RLRs翻译后修饰在抗病毒先天免疫中的研究进展
Advance in Post-Translational Modification of RLRs in Antiviral Innate Immunity
DOI: 10.12677/amb.2025.142014, PDF, HTML, XML,   
作者: 郭凌云:烟台大学药学院,山东 烟台;军事医学研究院,北京;曹 莹:解放军总医院永定路医疗门诊部,北京;李 康, 叶 然, 段小涛*:军事医学研究院,北京
关键词: RIG-I样受体翻译后修饰抗病毒免疫RIG-I Like Receptor Post-Translational Modification Antiviral Immunity
摘要: 维甲酸诱导基因I (Retinoic Acid-Inducible Gene I, RIG-I)样受体(Retinoic Acid Gene I-Like Receptors, RLRs)是病毒感染的关键感受器,能够识别病毒的RNA,激活线粒体抗病毒信号蛋白(Mitochondrial Antiviral Signaling Protein, MAVS)启动下游信号传导,诱导I型干扰素(Interferon, IFN)的产生,建立有效的抗病毒免疫响应。蛋白质翻译后修饰(Post-Translational Modifications, PTMs)作为调控模式识别受体及其下游信号分子稳定性和活性的关键机制,对干扰素介导的免疫反应至关重要。通过不同的PTMs,包括经典的磷酸化和泛素化,以及其他PTMs如甲基化、乙酰化、SUMO化以及ISG化等,不仅影响RLRs自身的功能状态,还影响着其下游信号分子的活性与定位。本文综述了近年来关于RLRs的PTMs在抗病毒免疫方面的研究进展,旨在为挖掘抗病毒治疗的新靶点提供创新思路。
Abstract: Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules, which mediated intracellular virus recognition. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins (MAVS), thereby lead to the transcriptional induction of type I interferons (IFN-I) and establish an antiviral host response. Post-translational modification (PTM), as a key mechanism to regulate the activity and stability of pattern recognition receptors and their downstream signaling molecules, plays a critical role in regulating interferon-mediated immune responses. A variety of PTM modifications, including classical phosphorylation and ubiquitination, as well as methylation, acetylation, SUMOylation, and ISGylation, not only affect the functional status of RLRs, but also the activity and localization of their downstream signaling molecules. This paper reviews the PTM regulation of RLRs in antiviral immunity in recent years, aiming to provide new insights of innate immunity and antiviral therapy.
文章引用:郭凌云, 曹莹, 李康, 叶然, 段小涛. RLRs翻译后修饰在抗病毒先天免疫中的研究进展[J]. 微生物前沿, 2025, 14(2): 117-128. https://doi.org/10.12677/amb.2025.142014

1. 引言

先天免疫系统作为宿主抵御病原微生物的首道防线,识别病原体相关分子模式(Pathogen-Associated Molecular Patterns, PAMP)区分外源入侵体。感染病毒后,PAMP被模式识别受体(Pattern Recognition Receptor, PRRs)识别,产生免疫应答。RNA病毒的双链RNA (Double-Stranded, dsRNA)是一种常见的PAMP,RLRs作为PRR主要负责在细胞质中识别病毒复制过程产生的dsRNA,迅速释放级联信号,诱导分泌Ⅰ型和Ⅲ型IFN应对病毒侵袭[1]

PTMs指蛋白质翻译后经历的一系列共价修饰过程,在机体内广泛存在,几乎参与细胞所有的生命活动。PTMs形式复杂多样,包括肽链骨架的剪接、在特定氨基酸侧链上添加新基团,以及对已有基团进行化学修饰等[2]。作为一类关键的调控方式,PTMs对RLRs及其下游信号蛋白的活性、稳定性和功能起着至关重要的作用。深入研究RLRs翻译后修饰在抗病毒先天免疫中的作用机制,对于揭示病毒感染与宿主免疫之间的相互作用、开发新型抗病毒药物和免疫治疗策略具有重要意义。

2. RLRs的结构与信号启动

2.1. 结构

细胞质病毒RNA传感器RLRs家族包括三个成员:维甲酸诱导的基因I (RIG-I)、黑色素瘤分化相关蛋白5 (Melanoma-Differentiation-Associated Gene, MDA5)和遗传与生理实验室2 (Laboratory of Genetics and Physiology, LGP2)。三者都含有一个与病毒RNA结合的C末端调节结构域(C-Terminal Regulatory Domain, CTD)和负责识别dsRNA的DExD/H盒RNA解旋酶结构域,依赖ATP激活下游信号转导[3] [4]。中心的DExD/H盒RNA解旋酶由两个RecA样结构域组成,分别为Hel-1和Hel-2,在Hel-2中包含一个Hel-2i插入,有助于识别dsRNA [5]。RIG-I和MDA5还包含一个LGP2不具备的N端串联的caspase招募结构域(N-Terminal Tandem Caspase Recruitment Domains, CARDs),负责与MAVS的N端CARD区域结合,传达下游信号指令[6]。LGP2能正向和负向调控RIG-I和MDA5,其角色的多样性表明对LGP2机制的深入研究十分必要[7] [8]。RIG-I识别含有5’ppp的dsRNA或5’pp的部分特征,MDA5主要识别长dsRNA,一些高阶结构的ssRNA也对MDA5产生刺激活性[9] [10]。正常生理状态下,RIG-I的第二个CARD活性区域被解旋酶插入域2i (Helicase 2i)封闭,处于自抑制构象,干扰结合配体RNA (图1)。

Figure1.The stuctures of RLRs

1. RLRs的结构

2.2. RLRs的信号激活

Figure 2.The signaling pathway of RLRs

2. RLRs信号通路

病毒感染后,RIG-I的CTD识别致病RNA钝端,发生依赖ATP的构象变化,解旋酶结构域包裹在dsRNA周围,释放CARDs区域,利用K63链型多泛素修饰或解旋酶和CTD结构域在dsRNA末端附近形成短丝状低聚物,形成螺旋对称的四聚体,诱导MAVS的细丝形成(MAVS的活性状态),触发级联反应[11] [12]。与RIG-I相比,MDA5的CTD为相对开放的结构,不能独立识别RNA,它仅在dsRNA识别过程中形成细丝的情况下寡聚,激活MAVS。活化的MAVS激活肿瘤坏死因子受体相关因子(TNF Receptor Associated Factor, TRAF) 2/3/5/6 [13],进一步激活TANK结合激酶1 (TANK-Binding Kinase 1, TBK1)和核因子κB抑制激酶ε (Inhibitor Kappa B Kinase ε, IKKε),然后磷酸化干扰素调节因子3 (Interferon Regulatory Factor 3, IRF3)和干扰素调节因子7 (Interferon Regulatory Factor 7, IRF7),促使转录因子入核,启动Ⅰ型和Ⅲ型IFN表达,建立抗病毒状态。MAVS还影响IKKα/IKKβ/核因子(Nuclear Factor, NF)-κB基本调节物(NEMO)复合体,激活NF-κB途径以诱导包括白介素1β/6/8 (InterleukinIL-1β/6/8)和肿瘤坏死因子α (Tumor Necrosis Factor, TNF-α)等促炎因子的分泌[14] (图2)。

