[1]
|
Kumar, V. and Stewart IV, J.H. (2024) Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. Journal of Innate Immunity, 16, 295-323. https://doi.org/10.1159/000539278
|
[2]
|
Lee, J.M., Hammarén, H.M., Savitski, M.M. and Baek, S.H. (2023) Control of Protein Stability by Post-Translational Modifications. Nature Communications, 14, Article No. 201. https://doi.org/10.1038/s41467-023-35795-8
|
[3]
|
Brisse, M. and Ly, H. (2019) Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Frontiers in Immunology, 10, Article 1586. https://doi.org/10.3389/fimmu.2019.01586
|
[4]
|
Schweibenz, B.D., Devarkar, S.C., Solotchi, M., Craig, C., Zheng, J., Pascal, B.D., et al. (2022) The Intrinsically Disordered CARDs‐Helicase Linker in RIG‐I Is a Molecular Gate for RNA Proofreading. The EMBO Journal, 41, e109782. https://doi.org/10.15252/embj.2021109782
|
[5]
|
Jiang, F., Ramanathan, A., Miller, M.T., Tang, G., Gale, M., Patel, S.S., et al. (2011) Structural Basis of RNA Recognition and Activation by Innate Immune Receptor RIG-I. Nature, 479, 423-427. https://doi.org/10.1038/nature10537
|
[6]
|
Linder, P. and Jankowsky, E. (2011) From Unwinding to Clamping—The DEAD Box RNA Helicase Family. Nature Reviews Molecular Cell Biology, 12, 505-516. https://doi.org/10.1038/nrm3154
|
[7]
|
Zhu, Z., Zhang, M., Yuan, L., Xu, Y., Zhou, H., Lian, Z., et al. (2023) LGP2 Promotes Type I Interferon Production to Inhibit PRRSV Infection via Enhancing MDA5-Mediated Signaling. Journal of Virology, 97, e0184322. https://doi.org/10.1128/jvi.01843-22
|
[8]
|
He, Y., Liu, J., Miao, Y., Liu, M., Wu, H., Xiao, J., et al. (2023) Black Carp LGP2 Suppresses RIG-I Mediated IFN Signaling during the Antiviral Innate Immunity. Fish & Shellfish Immunology, 143, Article 109208. https://doi.org/10.1016/j.fsi.2023.109208
|
[9]
|
Goubau, D., Schlee, M., Deddouche, S., Pruijssers, A.J., Zillinger, T., Goldeck, M., et al. (2014) Antiviral Immunity via RIG-I-Mediated Recognition of RNA Bearing 5’-Diphosphates. Nature, 514, 372-375. https://doi.org/10.1038/nature13590
|
[10]
|
Pichlmair, A., Schulz, O., Tan, C., Rehwinkel, J., Kato, H., Takeuchi, O., et al. (2009) Activation of MDA5 Requires Higher-Order RNA Structures Generated during Virus Infection. Journal of Virology, 83, 10761-10769. https://doi.org/10.1128/jvi.00770-09
|
[11]
|
Kato, H. and Fujita, T. (2016) Cytoplasmic Viral RNA Sensors: RIG-I-Like Receptors. Encyclopedia of Immunobiology, 2, 352-359. https://doi.org/10.1016/b978-0-12-374279-7.02005-1
|
[12]
|
Wu, B. and Hur, S. (2015) How RIG-I Like Receptors Activate Mavs. Current Opinion in Virology, 12, 91-98. https://doi.org/10.1016/j.coviro.2015.04.004
|
[13]
|
Li, X., Zhang, Q., Ding, Y., Liu, Y., Zhao, D., Zhao, K., et al. (2016) Methyltransferase Dnmt3a Upregulates HDAC9 to Deacetylate the Kinase TBK1 for Activation of Antiviral Innate Immunity. Nature Immunology, 17, 806-815. https://doi.org/10.1038/ni.3464
|
[14]
|
