OCTA在近视眼底血流量化的应用
The Application of OCTA in Quantifying Fundus Blood Flow in Myopia
摘要: 近视的发展趋势逐年上升,成为全球的第二大致盲疾病。OCTA是近15年来新兴的技术,具有无创的特点,可以量化血流参数,使视网膜、脉络膜变得可视化,通过具体的数值方式来表现近视病人脉络膜血流和厚度的变化。本文综述了近年来OCTA在近视、高度近视眼后段成像及量化的研究进展,并讨论了这些发现的临床意义,为近视防控效果的评估提供了新的参考指标。
Abstract: The prevalence of myopia has been increasing annually, making it the second leading cause of blindness worldwide. Optical Coherence Tomography Angiography (OCTA) is a relatively new technology that has emerged over the past 15 years. It is non-invasive and capable of quantifying blood flow parameters, making the retina and choroid visible. This allows for the representation of changes in choroidal blood flow in myopic patients through specific numerical methods. This article reviews recent advancements in OCTA imaging and quantification of the posterior segment in myopia and high myopia, discusses the clinical significance of these findings, and provides new reference indicators for evaluating the effectiveness of myopia prevention and control.
文章引用:张梦月, 彭振宇. OCTA在近视眼底血流量化的应用[J]. 临床医学进展, 2025, 15(6): 1768-1774. https://doi.org/10.12677/acm.2025.1561912

1. 引言

全球的近视目前被广泛认为是一个重要的公共卫生问题,会导致严重的视力丧失,并且是一系列其他严重眼部疾病的危险因素。研究表明,在发达国家,近视是成人和儿童可矫正视力障碍的最常见原因;而在发展中国家,它则是可预防性失明的主要诱因。近视患病率逐渐上升,预估到2050年,将有49.8%近视患者和9.8%高度近视患者。我国的近视发生趋于低龄化,高度化,城市的发病率高于乡村发病率[1]-[3]。近视是屈光不正的一种,是指在放松调节下平行光线经过眼部屈光介质落在视网膜前的一种屈光状态。根据近视的度数可以分为:① 近视前期:SE ≤ +0.75 D且>−0.50 D;② 低度近视:SE ≤ −0.50 D且>−3.00 D;③ 中度近视:SE ≤ −3.00 D且>−6.00 D;④ 高度近视:SE ≤ −6.00 D。近视的发生由遗传因素和环境多种因素引起。未经矫正的近视可以发展成为病理性近视从而引起一系列的眼底变化,如:弥漫性脉络膜视网膜萎缩、脉络膜视网膜萎缩、黄斑萎缩、视网膜劈裂、视网膜裂孔、漆裂纹、脉络膜新生血管[4]

在过去的时间里,大家对于视网膜血管主要通过荧光素眼底血管造影术(FFA)来观察,FFA由Novotny和Alvis于1961年首次应用于临床,并成为视网膜血管疾病诊断的金标准[5]。FFA主要通过静脉注射荧光素钠对血流进行全景动态评估,可检测渗漏,但部分人可能会出现过敏反应,并且对脉络膜的成像质量效果欠佳。1973年Flower和Hochheimer引入吲哚青绿血管造影(ICGA),主要用于脉络膜血管成像[6]。ICGA对隐匿性脉络膜新生血管的诊断有较高的参考意义,但其费用较高,偶有肾毒性[7]

OCTA作为近15年来新兴的技术,与传统的荧光素眼底血管造影术及吲哚青绿血管造影相比具有无创、快速的特点,但其成像质量受患者固视状态影响,由于固视不稳会导致OCTA体积扫描中的几何失真或数据缺失。同时目前的OCTA算法无法将光学信号波动与更深层移动的血细胞移动区分开,这会导致眼底中浅表血管的明显复制,这些错误的复制被称为OCTA投影伪影。OCTA能够与传统的FFA及ICGA显示出外观相似的新生血管网络。与FFA及ICGA相比,OCTA只能表现出即时的血管状态而不能体现血流情况与时间的关系[8]-[10],能够三维成像出视网膜以及脉络膜的形态,体现出不同层次的血流,在神经内科[11]、皮肤科[12]、口腔科[13]等不同学科都有广泛的应用。