3. PTMs对RLRs的重要性

翻译后修饰通过酶促反应或其他机制,在蛋白质的氨基酸残基上添加或去除特定的化学基团或蛋白质,扩展蛋白质的功能范围[15]。PTMs修饰可改变蛋白的空间构象、稳定性、转运和定位及与其他分子的相互作用,调节机体多样化的生命活动[16]。PTMs对RLRs的作用多面,可改变RLRs的活性状态、与配体的结合能力,或影响其与下游信号分子互作,从而调节RLRs介导的信号传导途径的强度和持续时间。PTMs还可影响RLRs的稳定性、降解速率及亚细胞定位,这些作用共同调节RLRs介导的免疫通路。目前已鉴定出超过400种翻译后修饰类型,常见的有磷酸化、泛素化、乙酰化、糖基化和SUMO化等。磷酸化对RLRs的作用主要体现在调节其活性和信号传导上,未感染病毒时,RLRs特定丝氨酸位点的磷酸化会使RLRs失活,利于维持细胞稳态,而去磷酸化促进病毒感染后的RLRs激活。泛素化修饰是RLRs信号通路分子调控的经典方式之一,泛素与目标蛋白上不同的氨基酸位点结合,控制蛋白命运,如启动蛋白酶体途径降解蛋白或激活转运。乙酰化修饰改变RLRs与核酸配体结合亲和力,增强其抗病毒活性。ISG化则影响蛋白的稳定性,使抗病毒反应保持平衡状态。

多种翻译后修饰之间存在串扰,大多数PTM系统主要由两部分组成,即进行修饰的催化机制和被修饰的底物蛋白。不同PTM之间的串扰可以只改变催化机制或底物蛋白,也可以同时改变这两部分。通过催化机制发生的PTM串扰是指将催化某种PTM的酶变成与之串扰的另一种PTM的底物,改变酶活性。而通过底物蛋白发生的PTM串扰可以在不同时间点修饰底物蛋白质的同一氨基酸残基,也可以修饰同一底物蛋白质的不同氨基酸残基,起协同作用或拮抗作用,即PTM之间竞争相同或附近的修饰位点。此时,底物的生物学功能取决于特定时间内蛋白质上不同修饰的比例[17]。SUMO化能够协同RIG-I的泛素化作用,增强抗病毒信号。某些去甲基化酶也能影响RIG-I的泛素化,却不依赖其甲基化活性。病毒则会利用PTMs,如乙酰化或脱酰胺化进行免疫逃逸。

4. RLRs翻译后修饰

4.1. 磷酸化修饰

磷酸化是蛋白质在磷酸化激酶的催化作用下把三磷酸腺苷(ATP)或三磷酸鸟苷(GTP)的γ位磷酸基转移到蛋白质的特定位点氨基酸残基上的过程。细胞静息状态下,PKCα和PKCβ通过磷酸化RIG-I的Thr 170和Ser 8位点,保持RIG-I的封闭构象,并在细胞被RNA病毒感染时去磷酸化,严格调控RIG-I活性,与TRIM25介导的RIG-I的Lys 172泛素化功能上相互拮抗[18]-[20]。CK2磷酸化RIG-I的Thr 770和Ser 854-855,从而使RIG-I处于非活性状态,当病毒感染时,磷酸化位点则发生突变使其重新具有活性[21]。一项在人肝癌细胞中进行的全基因组RNAi筛选验证研究发现DAPK1由RIG-I信号激活后,通过抑制RIG-I解旋酶区域Thr 667和CARD区域Ser 8处的磷酸化阻碍其识别5’ppp dsRNA,抑制抗病毒通路[22]。但293细胞中的DAPK1也能促进IRF3/7激活,作为正调控因子上调IFN-β的表达,这种矛盾可能是由于细胞类型差异[23]。IKKε除了与TBK1功能相关外,还能在Ser855处直接磷酸化RIG-I,负调控RIG-I介导的抗病毒通路[24]。与RIG-I类似,MDA5在未感染的细胞中CARD区域Ser88处的磷酸化,使其处于非活性状态,当细胞被病毒感染或dsRNA刺激时,PP1去除RIG-I和MDA5的CARD中的磷酸化,触发先天性免疫反应[25]。RIOK3可以在CTD的Ser 828处磷酸化MDA5,干扰多聚体的形成,减弱MDA5介导的先天免疫反应[26]

4.2. 泛素化修饰

泛素化是将泛素蛋白通过E1激活酶、E2结合酶和E3连接酶共价或非共价结合到靶蛋白上的过程。RIG-I识别病原体后,需要Riplet (又称RNF135和Reul)激活RIG-I在Lys 788位点上的K63链型泛素化,使构象变化释放CARD,这是RIG-I寡聚的先决条件[27]。K63泛素链与RIG-I核心2CARD非共价结合促使四聚体形成,并结合四聚体外围,连接相邻亚基稳定其组装,Riplet在这一过程中促进RIG-I的CARD结构域Lys 154, Lys 164和Lys 172位点的K63链型泛素化,依赖RNA长度放大RIG-I介导的抗病毒信号[28]-[30]。Ube2D3和Ube2N可以与Riplet结合,Ube2D3-Riplet促进多泛素链与RIG-I的共价连接,而Ube2N-Riplet可以催化形成未锚定的多泛素链,二者都有助于由RIG-I激活的MAVS寡聚[31]。含环指结构的E3泛素连接酶TRIM25来自三方基序(Tripartite Motif Containing, TRIM)家族,与Riplet具有高度同源性,能介导RIG-I四聚体形成,诱导RIG-I在Lys 172位残基的K63链型及MDA5的泛素化[32] [33]。近年研究揭示了多种在K63连接的泛素化过程中特异调节TRIM25的活性因子,包括Caspase-12、ZCCHC3、NDR2和NLRP12 [33]-[36]。长非编码RNA Lnczc3h7a在抗病毒感染的早期作为分子支架稳定TRIM25与它308、311和332核苷酸周围的RIG-I相互作用,增强下游信号传导[37]。由E3连接酶HOIL-1L和HOIP组成的线性泛素组装复合体LUBAC能下调TRIM25的蛋白水平并与TRIM25竞争RIG-I结合,抑制RIG-I的K63泛素化和信号活性[38]。LGP2可以抑制TRIM25介导RIG-I的K63泛素化[39]。TRIM4通过靶向K63连接的RIG-I的多泛素化来调节干扰素诱导的细胞抗病毒先天免疫[40]。MEX3C优先于病毒RNA和RIG-I共定位在感染细胞的胞浆颗粒中,并介导K63连接的RIG-I泛素化[41]。锌指蛋白ZFP36在RIG-I的K15、K164和K172位点促进RIG-I的K63链型泛素化[42]

