[1]
|
GBD 2019 Mental Disorders Collaborators (2021) Global, Regional, and National Burden of Bone Fractures in 204 Countries and Territories, 1990-2019: A Systematic Analysis from the Global Burden of Disease Study 2019. The Lancet Healthy Longevity, 2, e580-e592. https://doi.org/10.1016/S2215-0366(21)00395-3
|
[2]
|
Walter, N., Hierl, K., Brochhausen, C., Alt, V. and Rupp, M. (2022) The Epidemiology and Direct Healthcare Costs of Aseptic Nonunions in Germany—A Descriptive Report. Bone & Joint Research, 11, 541-547. https://doi.org/10.1302/2046-3758.118.bjr-2021-0238.r3
|
[3]
|
SK, S. (2019) Fracture Non-Union: A Review of Clinical Challenges and Future Research Needs. Malaysian Orthopaedic Journal, 13, 1-10. https://doi.org/10.5704/moj.1907.001
|
[4]
|
Wildemann, B., Ignatius, A., Leung, F., Taitsman, L.A., Smith, R.M., Pesántez, R., et al. (2021) Non-Union Bone Fractures. Nature Reviews Disease Primers, 7, Article No. 57. https://doi.org/10.1038/s41572-021-00289-8
|
[5]
|
Loeffler, J., Duda, G.N., Sass, F.A. and Dienelt, A. (2018) The Metabolic Microenvironment Steers Bone Tissue Regeneration. Trends in Endocrinology & Metabolism, 29, 99-110. https://doi.org/10.1016/j.tem.2017.11.008
|
[6]
|
Schmidt-Bleek, K., Petersen, A., Dienelt, A., Schwarz, C. and Duda, G.N. (2014) Initiation and Early Control of Tissue Regeneration—Bone Healing as a Model System for Tissue Regeneration. Expert Opinion on Biological Therapy, 14, 247-259. https://doi.org/10.1517/14712598.2014.857653
|
[7]
|
Baht, G.S., Vi, L. and Alman, B.A. (2018) The Role of the Immune Cells in Fracture Healing. Current Osteoporosis Reports, 16, 138-145. https://doi.org/10.1007/s11914-018-0423-2
|
[8]
|
El-Jawhari, J.J., Jones, E. and Giannoudis, P.V. (2016) The Roles of Immune Cells in Bone Healing; What We Know, Do Not Know and Future Perspectives. Injury, 47, 2399-2406. https://doi.org/10.1016/j.injury.2016.10.008
|
[9]
|
Könnecke, I., Serra, A., El Khassawna, T., Schlundt, C., Schell, H., Hauser, A., et al. (2014) T and B Cells Participate in Bone Repair by Infiltrating the Fracture Callus in a Two-Wave Fashion. Bone, 64, 155-165. https://doi.org/10.1016/j.bone.2014.03.052
|
[10]
|
Schlundt, C., El Khassawna, T., Serra, A., Dienelt, A., Wendler, S., Schell, H., et al. (2018) Macrophages in Bone Fracture Healing: Their Essential Role in Endochondral Ossification. Bone, 106, 78-89. https://doi.org/10.1016/j.bone.2015.10.019
|
[11]
|
Toben, D., Schroeder, I., El Khassawna, T., Mehta, M., Hoffmann, J., Frisch, J., et al. (2010) Fracture Healing Is Accelerated in the Absence of the Adaptive Immune System. Journal of Bone and Mineral Research, 26, 113-124. https://doi.org/10.1002/jbmr.185
|
[12]
|
Xiao, W., Hu, Z., Li, T. and Li, J. (2017) Bone Fracture Healing Is Delayed in Splenectomic Rats. Life Sciences, 173, 55-61. https://doi.org/10.1016/j.lfs.2016.12.005