2. OCTA的诞生及发展历史

OCTA是一种非染料的、无创的新型眼底成像技术,它的成像原理是基于光学相干断层扫描检查(OCT)实现的,具有无创、安全、迅速且清晰的特点,是目前眼科检查中发展最迅速的检查方法之一。OCTA利用运动对比成像,在几秒内生成高分辨率的血流信息及血管造影图像[9] [14]。OCT自1991年首次被Huang,Swanson等人引入以来,已被用于定量评估视网膜厚度和评估定性解剖变化。2000年Zhao等人可以使用多普勒OCT和时域OCT来可视化血管,并被证明用于皮肤中血管的皮肤病学成像。2003年Yang等人使用时域OCT对非洲爪蟾的心脏动力学以及使用内窥镜通路对大鼠和人类胃肠道中的血流进行成像。2006年,进行了首次应用光学相干断层扫描血管造影的方法展示了眼脉管系统。2009年Fingler等人对视网膜微血管系统进行成像[15]-[17]。随着成像技术不断进步,算法的不断更新,目前的仪器已经能够以相当快的计算速度完成成像,在眼科的各方面都有很好的应用。

OCTA作为一项革命性的无创血管成像技术,已发展出多种实现方式,其中扫频光源OCTA (SS-OCTA)和谱域OCTA (SD-OCTA)是两种最主要的实现技术。SD-OCTA基于傅里叶域检测原理,采用宽带光源(中心波长通常为840 nm)照射组织。其核心技术特点包括:1) 光谱分离:通过高性能光谱仪(通常采用线阵CCD/CMOS,像素数2048)分解干涉光谱;2) 深度解码:利用傅里叶变换将光谱信号转换为深度信息。3) 运动对比:通过多次B扫描的振幅或相位变化检测血流信号[18]。SD-OCTA对视网膜浅层血管成像较好。SS-OCTA采用时域编码方式,核心技术特点为:1) 快速调谐激光:波长扫描速率可达100~400 kHz (典型1050 nm波段);2) 单点探测:使用平衡光电探测器接收时域信号;3) 时钟同步:需要精确的k-clock系统保证采样均匀性[19]。SD-OCTA对视网膜浅层血管成像较好,SS-OCTA由于波长更长的穿透性,对于脉络膜的血管成像更加清晰[20]

