serum Sample Based on the Modified Acetylene Black Sensor. Microchemical Journal, 157, Article 105058. [Google Scholar] [CrossRef]
|
|
[43]
|
Fernandez, M.G.C., Hakim, M.L., Alfarros, Z., Santos, G.N.C. and Muflikhun, M.A. (2025) Nanoengineered Polyaniline/Carbon Black VXC 72 Hybridized with Woven Abaca for Superior Electromagnetic Interference Shielding. Scientific Reports, 15, Article No. 14548. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Liu, Y., Guo, X., Gao, X., Wang, Q., Chen, L., Shen, Y., et al. (2022) Spray-Drying Fabrication and Characterization of LiTi0.05Mn1.95O4@VXC-72R Composite Microspheres as Cathode Materials for Lithium-Ion Batteries. International Journal of Electrochemical Science, 17, Article 220771. [Google Scholar] [CrossRef]
|
|
[45]
|
Zhao, H., Hu, N., Xu, R., Liu, H., Liu, J. and Ran, Q. (2020) Spray-Drying Synthesis of Limno2@vxc-72r Composite Microspheres with Excellent Electrochemical Performance. Ceramics International, 46, 21805-21809. [Google Scholar] [CrossRef]
|