|
[13]
|
Richardson, J., Hill, A.M., Johnston, C.J.C., McGregor, A., Norrish, A.R., Eastwood, D., et al. (2008) Fracture Healing in HIV-Positive Populations. The Journal of Bone and Joint Surgery. British Volume, 90, 988-994. https://doi.org/10.1302/0301-620x.90b8.20861
|
[14]
|
Dimitriou, R., Tsiridis, E., Carr, I., Simpson, H. and Giannoudis, P.V. (2006) The Role of Inhibitory Molecules in Fracture Healing. Injury, 37, S20-S29. https://doi.org/10.1016/j.injury.2006.02.039
|
[15]
|
Opal, S.M. (2000) Phylogenetic and Functional Relationships between Coagulation and the Innate Immune Response. Critical Care Medicine, 28, S77-S80. https://doi.org/10.1097/00003246-200009001-00017
|
[16]
|
Okamoto, K. and Takayanagi, H. (2018) Osteoimmunology. Cold Spring Harbor Perspectives in Medicine, 9, a031245. https://doi.org/10.1101/cshperspect.a031245
|
[17]
|
El Khassawna, T., Serra, A., Bucher, C.H., Petersen, A., Schlundt, C., Könnecke, I., et al. (2017) T Lymphocytes Influence the Mineralization Process of Bone. Frontiers in Immunology, 8, Article 562. https://doi.org/10.3389/fimmu.2017.00562
|
[18]
|
Avin, K.G., Dominguez, J.M., Chen, N.X., Hato, T., Myslinski, J.J., Gao, H., et al. (2022) Single‐Cell Rnaseq Provides Insight into Altered Immune Cell Populations in Human Fracture Nonunions. Journal of Orthopaedic Research, 41, 1060-1069. https://doi.org/10.1002/jor.25452
|
[19]
|
Reinke, S., Geissler, S., Taylor, W.R., Schmidt-Bleek, K., Juelke, K., Schwachmeyer, V., et al. (2013) Terminally Differentiated CD8+ T Cells Negatively Affect Bone Regeneration in Humans. Science Translational Medicine, 5, 177ra36. https://doi.org/10.1126/scitranslmed.3004754
|
[20]
|
Jiang, H., Ti, Y., Wang, Y., Wang, J., Chang, M., Zhao, J., et al. (2017) Downregulation of Regulatory T Cell Function in Patients with Delayed Fracture Healing. Clinical and Experimental Pharmacology and Physiology, 45, 430-436. https://doi.org/10.1111/1440-1681.12902
|
[21]
|
Schlundt, C., Reinke, S., Geissler, S., Bucher, C.H., Giannini, C., Märdian, S., et al. (2019) Individual Effector/Regulator T Cell Ratios Impact Bone Regeneration. Frontiers in Immunology, 10, Article 1954. https://doi.org/10.3389/fimmu.2019.01954
|
[22]
|
Sun, G., Wang, Z., Ti, Y., Wang, Y., Wang, J., Zhao, J., et al. (2017) STAT3 Promotes Bone Fracture Healing by Enhancing the FOXP3 Expression and the Suppressive Function of Regulatory T Cells. APMIS, 125, 752-760. https://doi.org/10.1111/apm.12706
|
[23]
|
Wang, J., Ti, Y., Wang, Y., Guo, G., Jiang, H., Chang, M., Qian, H., Zhao, J. and Sun, G. (2018) LAG-3 Represents a Marker of CD4+ T Cells with Regulatory Activity in Patients with Bone Fracture. Immunological Investigations, 47, 492-503.