3. OCTA在近视中的数据测量

3.1. 视网膜黄斑血流及厚度

视网膜为眼球壁的内层,为一层柔软而透明的膜,紧贴在脉络膜内面,有感受光刺激的作用。黄斑在眼底视神经盘的颞侧偏下方,处于人眼的光学中心区,是视力轴线的投影点,黄斑中央凹是视力最敏锐的地方。近视的发展会导致视网膜形态、厚度以及眼底循环等发生改变,进而损伤视网膜的功能,导致患者最佳矫正视力及视觉质量下降。在过去的研究中已经证明近视可能促进视网膜脱离、黄斑萎缩并增加视神经对眼压升高的破坏作用的敏感性,导致如视网膜脱离、黄斑劈裂、漆裂纹、视网膜下新生血管(CNV)等多种病理改变[21]。自OCTA问世以来,就在测量眼底视网膜有广泛的应用。Yuichiro Kaneko [22]通过对比42只正视眼和115只病理性近视眼的FFA发现了视网膜小动脉和小静脉终止于远周边的非灌注区;在晚期病例中,灌注区域仅限于葡萄肿边界之外。Maja L. J. Živković [23]用OCTA测量并分析136只不同近视程度的黄斑血流灌注情况发现高度和中度近视导致黄斑区血管丢失,中央凹区域的灌注和血管密度得以保留,不受近视程度影响,中央凹无血管区在近视受试者中没有显着增大,但在高度近视受试者中其圆度较低。Liu [24]等人发现与轻度近视相比,中度近视的微血管密度在上鼻和颞下象限显著降低,在颞上象限略有降低,但在下鼻区没有降低。在高度近视中,与轻度组相比,所有象限均显示出显着下降。推测出下鼻部是序列中最后一个受影响的象限,反映了该象限的敏感性相对较低。何[25]等人通过频域相干光层析成像术(EDI-OCT)量化分析外层视网膜和脉络膜得出10~18岁青少年的近视程度对外层视网膜厚度及脉络膜厚度有影响。Mahsa [26]通过人工智能的算法,用于CNV区域的自动分割,允许仅从OCTA可靠地检测和分割CNV,实现对CNV特征的客观、可重复的评估。Shi [27]等人通过SD-OCT成像将脉络膜过度传递的存在作为炎症病变的标志,将低传递的存在作为继发性CNV的标志,无创地区分和跟踪炎症性病变和近视CNV的进展。J Chhablani [28]通过设盲观察者评估FFA和光谱域光学相干断层扫描(SD-OCT)在诊断近视脉络膜新生血管(CNV)方面的诊断能力得出FFA和SD-OCT图FFA的敏感性和特异性分别为47%和80.4%,SD-OCT的敏感性和特异性分别为58.8%和86.9%。随着OCTA技术的不断发展及算法的不断更迭,OCTA对于各种视网膜参数的获取具有高准确性、无创性、可重复性等特点,为研究者观察近视眼底结构及微循环的改变提供了不可或缺的帮助。

3.2. 脉络膜血流及厚度

脉络膜是眼睛中血管最多的组织,在多种脉络膜视网膜疾病的发病机制中起着非常重要的作用[29]。高度血管化的脉络膜夹在视网膜和巩膜之间,视网膜色素上皮层(RPE)和外神经感觉视网膜供应氧气和代谢物,其具有所有生物组织中最高的代谢需求[30] [31]。何等人发现,脉络膜血流密度降低引发的巩膜缺血、缺氧可能是导致近视发展的关键因素,进一步阐明了脉络膜的厚度和近视发展的速度密切相关。临床很早观察到高度近视患者脉络膜会变薄,但是过去并没有可以定量的观察手段而无法准确地测量脉络膜厚度[32]。Xuan [31]等人在豚鼠模型中证明脉络膜变薄将影响脉络膜血液灌注和邻近巩膜组织的氧合。Hao等人[33]通过OCTA分析34名屈光参差的年轻人的眼轴长度、脉络膜血流灌注等情况,得出近视程度较高的眼不仅脉络膜厚度,而且脉络膜血管分布和脉络膜毛细血管血流灌注也低于近视程度较低的眼。杨[34]等人用OCTA测量4周龄豚鼠后基线脉络膜血流灌注及脉络膜血流厚度,证明基线脉络膜血流灌注及脉络膜血流厚度参数的变化与豚鼠近视发展和轴向伸长的幅度成正比,有着显著的相关性。Jian等人[35]用超宽视场(SD)-OCTA分析不同近视程度的脉络膜厚度、脉络膜毛细血管丛、血管密度以及脉络膜Sattler和Haller层血管密度,发现脉络膜厚度与轴向长度呈负相关,脉络膜变薄是最重要的。刘[36]等人使用扫频光学相干断层(SS-OCT)对比46名高度近视和52名低至中度近视的三维脉络膜毛细血管流密度和脉络膜基质体积以及脉络膜厚度等,发现高度近视在中心凹下和黄斑区域的三维脉络膜血管体积与总脉络膜体积的比率以及脉络膜变薄均显著降低,这说明脉络膜特征主要与眼轴长度呈负相关。Meng [37]通过2年的随访检测中心凹下脉络膜厚度和脉络膜血管指数在眼轴长度延长的影响发现,脉络膜变薄和眼轴延长增加之间可能存在关联。由此可见,OCTA的出现为研究人员更精细地观察脉络膜厚度改变以及脉络膜各血管层的改变提供了新的手段。