K48链型泛素化通常利用蛋白酶体途径降解靶蛋白。RNF122和RNF125都能介导RIG-I的K48链型多泛素化,RNF125以相同方式降解MDA5 [43] [44]。负调控因子包括以Npl4-Ufd1为辅助因子的复合物p97、Trithorax蛋白家族成员MLL5和特异性上调凝集素家族成员Siglec-g都可以利用K48连接的泛素化或影响E3连接酶诱导RIG-I的降解,减弱其介导的I型干扰素产生[45]-[47]。STAT4在RNA病毒感染时,不经历核转位,而是在胞浆与E3连接酶羧基末端相互作用蛋白(Carboxyl Terminus of HSC70-Interacting Protein, CHIP)互作,破坏CHIP介导的RIG-I的K48链型泛素化,阻止RIG-I降解[48]。TRIM40作为E3泛素连接酶诱导RIG-I和MDA5通过K48和K27连接的泛素化降解,而RIOK3不仅能磷酸化MDA5,还招募并与E3泛素连接酶TRIM40相互作用,抑制抗病毒信号[49] [50]。MDA5的解旋酶结构域被TRIM65合成的K63链型的泛素链修饰,促进其寡聚激活传感器分子[51]。TRIM13负调控MDA5介导的I型干扰素产生,对RIG-I途径却有正向调节作用[52]

泛素链可在去泛素化酶(Deubiquitinating Enzymes, DUBs)的作用下被水解,动态调控机体泛素化修饰过程[53]。USP (Ubiquitin Specific Proteinase)家族是数量最多的一类去泛素化酶亚家族。敲除USP17可以增加RIG-I和MDA5的泛素化水平,USP4和USP15分别通过蛋白水解性切割RIG-I和TRIM25分子的K48连接泛素链来增强RIG-I和TRIM25的稳定性[54]-[56]。研究证明USP3、USP21、USP14和USP27X232都可特异性去除RIG-I的K63链型多泛素链,抑制I型干扰素信号的激活[57]-[60]。此外,OTUB1通过消除与RIG-I结合的K48链型泛素链来稳定RIG-I蛋白[61],去泛素化酶CyLD可以移除K63链型多泛素链调控RIG-I信号[62]

4.3. 类泛素化修饰

小泛素相关修饰物(Small Ubiquitin-Related Modifier, SUMO)与泛素有18%的序列同源性和机制相似性[63]。SUMO化也是可逆的多步酶促反应,通过E1激活酶(Aos1/UBA2)、E2结合酶(UBC9)和一系列不同的E3连接酶,将一个12 kDa的SUMO分子与靶蛋白共价连接,最后由SUMO特异性蛋白酶(Sentrin/SUMO-Specific Protease, SENP)将其移除底物,完成SUMO成熟化进入新循环[64]。功能上,SUMO化不促进蛋白质的降解,而是改变核质转位、蛋白质配对、蛋白质-DNA结合和转录因子的反式激活等功能特性[65]。哺乳动物含有5种SUMO分子,分别为SUMO-1/2/3/4/5,SUMO-1能够增强RIG-I的K63链型泛素化和RIG-I与MAVS结合的能力,从而增强Ⅰ型干扰素的产生[66]。UBR5通过抑制TRIM28的SUMO化促进其K63链型泛素化,从而正向调节RLR的转录,增强抗病毒反应[67]。SUMO异肽酶ULP-4能够SUMO化RIG-I的直系同系物DRH-1来促进秀丽隐杆线虫的抗病毒防御[68]。线粒体E3泛素连接酶MUL1,SUMO化RIG-I并抑制其多泛素化[69]。TRIM38作为E3连接酶SUMO化RIG-I和MDA5,防止其在未感染或病毒感染早期降解,并促进RIG-I和MDA5被PP1去磷酸化,正向调节干扰素抗病毒通路[70]。SENP2在病毒感染的晚期去SUMO化RIG-I和MDA5,避免持续激活和过度的先天免疫反应[71]。PIAS家族成员通过不同机制调控干扰素通路,PIASy的抑制功能依赖SUMO相互作用基序,SUMO E2酶UBC9的敲除能够降低其抑制活性[72] [73]。E3连接酶PIAS2β在MDA5的C末端发生SUMO化,促进抗病毒基因的诱导,而对K48连接的MDA5泛素化没有影响[74]

干扰素诱导的ISG15直接抑制病毒复制,还能通过酶级联反应共价连接到靶蛋白上,发生一种称为ISG化的类泛素化修饰[75]。现已鉴定出ISG15酶偶联需要E1活化酶UBE1L、E2结合酶UBCM8/H8与含HECT和RLD结构域的E3泛素蛋白连接酶5 (HECT and RLD Domain Containing E3 Ubiquitin Protein Ligase 5, HERC5)、ariadne RBR E3泛素蛋白连接酶1 (Ariadne RBR E3 Ubiquitin Protein Ligase 1, HHARI)和TRIM25参与,ISG化部分可以被去ISG化酶UBP43 (USP18)移除[76] [77]。ISG15通过与泛素竞争蛋白质上的结合部位,影响蛋白稳定性和降解[78]。ISG15与RIG-I结合,降低细胞中未结合的RIG-I蛋白水平,微调信号强度,而ADAP抑制这种结合,启动和维持抗病毒信号[79]。ISG化对MDA5的作用类似于RIG-I的K63链型泛素化,在K23和K43处的ISG化是其Ser88去磷酸化激活所必需的,在K23/K43位点基因突变的小鼠中,对抗病毒的能力减弱[80]。MDA5的ISG化限制病毒复制,SARS CoV2 PLPro能够靶向MDA5去ISG化,抑制MDA5寡聚物的形成[81]

此外,炎症诱导的泛素样蛋白FAT10能与激活的RIG-I的2CARD结构域非共价结合,调节RIG-I蛋白的溶解度,抑制病毒RNA诱导的IRF3和NF-kB激活,TRIM25能增强FAT10的稳定性,加强抑制作用,减弱RIG-I诱导的炎症反应[82]。锌指蛋白ZNF598既是E3泛素连接酶,又能递送FAT10到RIG-I蛋白,发挥抑制作用,减弱Riplet介导的K63连接的RIG-I的多泛素化,避免通路过度激活[83]

4.4. 其他翻译后修饰

糖基化作为生物体内分布最广泛的修饰类型,在抗病毒免疫中发挥不可或缺的作用。近年来研究发现α-(1,6)-岩藻糖基转移酶(Alpha-(1,6)-Fucosyltransferase, FUT8)可以促进TRIM40介导的RIG-I的K48链型泛素化,并通过核心岩藻糖基化抑制I型干扰素反应[84]

蛋白质的甲基化与转录激活有关,RIG-I在K18、K48和K146位点发生甲基化,去甲基化酶JMJD4能去除RIG-I在K18和K146处的甲基化[85]。去甲基化酶LSD1是RIG-I信号转导的正调控因子,然而其调控作用不依赖其去甲基化活性,而是通过促进RIG-I的K63链型泛素化实现的[86]