Zheng, J., Shi, W., Yang, Z., Chen, J., Qi, A., Yang, Y., et al. (2023) RIG-I-Like Receptors: Molecular Mechanism of Activation and Signaling. Advances in Immunology, 158, 1-74. https://doi.org/10.1016/bs.ai.2023.03.001
|
[15]
|
Ramazi, S., Allahverdi, A. and Zahiri, J. (2020) Evaluation of Post-Translational Modifications in Histone Proteins: A Review on Histone Modification Defects in Developmental and Neurological Disorders. Journal of Biosciences, 45, Article No. 135. https://doi.org/10.1007/s12038-020-00099-2
|
[16]
|
Czuba, L.C., Hillgren, K.M. and Swaan, P.W. (2018) Post-Translational Modifications of Transporters. Pharmacology & Therapeutics, 192, 88-99. https://doi.org/10.1016/j.pharmthera.2018.06.013
|
[17]
|
Zhang, Y. and Zeng, L. (2020) Crosstalk between Ubiquitination and Other Post-Translational Protein Modifications in Plant Immunity. Plant Communications, 1, Article 100041. https://doi.org/10.1016/j.xplc.2020.100041
|
[18]
|
Gack, M.U., Nistal-Villán, E., Inn, K., García-Sastre, A. and Jung, J.U. (2010) Phosphorylation-Mediated Negative Regulation of RIG-I Antiviral Activity. Journal of Virology, 84, 3220-3229. https://doi.org/10.1128/jvi.02241-09
|
[19]
|
Nistal-Villán, E., Gack, M.U., Martínez-Delgado, G., Maharaj, N.P., Inn, K., Yang, H., et al. (2010) Negative Role of RIG-I Serine 8 Phosphorylation in the Regulation of Interferon-Β Production. Journal of Biological Chemistry, 285, 20252-20261. https://doi.org/10.1074/jbc.m109.089912
|
[20]
|
Maharaj, N.P., Wies, E., Stoll, A. and Gack, M.U. (2012) Conventional Protein Kinase C-α (PKC-α) and PKC-β Negatively Regulate RIG-I Antiviral Signal Transduction. Journal of Virology, 86, 1358-1371. https://doi.org/10.1128/jvi.06543-11
|
[21]
|
Sun, Z., Ren, H., Liu, Y., Teeling, J.L. and Gu, J. (2011) Phosphorylation of RIG-I by Casein Kinase II Inhibits Its Antiviral Response. Journal of Virology, 85, 1036-1047. https://doi.org/10.1128/jvi.01734-10
|
[22]
|
Willemsen, J., Wicht, O., Wolanski, J.C., Baur, N., Bastian, S., Haas, D.A., et al. (2017) Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-Wide siRNA Screening. Molecular Cell, 65, 403-415.E8. https://doi.org/10.1016/j.molcel.2016.12.021
|
[23]
|
Zhang, J., Hu, M., Shu, H. and Li, S. (2014) Death-Associated Protein Kinase 1 Is an IRF3/7-Interacting Protein That Is Involved in the Cellular Antiviral Immune Response. Cellular & Molecular Immunology, 11, 245-252. https://doi.org/10.1038/cmi.2013.65
|
[24]
|
Zhang, X., Yu, H., Zhao, J., Li, X., Li, J., He, J., et al. (2015) IKKϵ Negatively Regulates RIG‐I via Direct Phosphorylation. Journal of Medical Virology, 88, 712-718. https://doi.org/10.1002/jmv.24376
|
[25]
|
Wies, E., Wang, M.K., Maharaj, N.P., Chen, K., Zhou, S., Finberg, R.W., et al. (2013) Dephosphorylation of the RNA Sensors RIG-I and MDA5 by the Phosphatase PP1 Is Essential for Innate Immune Signaling. Immunity, 38, 437-449. https://doi.org/10.1016/j.immuni.2012.11.018
|
[26]
|