|
[24]
|
Wang, J., Jiang, H., Qiu, Y., Wang, Y., Sun, G. and Zhao, J. (2019) Effector Memory Regulatory T Cells Were Most Effective at Suppressing RANKL but Their Frequency Was Downregulated in Tibial Fracture Patients with Delayed Union. Immunology Letters, 209, 21-27. https://doi.org/10.1016/j.imlet.2019.03.018
|
[25]
|
Wu, T., Wang, L., Jian, C., Zhang, Z., Zeng, R., Mi, B., et al. (2024) A Distinct “Repair” Role of Regulatory T Cells in Fracture Healing. Frontiers of Medicine, 18, 516-537. https://doi.org/10.1007/s11684-023-1024-8
|
[26]
|
Chen, R., Zhang, X., Li, B., Tonetti, M.S., Yang, Y., Li, Y., et al. (2024) Progranulin-Dependent Repair Function of Regulatory T Cells Drives Bone-Fracture Healing. Journal of Clinical Investigation, 135, e180679. https://doi.org/10.1172/jci180679
|
[27]
|
Kalyan, S. (2016) It May Seem Inflammatory, but Some T Cells Are Innately Healing to the Bone. Journal of Bone and Mineral Research, 31, 1997-2000. https://doi.org/10.1002/jbmr.2875
|
[28]
|
Dar, H.Y., Perrien, D.S., Pal, S., Stoica, A., Uppuganti, S., Nyman, J.S., et al. (2023) Callus γδ T Cells and Microbe-Induced Intestinal Th17 Cells Improve Fracture Healing in Mice. Journal of Clinical Investigation, 133, e166577. https://doi.org/10.1172/jci166577
|
[29]
|
Mauri, C. and Bosma, A. (2012) Immune Regulatory Function of B Cells. Annual Review of Immunology, 30, 221-241. https://doi.org/10.1146/annurev-immunol-020711-074934
|
[30]
|
Yoshizaki, A., Miyagaki, T., DiLillo, D.J., Matsushita, T., Horikawa, M., Kountikov, E.I., et al. (2012) Regulatory B Cells Control T-Cell Autoimmunity through IL-21-Dependent Cognate Interactions. Nature, 491, 264-268. https://doi.org/10.1038/nature11501
|
[31]
|
Das, A., Ellis, G., Pallant, C., Lopes, A.R., Khanna, P., Peppa, D., et al. (2012) Il-10-Producing Regulatory B Cells in the Pathogenesis of Chronic Hepatitis B Virus Infection. The Journal of Immunology, 189, 3925-3935. https://doi.org/10.4049/jimmunol.1103139
|
[32]
|
Barry, F.P. and Murphy, J.M. (2004) Mesenchymal Stem Cells: Clinical Applications and Biological Characterization. The International Journal of Biochemistry & Cell Biology, 36, 568-584. https://doi.org/10.1016/j.biocel.2003.11.001
|
[33]
|
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., et al. (1999) Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science, 284, 143-147. https://doi.org/10.1126/science.284.5411.143
|
[34]
|
Demircan, P.C., Sariboyaci, A.E., Unal, Z.S., Gacar, G., Subasi, C. and Karaoz, E. (2011) Immunoregulatory Effects of Human Dental Pulp-Derived Stem Cells on T Cells: Comparison of Trans Well Co-Culture and Mixed Lymphocyte Reaction Systems. Cytotherapy, 13, 1205-1220.
|
[35]
|
Klyushnenkova, E., Mosca, J.D., Zernetkina, V., Majumdar, M.K., Beggs, K.J., Simonetti, D.W., et al. (2005) T Cell Responses to Allogeneic Human Mesenchymal Stem Cells: Immunogenicity, Tolerance, and Suppression. Journal of Biomedical Science, 12, 47-57. https://doi.org/10.1007/s11373-004-8183-7
|
[36]
|
Chen, Z., Mao, X., Tan, L., Friis, T., Wu, C., Crawford, R., et al. (2014) Osteoimmunomodulatory Properties of Magnesium Scaffolds Coated with β-Tricalcium Phosphate. Biomaterials, 35, 8553-8565. https://doi.org/10.1016/j.biomaterials.2014.06.038
|
[37]
|