蛋白质的乙酰化由组蛋白乙酰基转移酶(Histone Acetyltransferases, HATs)催化,HATs将乙酰基从乙酰辅酶A转移到氨基末端残基的α-氨基或赖氨酸残基的ε-氨基,组蛋白脱乙酰酶(Histone Deacetylases, HDACs)能催化赖氨酸的乙酰基去除水解性,抵消HATs的作用,而氨基末端的修饰不可逆[87] [88]。一项高分辨率质谱研究鉴定到RIG-I的K858和K909残基上发生赖氨酸乙酰化[89],可逆乙酰化参与RIG-I的激活,静息状态下,RIG-I的羧基末端抑制结构域(Carboxyl-Terminal Repressor Domain, RD)相邻位点被乙酰化,阻止其寡聚,急性感染期间,HDAC6瞬间与RIG-I结合,在病毒RNA存在的情况下移除K909位点乙酰化,促进其寡聚化,增强RIG-I对病毒RNA的敏感活性[90] [91]。组蛋白赖氨酸巴豆酰化缺失能够产生免疫原性ds RNA,从而激活MDA5以增强Ⅰ型干扰素信号传导[92]

病毒通过多种策略进行免疫逃逸,疱疹病毒可以通过靶向RIG-I,部署蛋白质脱酰胺化劫持免疫信号。谷氨酰胺转移酶(Glutamine Transferase, GAT)是一种脱酰胺酶,参与多种代谢物的生物合成,PFAS是一种GAT,催化嘌呤生物合成中的第四步。研究发现,小鼠伽马疱疹病毒68 (Murine Gamma Herpesvirus 68, γHV68)感染后部署非酶活性的病毒伪酶vGAT招募PFAS脱酰胺化RIG-I的Hel1结构域残基,导致其结构性激活,此过程不消耗ATP,这一激活事件被病毒篡夺,阻止真正的PAMP激活RIG-I,促进病毒逃逸[93]。单纯疱疹病毒1型(Herpes Simplex Virus-Ⅰ, HSV-1)及其他α疱疹病毒的基因组不含γ疱疹病毒vGAT的蛋白序列同源物,但HSV-1利用其外壳蛋白UL37脱酰胺化RIG-I的Hel2i结构域残基,使RIG-I无法感知病毒dsRNA,ATP结合和水解受损,导致无法激活,阻断下游信号传导,促进病毒复制,说明RIG-I脱酰胺化有着不同机制[94] [95]。经比较和突变分析确定HSV-1的UL37靶向RIG-I的N495进行脱酰胺反应,随后是PPAT作为脱酰胺酶,针对RIG-I解旋酶区域N549的脱酰胺反应,抑制其RNA传感活性并水解ATP,促进信号激活[96]

5. 结语

可逆的蛋白质PTMs靶向细胞内蛋白,对蛋白质动态调控,其失调可能导致免疫相关疾病,表明这些修饰对于维持免疫稳态十分重要。随着冷冻电镜与邻近标记技术等先进技术嵌入研究,RLRs翻译后修饰各环节逐步清晰,非经典修饰类型在免疫中发挥的功能也日益崛起,但是否存在其他具有潜在免疫功能PTMs类型在免疫调节中的确切作用仍有待进一步探索。未来研究将利用多组学技术结合AI预测模型,突破单一PTM的局限性,构建PTMs串扰的协同调控网络,有助于解析RLR的时空动力学。目前对于PTMs的研究仍存在亟待解决的问题。例如,不同的修饰酶如何识别RLRs蛋白的特定位点,是否存在能够识别特定氨基酸序列的修饰密码导致了这种选择性修饰。在面临新出现的病毒威胁时,是否可以将RLRs的PTM调控机制开发为小分子抑制剂,利用宿主的先天免疫系统,设计出广谱抗病毒药物,以及PTMs是否可以作为预测疾病进展和治疗效果的免疫检查点。将对机制的理解转化为传染病和免疫相关疾病的治疗策略,是目前免疫学研究需要进一步重视发展的重要方向。

