[1]
|
Schwertmann, U. and Fischer, W.R. (1973) Natural “Amorphous” Ferric Hydroxide. Geoderma, 10, 237-247. https://doi.org/10.1016/0016-7061(73)90066-9
|
[2]
|
Cornell, R.M. and Schwertmann, U. (2003) The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. Wiley.
|
[3]
|
王小明. 几种亚稳态铁氧化物的结构、形成转化及其表面物理化学特性[D]: [博士学位论文]. 武汉: 华中农业大学, 2015.
|
[4]
|
田雷. 重金属离子在水铁矿上吸附解吸动力学: 建立统一的模型[D]: [硕士学位论文]. 广州: 华南理工大学, 2018.
|
[5]
|
朱雁平. 基于水铁矿的高效异相芬顿催化材料的构建及性能研究[D]: [博士学位论文]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019.
|
[6]
|
Hiemstra, T. (2015) Formation, Stability, and Solubility of Metal Oxide Nanoparticles: Surface Entropy, Enthalpy, and Free Energy of Ferrihydrite. Geochimica et Cosmochimica Acta, 158, 179-198. https://doi.org/10.1016/j.gca.2015.02.032
|
[7]
|
Tang, J.P., Wang, S., Tai, Y.P., Tam, N.F., et al. (2020) Evaluation of Factors Influencing Annual Occurrence, Bioaccumulation, and Biomagnification of Antibiotics in Planktonic Food Webs of a Large Subtropical River in South China. Water Research, 170, Article 115302.
|
[8]
|
Xu, Y., Yu, X., Xu, B., Peng, D. and Guo, X. (2021) Sorption of Pharmaceuticals and Personal Care Products on Soil and Soil Components: Influencing Factors and Mechanisms. Science of the Total Environment, 753, Article 141891. https://doi.org/10.1016/j.scitotenv.2020.141891
|
[9]
|
Thompson, A., Chadwick, O.A., Rancourt, D.G. and Chorover, J. (2006) Iron-Oxide Crystallinity Increases during Soil Redox Oscillations. Geochimica et Cosmochimica Acta, 70, 1710-1727. https://doi.org/10.1016/j.gca.2005.12.005
|
[10]
|
Chen, J., Zhang, Q., Zhu, Y., Zhang, M., Zhu, Y., Farooq, U., et al. (2023) Adsorption of Fluoroquinolone Antibiotics onto Ferrihydrite under Different Anionic Surfactants and Solution pH. Environmental Science and Pollution Research, 30, 78229-78242. https://doi.org/10.1007/s11356-023-28059-x
|
[11]
|
He, J., Yang, C., Deng, Y., Ouyang, Z., Huang, Z., Yang, J., et al. (2022) Mechanistic Insights into the Environmental Fate of Tetracycline Affected by Ferrihydrite: Adsorption versus Degradation. Science of the Total Environment, 811, Article 152283. https://doi.org/10.1016/j.scitotenv.2021.152283
|
[12]
|
Wang, L., Zhang, L., Feng, B., Hua, X., Li, Y., Zhang, W., et al. (2022) The Ph Dependence and Role of Fluorinated Substituent of Enoxacin Binding to Ferrihydrite. Science of the Total Environment, 823, Article 153707. https://doi.org/10.1016/j.scitotenv.2022.153707
|
[13]
|
陈月. 水铁矿/腐殖酸对磺胺类抗生素的吸附和光解行为研究[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2017.
|
[14]
|
Antelo, J., Fiol, S., Pérez, C., Mariño, S., Arce, F., Gondar, D., et al. (2010) Analysis of Phosphate Adsorption onto Ferrihydrite Using the CD-MUSIC Model. Journal of Colloid and Interface Science, 347, 112-119. https://doi.org/10.1016/j.jcis.2010.03.020
|
[15]
|
Chen, J., Xu, Y., Zheng, Z., Wei, Q., Farooq, U., Lu, T., et al. (2022) The Mechanisms Involved into the Inhibitory Effects of Ionic Liquids Chemistry on Adsorption Performance of Ciprofloxacin onto Inorganic Minerals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, Article 129422. https://doi.org/10.1016/j.colsurfa.2022.129422
|
[16]
|
Bao, Y., Bolan, N.S., Lai, J., Wang, Y., Jin, X., Kirkham, M.B., et al. (2021) Interactions between Organic Matter and Fe (Hydr)oxides and Their Influences on Immobilization and Remobilization of Metal(loid)s: A Review. Critical Reviews in Environmental Science and Technology, 52, 4016-4037. https://doi.org/10.1080/10643389.2021.1974766
|
[17]
|
Peng, H., Liang, N., Li, H., Chen, F., Zhang, D., Pan, B., et al. (2015) Contribution of Coated Humic Acids Calculated through Their Surface Coverage on Nano Iron Oxides for Ofloxacin and Norfloxacin Sorption. Environmental Pollution, 204, 191-198. https://doi.org/10.1016/j.envpol.2015.04.029
|
[18]
|
Lv, J., Zhang, S., Wang, S., Luo, L., Cao, D. and Christie, P. (2016) Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides. Environmental Science & Technology, 50, 2328-2336. https://doi.org/10.1021/acs.est.5b04996
|
[19]
|
Ye, Y., Cai, X., Wang, Z. and Xie, X. (2022) Characterization of Dissolved Black Carbon and Its Binding Behaviors to Ceftazidime and Diclofenac Pharmaceuticals: Employing the Molecular Weight Fractionation. Environmental Pollution, 315, Article 120449. https://doi.org/10.1016/j.envpol.2022.120449
|
[20]
|
Ye, Y., Wang, Z., Liu, L., Qi, K. and Xie, X. (2023) Novel Insights into the Temporal Molecular Fractionation of Dissolved Black Carbon at the Iron Oxyhydroxide—Water Interface. Water Research, 229, Article 119410. https://doi.org/10.1016/j.watres.2022.119410
|
[21]
|
张莉. 赤霉酸在水铁矿上的吸附和转化机制研究[D]: [博士学位论文]. 北京: 中国地质大学(北京), 2019.
|
[22]
|
Norén, K. and Persson, P. (2007) Adsorption of Monocarboxylates at the Water/Goethite Interface: The Importance of Hydrogen Bonding. Geochimica et Cosmochimica Acta, 71, 5717-5730. https://doi.org/10.1016/j.gca.2007.04.037
|
[23]
|
Wu, T., Xue, Q., Liu, F., Zhang, J., Zhou, C., Cao, J., et al. (2019) Mechanistic Insight into Interactions between Tetracycline and Two Iron Oxide Minerals with Different Crystal Structures. Chemical Engineering Journal, 366, 577-586. https://doi.org/10.1016/j.cej.2019.02.128
|