3.3. 视乳头血流及厚度

视神经乳头为视网膜神经纤维的汇集处,位于眼球后极部鼻侧约3毫米,直径1.5毫米圆盘状,主要起到传递视觉信息的作用,其供血主要来自眼底的视网膜动脉和视网膜静脉。在高度近视眼中,随着眼轴的增长可以引起视乳头的变大、萎缩、偏斜、旋转等相应的病理改变。OCTA可以自动勾画出视乳头轮廓,将视盘区分为上、下、鼻、颞4个象限甚至更多象限并对每个象限内的视乳头区进行分析和观察,获得视乳头区血流密度、神经纤维层厚度等数据[38]。Spaide等[39]通过对比OCTA与FFA对视网膜内血管层进行成像质量的比较得出FFA仅能对浅层毛细血管进行观察而难以观测深层毛细血管,而OCTA所得到的图像具有更高的清晰。Sun等[40]通过OCTA测量得知浅层视盘毛细血管密度与眼轴长度有关,深层毛细血管密度与视盘改变如视盘倾斜、旋转等有关。Li [41]等人通过分析SD-OCT截面二维表明较高的近视程度表明倾斜视盘的倾斜角较大,而较大的倾斜视盘表明鼻和下鼻眼睑瓣视网膜神经纤维层厚度的额外变化。Sung [42]通过研究分析得出在健康的近视眼中,视盘的上旋比下旋更普遍。当视盘向下旋转时,与眼压、眼轴长度和视乳头旁萎缩面积呈显著正相关。Sung [43]等人认为Bruch膜最小轮辋宽度和Bruch膜开口面积之间的关联在扇区上有所不同,颞下部、鼻下部和鼻部具有很强的相关性,而颞上部和鼻上部Bruch膜最小轮辋宽度存在适度的相关性。Bruch膜开口肿大发生不对称,主要发生在近视眼的下部和鼻部病变。

4. 总结与展望

近视是目前全球重点关注的公共卫生之一,我国是世界上的近视人口大国。近视发生的病因极为复杂,未经控制的近视会导致一系列的眼底病变,使患者的最佳矫正视力和视觉质量受到严重影响。OCTA技术凭借清晰度的眼底断层图像及血流图像被广泛应用于各个医学领域。它的出现改变了观察眼底情况需进行有创操作的现状,通过光学测量便可以获取高清的视网膜、脉络膜的血流动力学图像,为高度近视眼底微循环的活体研究提供了可能。但由于目前不同类型OCTA技术的算法不同,缺乏大样本、高质量的研究,对高度近视视网膜血流分期尚未统一标准,OCTA技术在高度近视早期识别、动态评估、疗效评价等方面缺乏可靠依据。相信随着OCTA技术的不断更迭与发展,OCTA已经成为眼科医师不可或缺的辅助仪器,也将为更广阔的眼科领域贡献力量。