NOTES

*通讯作者。

参考文献

[1] Kumar, V. and Stewart IV, J.H. (2024) Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. Journal of Innate Immunity, 16, 295-323.
https://doi.org/10.1159/000539278
[2] Lee, J.M., Hammarén, H.M., Savitski, M.M. and Baek, S.H. (2023) Control of Protein Stability by Post-Translational Modifications. Nature Communications, 14, Article No. 201.
https://doi.org/10.1038/s41467-023-35795-8
[3] Brisse, M. and Ly, H. (2019) Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Frontiers in Immunology, 10, Article 1586.
https://doi.org/10.3389/fimmu.2019.01586
[4] Schweibenz, B.D., Devarkar, S.C., Solotchi, M., Craig, C., Zheng, J., Pascal, B.D., et al. (2022) The Intrinsically Disordered CARDs‐Helicase Linker in RIG‐I Is a Molecular Gate for RNA Proofreading. The EMBO Journal, 41, e109782.
https://doi.org/10.15252/embj.2021109782
[5] Jiang, F., Ramanathan, A., Miller, M.T., Tang, G., Gale, M., Patel, S.S., et al. (2011) Structural Basis of RNA Recognition and Activation by Innate Immune Receptor RIG-I. Nature, 479, 423-427.
https://doi.org/10.1038/nature10537
[6] Linder, P. and Jankowsky, E. (2011) From Unwinding to Clamping—The DEAD Box RNA Helicase Family. Nature Reviews Molecular Cell Biology, 12, 505-516.
https://doi.org/10.1038/nrm3154
[7] Zhu, Z., Zhang, M., Yuan, L., Xu, Y., Zhou, H., Lian, Z., et al. (2023) LGP2 Promotes Type I Interferon Production to Inhibit PRRSV Infection via Enhancing MDA5-Mediated Signaling. Journal of Virology, 97, e0184322.
https://doi.org/10.1128/jvi.01843-22
[8] He, Y., Liu, J., Miao, Y., Liu, M., Wu, H., Xiao, J., et al. (2023) Black Carp LGP2 Suppresses RIG-I Mediated IFN Signaling during the Antiviral Innate Immunity. Fish & Shellfish Immunology, 143, Article 109208.
https://doi.org/10.1016/j.fsi.2023.109208
[9] Goubau, D., Schlee, M., Deddouche, S., Pruijssers, A.J., Zillinger, T., Goldeck, M., et al. (2014) Antiviral Immunity via RIG-I-Mediated Recognition of RNA Bearing 5’-Diphosphates. Nature, 514, 372-375.
https://doi.org/10.1038/nature13590
[10] Pichlmair, A., Schulz, O., Tan, C., Rehwinkel, J., Kato, H., Takeuchi, O., et al. (2009) Activation of MDA5 Requires Higher-Order RNA Structures Generated during Virus Infection. Journal of Virology, 83, 10761-10769.
https://doi.org/10.1128/jvi.00770-09
[11] Kato, H. and Fujita, T. (2016) Cytoplasmic Viral RNA Sensors: RIG-I-Like Receptors. Encyclopedia of Immunobiology, 2, 352-359.
https://doi.org/10.1016/b978-0-12-374279-7.02005-1
[12] Wu, B. and Hur, S. (2015) How RIG-I Like Receptors Activate Mavs. Current Opinion in Virology, 12, 91-98.
https://doi.org/10.1016/j.coviro.2015.04.004
[13] Li, X., Zhang, Q., Ding, Y., Liu, Y., Zhao, D., Zhao, K., et al. (2016) Methyltransferase Dnmt3a Upregulates HDAC9 to Deacetylate the Kinase TBK1 for Activation of Antiviral Innate Immunity. Nature Immunology, 17, 806-815.
https://doi.org/10.1038/ni.3464
[14] Zheng, J., Shi, W., Yang, Z., Chen, J., Qi, A., Yang, Y., et al. (2023) RIG-I-Like Receptors: Molecular Mechanism of Activation and Signaling. Advances in Immunology, 158, 1-74.
https://doi.org/10.1016/bs.ai.2023.03.001
[15] Ramazi, S., Allahverdi, A. and Zahiri, J. (2020) Evaluation of Post-Translational Modifications in Histone Proteins: A Review on Histone Modification Defects in Developmental and Neurological Disorders. Journal of Biosciences, 45, Article No. 135.
https://doi.org/10.1007/s12038-020-00099-2
[16] Czuba, L.C., Hillgren, K.M. and Swaan, P.W. (2018) Post-Translational Modifications of Transporters. Pharmacology & Therapeutics, 192, 88-99.
https://doi.org/10.1016/j.pharmthera.2018.06.013
[17] Zhang, Y. and Zeng, L. (2020) Crosstalk between Ubiquitination and Other Post-Translational Protein Modifications in Plant Immunity. Plant Communications, 1, Article 100041.
https://doi.org/10.1016/j.xplc.2020.100041
[18] Gack, M.U., Nistal-Villán, E., Inn, K., García-Sastre, A. and Jung, J.U. (2010) Phosphorylation-Mediated Negative Regulation of RIG-I Antiviral Activity. Journal of Virology, 84, 3220-3229.
https://doi.org/10.1128/jvi.02241-09
[19] Nistal-Villán, E., Gack, M.U., Martínez-Delgado, G., Maharaj, N.P., Inn, K., Yang, H., et al. (2010) Negative Role of RIG-I Serine 8 Phosphorylation in the Regulation of Interferon-Β Production. Journal of Biological Chemistry, 285, 20252-20261.
https://doi.org/10.1074/jbc.m109.089912
[20] Maharaj, N.P., Wies, E., Stoll, A. and Gack, M.U. (2012) Conventional Protein Kinase C-α (PKC-α) and PKC-β Negatively Regulate RIG-I Antiviral Signal Transduction. Journal of Virology, 86, 1358-1371.
https://doi.org/10.1128/jvi.06543-11
[21] Sun, Z., Ren, H., Liu, Y., Teeling, J.L. and Gu, J. (2011) Phosphorylation of RIG-I by Casein Kinase II Inhibits Its Antiviral Response. Journal of Virology, 85, 1036-1047.
https://doi.org/10.1128/jvi.01734-10
[22] Willemsen, J., Wicht, O., Wolanski, J.C., Baur, N., Bastian, S., Haas, D.A., et al. (2017) Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-Wide siRNA Screening. Molecular Cell, 65, 403-415.E8.
https://doi.org/10.1016/j.molcel.2016.12.021
[23] Zhang, J., Hu, M., Shu, H. and Li, S. (2014) Death-Associated Protein Kinase 1 Is an IRF3/7-Interacting Protein That Is Involved in the Cellular Antiviral Immune Response. Cellular & Molecular Immunology, 11, 245-252.
https://doi.org/10.1038/cmi.2013.65
[24] Zhang, X., Yu, H., Zhao, J., Li, X., Li, J., He, J., et al. (2015) IKKϵ Negatively Regulates RIG‐I via Direct Phosphorylation. Journal of Medical Virology, 88, 712-718.
https://doi.org/10.1002/jmv.24376
[25] Wies, E., Wang, M.K., Maharaj, N.P., Chen, K., Zhou, S., Finberg, R.W., et al. (2013) Dephosphorylation of the RNA Sensors RIG-I and MDA5 by the Phosphatase PP1 Is Essential for Innate Immune Signaling. Immunity, 38, 437-449.