Liu, H., Zhang, J., Liu, C., Hayashi, Y. and Kao, W.W.‐Y. (2012) Bone Marrow Mesenchymal Stem Cells Can Differentiate and Assume Corneal Keratocyte Phenotype. Journal of Cellular and Molecular Medicine, 16, 1114-1124. https://doi.org/10.1111/j.1582-4934.2011.01418.x
|
[38]
|
Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S. and Galipeau, J. (2005) Allogeneic Marrow Stromal Cells Are Immune Rejected by MHC Class I-and Class II-Mismatched Recipient Mice. Blood, 106, 4057-4065. https://doi.org/10.1182/blood-2005-03-1004
|
[39]
|
Arvidson, K., Abdallah, B.M., Applegate, L.A., Baldini, N., Cenni, E., Gomez-Barrena, E., et al. (2011) Bone Regeneration and Stem Cells. Journal of Cellular and Molecular Medicine, 15, 718-746. https://doi.org/10.1111/j.1582-4934.2010.01224.x
|
[40]
|
Street, J., Bao, M., deGuzman, L., Bunting, S., Peale, F.V., Ferrara, N., et al. (2002) Vascular Endothelial Growth Factor Stimulates Bone Repair by Promoting Angiogenesis and Bone Turnover. Proceedings of the National Academy of Sciences, 99, 9656-9661. https://doi.org/10.1073/pnas.152324099
|
[41]
|
Gerstenfeld, L.C., Cullinane, D.M., Barnes, G.L., Graves, D.T. and Einhorn, T.A. (2003) Fracture Healing as a Post‐natal Developmental Process: Molecular, Spatial, and Temporal Aspects of Its Regulation. Journal of Cellular Biochemistry, 88, 873-884. https://doi.org/10.1002/jcb.10435
|
[42]
|
Martinez, F.O. and Gordon, S. (2014) The M1 and M2 Paradigm of Macrophage Activation: Time for Reassessment. F1000Prime Reports, 6, Article 13. https://doi.org/10.12703/p6-13
|
[43]
|
Rőszer, T. (2015) Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators of Inflammation, 2015, Article 816460. https://doi.org/10.1155/2015/816460
|
[44]
|
Alnaeeli, M., Park, J., Mahamed, D., Penninger, J.M. And Teng, Y.T. (2007) Dendritic Cells at the Osteo-Immune Interface: Implications for Inflammation-Induced Bone Loss. Journal of Bone and Mineral Research, 22, 775-780.
|
[45]
|
Blank, R.D. (2019) Practical Management of Fracture Risk among Peri-and Postmenopausal Women. Fertility and Sterility, 112, 782-790. https://doi.org/10.1016/j.fertnstert.2019.09.038
|
[46]
|
Alexander, K.A., Chang, M.K., Maylin, E.R., Kohler, T., Muller, R., Wu, A.C., Van Rooijen, N., Sweet, M.J., Hume, D.A., Raggatt, L.J., et al. (2011) Osteal Macrophages Promote in Vivo Intramembranous Bone Healing in a Mouse Tibial Injury Model. Journal of Bone and Mineral Research, 26, 1517-1532.
|
[47]
|
Pajarinen, J., Lin, T., Gibon, E., Kohno, Y., Maruyama, M., Nathan, K., et al. (2019) Mesenchymal Stem Cell-Macrophage Crosstalk and Bone Healing. Biomaterials, 196, 80-89. https://doi.org/10.1016/j.biomaterials.2017.12.025
|
[48]
|
Shin, R.L., Lee, C., Shen, O.Y., Xu, H. and Lee, O.K. (2021) The Crosstalk between Mesenchymal Stem Cells and Macrophages in Bone Regeneration: A Systematic Review. Stem Cells International, 2021, Article 8835156. https://doi.org/10.1155/2021/8835156
|
[49]
|
Wasnik, S., Rundle, C.H., Baylink, D.J., Yazdi, M.S., Carreon, E.E., Xu, Y., et al. (2018) 1,25-Dihydroxyvitamin D Suppresses M1 Macrophages and Promotes M2 Differentiation at Bone Injury Sites. JCI Insight, 3, e98773. https://doi.org/10.1172/jci.insight.98773
|
[50]
|
McCauley, J., Bitsaktsis, C. and Cottrell, J. (2020) Macrophage Subtype and Cytokine Expression Characterization during the Acute Inflammatory Phase of Mouse Bone Fracture Repair. Journal of Orthopaedic Research, 38, 1693-1702. https://doi.org/10.1002/jor.24603