参考文献

[1] Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042.
https://doi.org/10.1016/j.ophtha.2016.01.006
[2] Rudnicka, A.R., Kapetanakis, V.V., Wathern, A.K., Logan, N.S., Gilmartin, B., Whincup, P.H., et al. (2016) Global Variations and Time Trends in the Prevalence of Childhood Myopia, a Systematic Review and Quantitative Meta-Analysis: Implications for Aetiology and Early Prevention. British Journal of Ophthalmology, 100, 882-890.
https://doi.org/10.1136/bjophthalmol-2015-307724
[3] Wong, Y. and Saw, S. (2016) Epidemiology of Pathologic Myopia in Asia and Worldwide. Asia-Pacific Journal of Ophthalmology, 5, 394-402.
https://doi.org/10.1097/apo.0000000000000234
[4] 中华预防医学会公共卫生眼科分会. 儿童青少年近视防控公共卫生策略分期专家共识(2022) [J]. 中华预防医学杂志, 2023, 57(6): 806-814.
[5] Novotny, H.R. and Alvis, D.L. (1961) A Method of Photographing Fluorescence in Circulating Blood in the Human Retina. Circulation, 24, 82-86.
https://doi.org/10.1161/01.cir.24.1.82
[6] Flower, R.W. and Hochheimer, B.F. (1973) A Clinical Technique and Apparatus for Simultaneous Angiography of the Separate Retinal and Choroidal Circulations. Investigative Ophthalmology & Visual Science, 12, 248-261.
[7] Speich, R., Saesseli, B., Hoffmann, U., Neftel, K.A. and Reichen, J. (1988) Adverse Reactions to Indocyanine Green: A Case Report and a Review of the Literature. Journal of Internal Medicine, 244, 123-128.
[8] Bille, J.F. (2019) High Resolution Imaging in Microscopy and Ophthalmology. Spinger.
[9] Gao, S.S., Jia, Y., Zhang, M., Su, J.P., Liu, G., Hwang, T.S., et al. (2016) Optical Coherence Tomography Angiography. Investigative Opthalmology & Visual Science, 57, OCT27.
https://doi.org/10.1167/iovs.15-19043
[10] Kashani, A.H., Chen, C., Gahm, J.K., Zheng, F., Richter, G.M., Rosenfeld, P.J., et al. (2017) Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Progress in Retinal and Eye Research, 60, 66-100.
https://doi.org/10.1016/j.preteyeres.2017.07.002
[11] Wylęgała, A. (2018) Principles of OCTA and Applications in Clinical Neurology. Current Neurology and Neuroscience Reports, 18, Article No. 96.
https://doi.org/10.1007/s11910-018-0911-x
[12] Liu, M. and Drexler, W. (2019) Optical Coherence Tomography Angiography and Photoacoustic Imaging in Dermatology. Photochemical & Photobiological Sciences, 18, 945-962.
https://doi.org/10.1039/c8pp00471d
[13] Le, N., Lu, J., Tang, P., Chung, K., Subhash, H., Kilpatrick-Liverman, L., et al. (2022) Intraoral Optical Coherence Tomography and Angiography Combined with Autofluorescence for Dental Assessment. Biomedical Optics Express, 13, Article No. 3629.
https://doi.org/10.1364/boe.460575
[14] de Carlo, T.E., Romano, A., Waheed, N.K. and Duker, J.S. (2015) A Review of Optical Coherence Tomography Angiography (OCTA). International Journal of Retina and Vitreous, 1, Article No. 5.
https://doi.org/10.1186/s40942-015-0005-8
[15] Yang, V.X.D., et al. (2023) High Speed, Wide Velocity Dynamic Range Doppler Optical Coherence Tomography (Part III) in Vivo Endoscopic Imaging of Blood Flow in the Rat and Human Gastrointestinal Tracts. Optics Express, 11, 2416-2424.
[16] Yang, V.X.D., et al. (2023) High Speed, Wide Velocity Dynamic Range Doppler Optical Coherence Tomography (Part II) Imaging in Vivo Cardiac Dynamics of Xenopus laevis. Optics Express, 11, 1650-1658.