https://doi.org/10.1016/j.immuni.2012.11.018
[26] Takashima, K., Oshiumi, H., Takaki, H., Matsumoto, M. and Seya, T. (2015) RIOK3-Mediated Phosphorylation of MDA5 Interferes with Its Assembly and Attenuates the Innate Immune Response. Cell Reports, 11, 192-200.
https://doi.org/10.1016/j.celrep.2015.03.027
[27] Oshiumi, H., Miyashita, M., Matsumoto, M. and Seya, T. (2013) A Distinct Role of Riplet-Mediated K63-Linked Polyubiquitination of the RIG-I Repressor Domain in Human Antiviral Innate Immune Responses. PLOS Pathogens, 9, e1003533.
https://doi.org/10.1371/journal.ppat.1003533
[28] Cadena, C., Ahmad, S., Xavier, A., Willemsen, J., Park, S., Park, J.W., et al. (2019) Ubiquitin-Dependent and-Independent Roles of E3 Ligase RIPLET in Innate Immunity. Cell, 177, 1187-1200.E16.
https://doi.org/10.1016/j.cell.2019.03.017
[29] Jiang, X., Kinch, L.N., Brautigam, C.A., Chen, X., Du, F., Grishin, N.V., et al. (2012) Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response. Immunity, 36, 959-973.
https://doi.org/10.1016/j.immuni.2012.03.022
[30] Gao, D., Yang, Y., Wang, R., Zhou, X., Diao, F., Li, M., et al. (2009) REUL Is a Novel E3 Ubiquitin Ligase and Stimulator of Retinoic-Acid-Inducible Gene-I. PLOS ONE, 4, e5760.
https://doi.org/10.1371/journal.pone.0005760
[31] Shi, Y., Yuan, B., Zhu, W., Zhang, R., Li, L., Hao, X., et al. (2017) Ube2D3 and Ube2N Are Essential for RIG-I-Mediated MAVS Aggregation in Antiviral Innate Immunity. Nature Communications, 8, Article No. 15138.
https://doi.org/10.1038/ncomms15138
[32] Gack, M.U., Shin, Y.C., Joo, C., Urano, T., Liang, C., Sun, L., et al. (2007) TRIM25 Ring-Finger E3 Ubiquitin Ligase Is Essential for RIG-I-Mediated Antiviral Activity. Nature, 446, 916-920.
https://doi.org/10.1038/nature05732
[33] Lian, H., Zang, R., Wei, J., Ye, W., Hu, M., Chen, Y., et al. (2018) The Zinc-Finger Protein ZCCHC3 Binds RNA and Facilitates Viral RNA Sensing and Activation of the RIG-I-Like Receptors. Immunity, 49, 438-448.E5.
https://doi.org/10.1016/j.immuni.2018.08.014
[34] Wang, P., Arjona, A., Zhang, Y., Sultana, H., Dai, J., Yang, L., et al. (2010) Caspase-12 Controls West Nile Virus Infection via the Viral RNA Receptor RIG-I. Nature Immunology, 11, 912-919.
https://doi.org/10.1038/ni.1933
[35] Liu, Z., Wu, C., Pan, Y., Liu, H., Wang, X., Yang, Y., et al. (2019) NDR2 Promotes the Antiviral Immune Response via Facilitating TRIM25-Mediated RIG-I Activation in Macrophages. Science Advances, 5, eaav0163.
https://doi.org/10.1126/sciadv.aav0163
[36] Chen, S., Chen, L., Lin, D.S., Chen, S., Tsao, Y., Guo, H., et al. (2019) NLRP12 Regulates Anti-Viral RIG-I Activation via Interaction with TRIM25. Cell Host & Microbe, 25, 602-616.E7.
https://doi.org/10.1016/j.chom.2019.02.013
[37] Lin, H., Jiang, M., Liu, L., Yang, Z., Ma, Z., Liu, S., et al. (2019) The Long Noncoding RNA Lnczc3h7a Promotes a TRIM25-Mediated RIG-I Antiviral Innate Immune Response. Nature Immunology, 20, 812-823.
https://doi.org/10.1038/s41590-019-0379-0
[38] Inn, K., Gack, M.U., Tokunaga, F., Shi, M., Wong, L., Iwai, K., et al. (2011) Linear Ubiquitin Assembly Complex Negatively Regulates RIG-I-and TRIM25-Mediated Type I Interferon Induction. Molecular Cell, 41, 354-365.
https://doi.org/10.1016/j.molcel.2010.12.029
[39] Quicke, K.M., Kim, K.Y., Horvath, C.M. and Suthar, M.S. (2019) RNA Helicase LGP2 Negatively Regulates RIG-I Signaling by Preventing TRIM25-Mediated Caspase Activation and Recruitment Domain Ubiquitination. Journal of Interferon & Cytokine Research, 39, 669-683.
https://doi.org/10.1089/jir.2019.0059
[40] Yan, J., Li, Q., Mao, A.-P., Hu, M.-M. and Shu, H.-B. (2014) TRIM4 Modulates Type I Interferon Induction and Cellular Antiviral Response by Targeting RIG-I for K63-Linked Ubiquitination. Journal of Molecular Cell Biology, 6, 154-163.
https://doi.org/10.1093/jmcb/mju005
[41] Kuniyoshi, K., Takeuchi, O., Pandey, S., Satoh, T., Iwasaki, H., Akira, S., et al. (2014) Pivotal Role of RNA-Binding E3 Ubiquitin Ligase MEX3C in RIG-I-Mediated Antiviral Innate Immunity. Proceedings of the National Academy of Sciences, 111, 5646-5651.
https://doi.org/10.1073/pnas.1401674111
[42] Jiang, X., Xiao, Y., Hou, W., Yu, J., He, T. and Xu, L. (2023) The RNA‐Binding Protein ZFP36 Strengthens Innate Antiviral Signaling by Targeting RIG‐I for K63‐linked Ubiquitination. Journal of Cellular Physiology, 238, 2348-2360.
https://doi.org/10.1002/jcp.31088
[43] Wang, W., Jiang, M., Liu, S., Zhang, S., Liu, W., Ma, Y., et al. (2016) RNF122 Suppresses Antiviral Type I Interferon Production by Targeting RIG-I Cards to Mediate RIG-I Degradation. Proceedings of the National Academy of Sciences, 113, 9581-9586.
https://doi.org/10.1073/pnas.1604277113
[44] Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T. and Shimotohno, K. (2007) Negative Regulation of the RIG-I Signaling by the Ubiquitin Ligase RNF125. Proceedings of the National Academy of Sciences, 104, 7500-7505.
https://doi.org/10.1073/pnas.0611551104
[45] Hao, Q., Jiao, S., Shi, Z., Li, C., Meng, X., Zhang, Z., et al. (2015) A Non‐Canonical Role of the P97 Complex in RIG‐I Antiviral Signaling. The EMBO Journal, 34, 2903-2920.
https://doi.org/10.15252/embj.201591888
[46] Zhou, P., Ding, X., Wan, X., Liu, L., Yuan, X., Zhang, W., et al. (2018) MLL5 Suppresses Antiviral Innate Immune Response by Facilitating Stub1-Mediated RIG-I Degradation. Nature Communications, 9, Article No. 1243.
https://doi.org/10.1038/s41467-018-03563-8
[47] Chen, W., Han, C., Xie, B., Hu, X., Yu, Q., Shi, L., et al. (2013) Induction of Siglec-G by RNA Viruses Inhibits the Innate Immune Response by Promoting RIG-I Degradation. Cell, 152, 467-478.
https://doi.org/10.1016/j.cell.2013.01.011