|
[51]
|
Zhao, S., Kong, F., Jie, J., Li, Q., Liu, H., Xu, A., et al. (2020) Macrophage MSR1 Promotes BMSC Osteogenic Differentiation and M2-Like Polarization by Activating PI3K/AKT/Gsk3β/β-Catenin Pathway. Theranostics, 10, 17-35. https://doi.org/10.7150/thno.36930
|
[52]
|
Hachemi, Y., Perrin, S., Ethel, M., Julien, A., Vettese, J., Geisler, B., et al. (2024) Multimodal Analyses of Immune Cells during Bone Repair Identify Macrophages as a Therapeutic Target in Musculoskeletal Trauma. Bone Research, 12, Article No. 56. https://doi.org/10.1038/s41413-024-00347-3
|
[53]
|
Raggatt, L.J., Wullschleger, M.E., Alexander, K.A., Wu, A.C.K., Millard, S.M., Kaur, S., et al. (2014) Fracture Healing via Periosteal Callus Formation Requires Macrophages for Both Initiation and Progression of Early Endochondral Ossification. The American Journal of Pathology, 184, 3192-3204. https://doi.org/10.1016/j.ajpath.2014.08.017
|
[54]
|
Guihard, P., Boutet, M., Brounais-Le Royer, B., Gamblin, A., Amiaud, J., Renaud, A., et al. (2015) Oncostatin M, an Inflammatory Cytokine Produced by Macrophages, Supports Intramembranous Bone Healing in a Mouse Model of Tibia Injury. The American Journal of Pathology, 185, 765-775. https://doi.org/10.1016/j.ajpath.2014.11.008
|
[55]
|
Gu, Q., Yang, H. and Shi, Q. (2017) Macrophages and Bone Inflammation. Journal of Orthopaedic Translation, 10, 86-93. https://doi.org/10.1016/j.jot.2017.05.002
|
[56]
|
Furze, R.C. and Rankin, S.M. (2008) Neutrophil Mobilization and Clearance in the Bone Marrow. Immunology, 125, 281-288. https://doi.org/10.1111/j.1365-2567.2008.02950.x
|
[57]
|
Quail, D.F., Amulic, B., Aziz, M., Barnes, B.J., Eruslanov, E., Fridlender, Z.G., et al. (2022) Neutrophil Phenotypes and Functions in Cancer: A Consensus Statement. Journal of Experimental Medicine, 219, e20220011. https://doi.org/10.1084/jem.20220011
|
[58]
|
Zhang, X., Baht, G.S., Huang, R., Chen, Y., Molitoris, K.H., Miller, S.E., et al. (2022) Rejuvenation of Neutrophils and Their Extracellular Vesicles Is Associated with Enhanced Aged Fracture Healing. Aging Cell, 21, e13651. https://doi.org/10.1111/acel.13651
|
[59]
|
Cai, B., Lin, D., Li, Y., Wang, L., Xie, J., Dai, T., et al. (2021) N2‐Polarized Neutrophils Guide Bone Mesenchymal Stem Cell Recruitment and Initiate Bone Regeneration: A Missing Piece of the Bone Regeneration Puzzle. Advanced Science, 8, Article 2100584. https://doi.org/10.1002/advs.202100584
|
[60]
|
Wernersson, S. and Pejler, G. (2014) Mast Cell Secretory Granules: Armed for Battle. Nature Reviews Immunology, 14, 478-494. https://doi.org/10.1038/nri3690
|
[61]
|
Seebach, C., Henrich, D., Kähling, C., Wilhelm, K., Tami, A.E., Alini, M., et al. (2010) Endothelial Progenitor Cells and Mesenchymal Stem Cells Seeded Onto β-TCP Granules Enhance Early Vascularization and Bone Healing in a Critical-Sized Bone Defect in Rats. Tissue Engineering Part A, 16, 1961-1970. https://doi.org/10.1089/ten.tea.2009.0715
|
[62]
|
Henrich, D., Seebach, C., Kaehling, C., Scherzed, A., Wilhelm, K., Tewksbury, R., et al. (2009) Simultaneous Cultivation of Human Endothelial-Like Differentiated Precursor Cells and Human Marrow Stromal Cells on β-Tricalcium Phosphate. Tissue Engineering Part C: Methods, 15, 551-560. https://doi.org/10.1089/ten.tec.2008.0385