[17] Makita, S., Hong, Y., Yamanari, M., Yatagai, T. and Yasuno, Y. (2006) Optical Coherence Angiography. Optics Express, 14, Article No. 7821.
https://doi.org/10.1364/oe.14.007821
[18] Huber, R., Wojtkowski, M., Taira, K., Fujimoto, J.G. and Hsu, K. (2005) Amplified, Frequency Swept Lasers for Frequency Domain Reflectometry and OCT Imaging: Design and Scaling Principles. Optics Express, 13, 3513-3528.
https://doi.org/10.1364/opex.13.003513
[19] Choi, W., Moult, E.M., Waheed, N.K., Adhi, M., Lee, B., Lu, C.D., et al. (2015) Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. Ophthalmology, 122, 2532-2544.
https://doi.org/10.1016/j.ophtha.2015.08.029
[20] Ting, D.S., Cheung, G.C., Lim, L.S. and Yeo, I.Y. (2015) Comparison of Swept Source Optical Coherence Tomography and Spectral Domain Optical Coherence Tomography in Polypoidal Choroidal Vasculopathy. Clinical & Experimental Ophthalmology, 43, 815-819.
https://doi.org/10.1111/ceo.12580
[21] Grossniklaus, H.E. and Green, W.R. (1992) Pathologic Findings in Pathologic Myopia. Retina, 12, 127-133.
https://doi.org/10.1097/00006982-199212020-00009
[22] Kaneko, Y., Moriyama, M., Hirahara, S., Ogura, Y. and Ohno-Matsui, K. (2014) Areas of Nonperfusion in Peripheral Retina of Eyes with Pathologic Myopia Detected by Ultra-Widefield Fluorescein Angiography. Investigative Opthalmology & Visual Science, 55, Article No. 1432.
https://doi.org/10.1167/iovs.13-13706
[23] Živković, M.L.J., Lazić, L., Zlatanovic, M., Zlatanović, N., Brzaković, M., Jovanović, M., et al. (2023) The Influence of Myopia on the Foveal Avascular Zone and Density of Blood Vessels of the Macula—An OCTA Study. Medicina, 59, Article No. 452.
https://doi.org/10.3390/medicina59030452
[24] Liu, M., Wang, P., Hu, X., Zhu, C., Yuan, Y. and Ke, B. (2020) Myopia-Related Stepwise and Quadrant Retinal Microvascular Alteration and Its Correlation with Axial Length. Eye, 35, 2196-2205.
https://doi.org/10.1038/s41433-020-01225-y
[25] 何洁琼, 王艳华. 青少年近视对外层视网膜厚度和脉络膜厚度影响及相关性研究[J]. 临床眼科杂志, 2023, 31(2): 105-111.
[26] Vali, M., Nazari, B., Sadri, S., Pour, E., Riazi-Esfahani, H., Faghihi, H., et al. (2023) CNV-Net: Segmentation, Classification and Activity Score Measurement of Choroidal Neovascularization (CNV) Using Optical Coherence Tomography Angiography (OCTA). Diagnostics, 13, Article No. 1309.
https://doi.org/10.3390/diagnostics13071309
[27] Shi, X., Cai, Y., Luo, X., Liang, S., Rosenfeld, P.J. and Li, X. (2020) Presence or Absence of Choroidal Hyper-Transmission by SD-OCT Imaging Distinguishes Inflammatory from Neovascular Lesions in Myopic Eyes. Graefes Archive for Clinical and Experimental Ophthalmology, 258, 751-758.
https://doi.org/10.1007/s00417-019-04571-0
[28] Chhablani, J., Deepa, M.J., Tyagi, M., Narayanan, R. and Kozak, I. (2015) Fluorescein Angiography and Optical Coherence Tomography in Myopic Choroidal Neovascularization. Eye, 29, 519-524.
https://doi.org/10.1038/eye.2014.345
[29] Chhablani, J. and Barteselli, G. (2015) Clinical Applications of Choroidal Imaging Technologies. Indian Journal of Ophthalmology, 63, Article No. 384.
https://doi.org/10.4103/0301-4738.159861
[30] Ferrara, D., Waheed, N.K. and Duker, J.S. (2016) Investigating the Choriocapillaris and Choroidal Vasculature with New Optical Coherence Tomography Technologies. Progress in Retinal and Eye Research, 52, 130-155.