[48] Zhao, K., Zhang, Q., Li, X., Zhao, D., Liu, Y., Shen, Q., et al. (2016) Cytoplasmic STAT4 Promotes Antiviral Type I IFN Production by Blocking Chip-Mediated Degradation of RIG-I. The Journal of Immunology, 196, 1209-1217.
https://doi.org/10.4049/jimmunol.1501224
[49] Zhao, C., Jia, M., Song, H., Yu, Z., Wang, W., Li, Q., et al. (2017) The E3 Ubiquitin Ligase TRIM40 Attenuates Antiviral Immune Responses by Targeting MDA5 and RIG-I. Cell Reports, 21, 1613-1623.
https://doi.org/10.1016/j.celrep.2017.10.020
[50] Shen, Y., Tang, K., Chen, D., Hong, M., Sun, F., Wang, S., et al. (2021) Riok3 Inhibits the Antiviral Immune Response by Facilitating TRIM40-Mediated RIG-I and MDA5 Degradation. Cell Reports, 35, Article 109272.
https://doi.org/10.1016/j.celrep.2021.109272
[51] Lang, X., Tang, T., Jin, T., Ding, C., Zhou, R. and Jiang, W. (2016) TRIM65-Catalized Ubiquitination Is Essential for MDA5-Mediated Antiviral Innate Immunity. Journal of Experimental Medicine, 214, 459-473.
https://doi.org/10.1084/jem.20160592
[52] Narayan, K., Waggoner, L., Pham, S.T., Hendricks, G.L., Waggoner, S.N., Conlon, J., et al. (2014) TRIM13 Is a Negative Regulator of MDA5-Mediated Type I Interferon Production. Journal of Virology, 88, 10748-10757.
https://doi.org/10.1128/jvi.02593-13
[53] Mattiroli, F. and Sixma, T.K. (2014) Lysine-Targeting Specificity in Ubiquitin and Ubiquitin-Like Modification Pathways. Nature Structural & Molecular Biology, 21, 308-316.
https://doi.org/10.1038/nsmb.2792
[54] Chen, R., Zhang, L., Zhong, B., Tan, B., Liu, Y. and Shu, H. (2010) The Ubiquitin-Specific Protease 17 Is Involved in Virus-Triggered Type I IFN Signaling. Cell Research, 20, 802-811.
https://doi.org/10.1038/cr.2010.41
[55] Wang, L., Zhao, W., Zhang, M., Wang, P., Zhao, K., Zhao, X., et al. (2013) USP4 Positively Regulates RIG-I-Mediated Antiviral Response through Deubiquitination and Stabilization of RIG-I. Journal of Virology, 87, 4507-4515.
https://doi.org/10.1128/jvi.00031-13
[56] Pauli, E., Chan, Y.K., Davis, M.E., Gableske, S., Wang, M.K., Feister, K.F., et al. (2014) The Ubiquitin-Specific Protease USP15 Promotes RIG-I-Mediated Antiviral Signaling by Deubiquitylating TRIM25. Science Signaling, 7, ra3.
https://doi.org/10.1126/scisignal.2004577
[57] Cui, J., Song, Y., Li, Y., Zhu, Q., Tan, P., Qin, Y., et al. (2013) USP3 Inhibits Type I Interferon Signaling by Deubiquitinating RIG-I-Like Receptors. Cell Research, 24, 400-416.
https://doi.org/10.1038/cr.2013.170
[58] Fan, Y., Mao, R., Yu, Y., Liu, S., Shi, Z., Cheng, J., et al. (2014) USP21 Negatively Regulates Antiviral Response by Acting as a RIG-I Deubiquitinase. Journal of Experimental Medicine, 211, 313-328.
https://doi.org/10.1084/jem.20122844
[59] Li, H., Zhao, Z., Ling, J., Pan, L., Zhao, X., Zhu, H., et al. (2018) USP14 Promotes K63‐Linked RIG‐I Deubiquitination and Suppresses Antiviral Immune Responses. European Journal of Immunology, 49, 42-53.
https://doi.org/10.1002/eji.201847603
[60] Tao, X., Chu, B., Xin, D., Li, L. and Sun, Q. (2020) USP27X Negatively Regulates Antiviral Signaling by Deubiquitinating RIG-I. PLOS Pathogens, 16, e1008293.
https://doi.org/10.1371/journal.ppat.1008293
[61] Jahan, A.S., Biquand, E., Muñoz-Moreno, R., Le Quang, A., Mok, C.K., Wong, H.H., et al. (2020) OTUB1 Is a Key Regulator of RIG-I-Dependent Immune Signaling and Is Targeted for Proteasomal Degradation by Influenza A NS1. Cell Reports, 30, 1570-1584.E6.
https://doi.org/10.1016/j.celrep.2020.01.015
[62] Friedman, C.S., O’Donnell, M.A., Legarda‐Addison, D., Ng, A., Cárdenas, W.B., Yount, J.S., et al. (2008) The Tumour Suppressor CYLD Is a Negative Regulator of RIG‐I‐Mediated Antiviral Response. EMBO Reports, 9, 930-936.
https://doi.org/10.1038/embor.2008.136
[63] Gill, G. (2004) SUMO and Ubiquitin in the Nucleus: Different Functions, Similar Mechanisms? Genes & Development, 18, 2046-2059.
https://doi.org/10.1101/gad.1214604
[64] Hay, R.T. (2005) SUMO: A History of Modification. Molecular Cell, 18, 1-12.
https://doi.org/10.1016/j.molcel.2005.03.012
[65] Zhu, G., Tong, N., Zhu, Y., Wang, L. and Wang, Q. (2024) The Crosstalk between Sumoylation and Immune System in Host-Pathogen Interactions. Critical Reviews in Microbiology, 51, 164-186.
https://doi.org/10.1080/1040841x.2024.2339259
[66] Mi, Z., Fu, J., Xiong, Y. and Tang, H. (2010) Sumoylation of RIG-I Positively Regulates the Type I Interferon Signaling. Protein & Cell, 1, 275-283.
https://doi.org/10.1007/s13238-010-0030-1
[67] Yang, D., Geng, T., Harrison, A.G., Cahoon, J.G., Xing, J., Jiao, B., et al. (2024) UBR5 Promotes Antiviral Immunity by Disengaging the Transcriptional Brake on RIG-I Like Receptors. Nature Communications, 15, Article No. 780.
https://doi.org/10.1038/s41467-024-45141-1
[68] Zhang, Y. and Samuelson, A.V. (2024) Antiviral Defense in Aged Caenorhabditis Elegans Declines Due to Loss of DRH-1/RIG-I deSUMOylation via ULP-4/SENP7. Preprint.
https://doi.org/10.1101/2024.11.12.623310
[69] Jenkins, K., Khoo, J.J., Sadler, A., Piganis, R., Wang, D., Borg, N.A., et al. (2013) Mitochondrially Localised MUL1 Is a Novel Modulator of Antiviral Signaling. Immunology & Cell Biology, 91, 321-330.
https://doi.org/10.1038/icb.2013.7
[70] Hu, M., Liao, C., Yang, Q., Xie, X. and Shu, H. (2017) Innate Immunity to RNA Virus Is Regulated by Temporal and Reversible Sumoylation of RIG-I and Mda5. Journal of Experimental Medicine, 214, 973-989.
https://doi.org/10.1084/jem.20161015
[71] Chen, Y., Li, J., Fu, J., Xiao, L., Chu, J., Qin, W., et al. (2025) SENP2 Negatively Regulates RIG-I/MDA5 Mediated Innate Immunity in Black Carp. Fish & Shellfish Immunology, 157, Article 110097.
https://doi.org/10.1016/j.fsi.2024.110097
[72] Kubota, T., Matsuoka, M., Xu, S., Otsuki, N., Takeda, M., Kato, A., et al. (2011) Piasy Inhibits Virus-Induced and Interferon-Stimulated Transcription through Distinct Mechanisms. Journal of Biological Chemistry, 286, 8165-8175.