|
[63]
|
Usami, K., Mizuno, H., Okada, K., Narita, Y., Aoki, M., Kondo, T., et al. (2008) Composite Implantation of Mesenchymal Stem Cells with Endothelial Progenitor Cells Enhances Tissue‐Engineered Bone Formation. Journal of Biomedical Materials Research Part A, 90, 730-741. https://doi.org/10.1002/jbm.a.32142
|
[64]
|
Chen, Z., Wu, C., Gu, W., Klein, T., Crawford, R. and Xiao, Y. (2014) Osteogenic Differentiation of Bone Marrow MSCs by β-Tricalcium Phosphate Stimulating Macrophages via BMP2 Signalling Pathway. Biomaterials, 35, 1507-1518. https://doi.org/10.1016/j.biomaterials.2013.11.014
|
[65]
|
Yin, Y., Li, X., Ma, H., Zhang, J., Yu, D., Zhao, R., et al. (2021) In Situ Transforming RNA Nanovaccines from Polyethylenimine Functionalized Graphene Oxide Hydrogel for Durable Cancer Immunotherapy. Nano Letters, 21, 2224-2231. https://doi.org/10.1021/acs.nanolett.0c05039
|
[66]
|
Newman, H., Shih, Y.V. and Varghese, S. (2021) Resolution of Inflammation in Bone Regeneration: From Understandings to Therapeutic Applications. Biomaterials, 277, Article 121114. https://doi.org/10.1016/j.biomaterials.2021.121114
|
[67]
|
Zhang, J., Shi, H., Zhang, N., Hu, L., Jing, W. and Pan, J. (2020) Interleukin‐4‐Loaded Hydrogel Scaffold Regulates Macrophages Polarization to Promote Bone Mesenchymal Stem Cells Osteogenic Differentiation via TGF‐β1/Smad Pathway for Repair of Bone Defect. Cell Proliferation, 53, e12907. https://doi.org/10.1111/cpr.12907
|
[68]
|
Zou, M., Sun, J. and Xiang, Z. (2021) Induction of M2‐Type Macrophage Differentiation for Bone Defect Repair via an Interpenetration Network Hydrogel with a Go‐Based Controlled Release System. Advanced Healthcare Materials, 10, Article 2001502. https://doi.org/10.1002/adhm.202001502
|
[69]
|
Seebach, C., Henrich, D., Schaible, A., Relja, B., Jugold, M., Bönig, H., et al. (2015) Cell-Based Therapy by Implanted Human Bone Marrow-Derived Mononuclear Cells Improved Bone Healing of Large Bone Defects in Rats. Tissue Engineering Part A, 21, 1565-1578. https://doi.org/10.1089/ten.tea.2014.0410
|
[70]
|
Krieger, J.R., Ogle, M.E., McFaline-Figueroa, J., Segar, C.E., Temenoff, J.S. and Botchwey, E.A. (2016) Spatially Localized Recruitment of Anti-Inflammatory Monocytes by SDF-1α-Releasing Hydrogels Enhances Microvascular Network Remodeling. Biomaterials, 77, 280-290. https://doi.org/10.1016/j.biomaterials.2015.10.045
|
[71]
|
Arron, J.R. and Choi, Y. (2000) Bone versus Immune System. Nature, 408, 535-536. https://doi.org/10.1038/35046196
|
[72]
|
Dimitriou, R., Mataliotakis, G.I., Angoules, A.G., Kanakaris, N.K. and Giannoudis, P.V. (2011) Complications Following Autologous Bone Graft Harvesting from the Iliac Crest and Using the RIA: A Systematic Review. Injury, 42, S3-S15. https://doi.org/10.1016/j.injury.2011.06.015
|
[73]
|
Dill, T., Schächinger, V., Rolf, A., Möllmann, S., Thiele, H., Tillmanns, H., et al. (2009) Intracoronary Administration of Bone Marrow-Derived Progenitor Cells Improves Left Ventricular Function in Patients at Risk for Adverse Remodeling after Acute ST-Segment Elevation Myocardial Infarction: Results of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction Study (REPAIR-AMI) Cardiac Magnetic Resonance Imaging Substudy. American Heart Journal, 157, 541-547. https://doi.org/10.1016/j.ahj.2008.11.011
|