https://doi.org/10.1016/j.preteyeres.2015.10.002
[31] Zhou, X., Zhang, S., Yang, F., Yang, Y., Huang, Q., Huang, C., et al. (2021) Decreased Choroidal Blood Perfusion Induces Myopia in Guinea Pigs. Investigative Opthalmology & Visual Science, 62, Article No. 30.
https://doi.org/10.1167/iovs.62.15.30
[32] 李疏凤, 李雪, 黄莹莹, 等. 儿童近视进展与眼底血流及脉络膜厚度的关系[J]. 中华眼视光学与视觉科学杂志, 2021, 23(10): 759-765.
[33] Wu, H., Zhang, G., Shen, M., Xu, R., Wang, P., Guan, Z., et al. (2021) Assessment of Choroidal Vascularity and Choriocapillaris Blood Perfusion in Anisomyopic Adults by SS-OCT/OCTA. Investigative Opthalmology & Visual Science, 62, Article No. 8.
https://doi.org/10.1167/iovs.62.1.8
[34] Yang, Y., Chen, M., Yao, X., Wang, J., Shi, J., Wang, Y., et al. (2023) Choroidal Blood Perfusion Could Predict the Sensitivity of Myopia Formation in Guinea Pigs. Experimental Eye Research, 232, Article ID: 109509.
https://doi.org/10.1016/j.exer.2023.109509
[35] Gao, J., Rao, C., Li, F., Liu, L. and Liu, K. (2022) Ultra-Widefield Swept-Source Optical Coherence Tomography Angiography in the Assessment of Choroidal Changes in Young Adults with Myopia. Translational Vision Science & Technology, 11, Article No. 14.
https://doi.org/10.1167/tvst.11.12.14
[36] Liu, L., Zhu, C., Yuan, Y., Hu, X., Chen, C., Zhu, H., et al. (2022) Three-Dimensional Choroidal Vascularity Index in High Myopia Using Swept-Source Optical Coherence Tomography. Current Eye Research, 47, 484-492.
https://doi.org/10.1080/02713683.2021.2006236
[37] Xuan, M., Wang, D., Xiao, O., Guo, X., Zhang, J., Yin, Q., et al. (2024) Choroidal Vascularity and Axial Length Elongation in Highly Myopic Children: A 2-Year Longitudinal Investigation. Investigative Ophthalmology & Visual Science, 65, Article No. 7.
https://doi.org/10.1167/iovs.65.10.7
[38] Wang, Y.X., Panda-Jonas, S. and Jonas, J.B. (2021) Optic Nerve Head Anatomy in Myopia and Glaucoma, Including Parapapillary Zones Alpha, Beta, Gamma and Delta: Histology and Clinical Features. Progress in Retinal and Eye Research, 83, Article ID: 100933.
https://doi.org/10.1016/j.preteyeres.2020.100933
[39] Spaide, R.F., Klancnik, J.M. and Cooney, M.J. (2015) Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography. JAMA Ophthalmology, 133, Article No. 45.
https://doi.org/10.1001/jamaophthalmol.2014.3616
[40] Sung, M.S., Heo, H. and Park, S.W. (2018) Microstructure of Parapapillary Atrophy Is Associated with Parapapillary Microvasculature in Myopic Eyes. American Journal of Ophthalmology, 192, 157-168.
https://doi.org/10.1016/j.ajo.2018.05.022
[41] Li, Y., Jia, W., Liu, X., Chen, Y., Chen, H., Ren, G., et al. (2024) Measurement of the Tilt Angle of the Optic Disc Using Spectral-Domain Optical Coherence Tomography and Related Factors in Myopia. Translational Vision Science & Technology, 13, Article No. 24.
https://doi.org/10.1167/tvst.13.9.24
[42] Sung, M.S., Kang, Y.S., Heo, H. and Park, S.W. (2016) Characteristics of Optic Disc Rotation in Myopic Eyes. Ophthalmology, 123, 400-407.
https://doi.org/10.1016/j.ophtha.2015.10.018
[43] Sung, M.S., Heo, M.Y., Heo, H. and Park, S.W. (2019) Bruch’s Membrane Opening Enlargement and Its Implication on the Myopic Optic Nerve Head. Scientific Reports, 9, Article ID: 19564.
https://doi.org/10.1038/s41598-019-55926-w