https://doi.org/10.1074/jbc.m110.195255
[73] Li, R., Pan, Y., Shi, D., Zhang, Y. and Zhang, J. (2013) PIAS1 Negatively Modulates Virus Triggered Type I IFN Signaling by Blocking the DNA Binding Activity of Irf3. Antiviral Research, 100, 546-554.
https://doi.org/10.1016/j.antiviral.2013.09.001
[74] Fu, J., Xiong, Y., Xu, Y., Cheng, G. and Tang, H. (2011) MDA5 Is Sumoylated by PIAS2β in the Upregulation of Type I Interferon Signaling. Molecular Immunology, 48, 415-422.
https://doi.org/10.1016/j.molimm.2010.09.003
[75] Perng, Y. and Lenschow, D.J. (2018) ISG15 in Antiviral Immunity and Beyond. Nature Reviews Microbiology, 16, 423-439.
https://doi.org/10.1038/s41579-018-0020-5
[76] Tecalco-Cruz, A.C. and Zepeda-Cervantes, J. (2023) Protein Isgylation: A Posttranslational Modification with Implications for Malignant Neoplasms. Exploration of Targeted Anti-Tumor Therapy, 4, 699-715.
https://doi.org/10.37349/etat.2023.00162
[77] Malakhov, M.P., Malakhova, O.A., Kim, K.I., Ritchie, K.J. and Zhang, D. (2002) UBP43 (USP18) Specifically Removes ISG15 from Conjugated Proteins. Journal of Biological Chemistry, 277, 9976-9981.
https://doi.org/10.1074/jbc.m109078200
[78] Desai, S.D., Haas, A.L., Wood, L.M., Tsai, Y., Pestka, S., Rubin, E.H., et al. (2006) Elevated Expression of ISG15 in Tumor Cells Interferes with the Ubiquitin/26S Proteasome Pathway. Cancer Research, 66, 921-928.
https://doi.org/10.1158/0008-5472.can-05-1123
[79] Wang, Y., Feng, H., Li, X., Ruan, Y., Guo, Y., Cui, X., et al. (2024) Dampening of Isgylation of RIG-I by ADAP Regulates Type I Interferon Response of Macrophages to RNA Virus Infection. PLOS Pathogens, 20, e1012230.
https://doi.org/10.1371/journal.ppat.1012230
[80] Sarkar, L., Liu, G., Acharya, D., Zhu, J., Sayyad, Z. and Gack, M.U. (2024) MDA5 ISGylation Is Crucial for Immune Signaling to Control Viral Replication and Pathogenesis. Preprint.
https://doi.org/10.1101/2024.09.20.614144
[81] Liu, G., Lee, J.H., Parker, Z.M., et al. (2021) ISG15-Dependent Activation of the RNA Sensor MDA5 and Its Antagonism by the SARS-CoV-2 Papain-Like Protease. Nature Microbiology, 6, 467-478.
https://doi.org/10.1038/s41564-021-00884-1
[82] Nguyen, N.T.H., Now, H., Kim, W., Kim, N. and Yoo, J. (2016) Ubiquitin-Like Modifier FAT10 Attenuates RIG-I Mediated Antiviral Signaling by Segregating Activated RIG-I from Its Signaling Platform. Scientific Reports, 6, Article No. 23377.
https://doi.org/10.1038/srep23377
[83] Wang, G., Kouwaki, T., Okamoto, M. and Oshiumi, H. (2019) Attenuation of the Innate Immune Response against Viral Infection Due to ZNF598-Promoted Binding of FAT10 to RIG-I. Cell Reports, 28, 1961-1970.E4.
https://doi.org/10.1016/j.celrep.2019.07.081
[84] Pan, Q., Xie, Y., Zhang, Y., Guo, X., Wang, J., Liu, M., et al. (2024) EGFR Core Fucosylation, Induced by Hepatitis C Virus, Promotes Trim40-Mediated-RIG-I Ubiquitination and Suppresses Interferon-I Antiviral Defenses. Nature Communications, 15, Article No. 652.
https://doi.org/10.1038/s41467-024-44960-6
[85] Li, Z., Zhou, Y., Jia, K., Yang, Y., Zhang, L., Wang, S., et al. (2022) JMJD4-Demethylated RIG-I Prevents Hepatic Steatosis and Carcinogenesis. Journal of Hematology & Oncology, 15, Article No. 161.
https://doi.org/10.1186/s13045-022-01381-6
[86] Hu, Q., Wang, H., Jiang, L., Wang, C., Ju, L., Zhu, Y., et al. (2021) Histone Demethylase LSD1 Promotes RIG-I Poly-ubiquitination and Anti-Viral Gene Expression. PLOS Pathogens, 17, e1009918.
https://doi.org/10.1371/journal.ppat.1009918
[87] Polevoda, B. and Sherman, F. (2002) The Diversity of Acetylated Proteins. Genome Biology, 3, reviews0006.1.
https://doi.org/10.1186/gb-2002-3-5-reviews0006
[88] Li, Y. and Alam, H.B. (2011) Modulation of Acetylation: Creating a Pro‐Survival and Anti‐Inflammatory Phenotype in Lethal Hemorrhagic and Septic Shock. BioMed Research International, 2011, Article ID: 523481.
https://doi.org/10.1155/2011/523481
[89] Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., et al. (2009) Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. Science, 325, 834-840.
https://doi.org/10.1126/science.1175371
[90] Liu, H.M., Jiang, F., Loo, Y.M., Hsu, S., Hsiang, T., Marcotrigiano, J., et al. (2016) Regulation of Retinoic Acid Inducible Gene-I (RIG-I) Activation by the Histone Deacetylase 6. EBioMedicine, 9, 195-206.
https://doi.org/10.1016/j.ebiom.2016.06.015
[91] Choi, S.J., Lee, H., Kim, J., Park, S.Y., Kim, T., Lee, W., et al. (2016) HDAC 6 Regulates Cellular Viral RNA Sensing by Deacetylation of RIG‐I. The EMBO Journal, 35, 429-442.
https://doi.org/10.15252/embj.201592586
[92] Yuan, H., Wu, X., Wu, Q., Chatoff, A., Megill, E., Gao, J., et al. (2023) Lysine Catabolism Reprograms Tumour Immunity through Histone Crotonylation. Nature, 617, 818-826.
https://doi.org/10.1038/s41586-023-06061-0
[93] He, S., Zhao, J., Song, S., He, X., Minassian, A., Zhou, Y., et al. (2015) Viral Pseudo-Enzymes Activate RIG-I via Deamidation to Evade Cytokine Production. Molecular Cell, 58, 134-146.
https://doi.org/10.1016/j.molcel.2015.01.036
[94] Zhao, J., Zeng, Y., Xu, S., Chen, J., Shen, G., Yu, C., et al. (2016) A Viral Deamidase Targets the Helicase Domain of RIG-I to Block RNA-Induced Activation. Cell Host & Microbe, 20, 770-784.
https://doi.org/10.1016/j.chom.2016.10.011
[95] Garcin, D. (2016) HSV1 Pulls the Deamidation Trigger. Cell Host & Microbe, 20, 698-700.
https://doi.org/10.1016/j.chom.2016.11.011
[96] Huang, H., Zhao, J., Wang, T., Zhang, S., Zhou, Y., Rao, Y., et al. (2021) Species-Specific Deamidation of RIG-I Reveals Collaborative Action between Viral and Cellular Deamidases in HSV-1 Lytic Replication. mBio, 12.
https://doi.org/10.1128/mbio.00115-21