Takashima, K., Oshiumi, H., Takaki, H., Matsumoto, M. and Seya, T. (2015) RIOK3-Mediated Phosphorylation of MDA5 Interferes with Its Assembly and Attenuates the Innate Immune Response. Cell Reports, 11, 192-200. https://doi.org/10.1016/j.celrep.2015.03.027
|
[27]
|
Oshiumi, H., Miyashita, M., Matsumoto, M. and Seya, T. (2013) A Distinct Role of Riplet-Mediated K63-Linked Polyubiquitination of the RIG-I Repressor Domain in Human Antiviral Innate Immune Responses. PLOS Pathogens, 9, e1003533. https://doi.org/10.1371/journal.ppat.1003533
|
[28]
|
Cadena, C., Ahmad, S., Xavier, A., Willemsen, J., Park, S., Park, J.W., et al. (2019) Ubiquitin-Dependent and-Independent Roles of E3 Ligase RIPLET in Innate Immunity. Cell, 177, 1187-1200.E16. https://doi.org/10.1016/j.cell.2019.03.017
|
[29]
|
Jiang, X., Kinch, L.N., Brautigam, C.A., Chen, X., Du, F., Grishin, N.V., et al. (2012) Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response. Immunity, 36, 959-973. https://doi.org/10.1016/j.immuni.2012.03.022
|
[30]
|
Gao, D., Yang, Y., Wang, R., Zhou, X., Diao, F., Li, M., et al. (2009) REUL Is a Novel E3 Ubiquitin Ligase and Stimulator of Retinoic-Acid-Inducible Gene-I. PLOS ONE, 4, e5760. https://doi.org/10.1371/journal.pone.0005760
|
[31]
|
Shi, Y., Yuan, B., Zhu, W., Zhang, R., Li, L., Hao, X., et al. (2017) Ube2D3 and Ube2N Are Essential for RIG-I-Mediated MAVS Aggregation in Antiviral Innate Immunity. Nature Communications, 8, Article No. 15138. https://doi.org/10.1038/ncomms15138
|
[32]
|
Gack, M.U., Shin, Y.C., Joo, C., Urano, T., Liang, C., Sun, L., et al. (2007) TRIM25 Ring-Finger E3 Ubiquitin Ligase Is Essential for RIG-I-Mediated Antiviral Activity. Nature, 446, 916-920. https://doi.org/10.1038/nature05732
|
[33]
|
Lian, H., Zang, R., Wei, J., Ye, W., Hu, M., Chen, Y., et al. (2018) The Zinc-Finger Protein ZCCHC3 Binds RNA and Facilitates Viral RNA Sensing and Activation of the RIG-I-Like Receptors. Immunity, 49, 438-448.E5. https://doi.org/10.1016/j.immuni.2018.08.014
|
[34]
|
Wang, P., Arjona, A., Zhang, Y., Sultana, H., Dai, J., Yang, L., et al. (2010) Caspase-12 Controls West Nile Virus Infection via the Viral RNA Receptor RIG-I. Nature Immunology, 11, 912-919. https://doi.org/10.1038/ni.1933
|
[35]
|
Liu, Z., Wu, C., Pan, Y., Liu, H., Wang, X., Yang, Y., et al. (2019) NDR2 Promotes the Antiviral Immune Response via Facilitating TRIM25-Mediated RIG-I Activation in Macrophages. Science Advances, 5, eaav0163. https://doi.org/10.1126/sciadv.aav0163
|
[36]
|
Chen, S., Chen, L., Lin, D.S., Chen, S., Tsao, Y., Guo, H., et al. (2019) NLRP12 Regulates Anti-Viral RIG-I Activation via Interaction with TRIM25. Cell Host & Microbe, 25, 602-616.E7. https://doi.org/10.1016/j.chom.2019.02.013
|
[37]
|
Lin, H., Jiang, M., Liu, L., Yang, Z., Ma, Z., Liu, S., et al. (2019) The Long Noncoding RNA Lnczc3h7a Promotes a TRIM25-Mediated RIG-I Antiviral Innate Immune Response. Nature Immunology, 20, 812-823. https://doi.org/10.1038/s41590-019-0379-0
|
[38]
|
Inn, K., Gack, M.U., Tokunaga, F., Shi, M., Wong, L., Iwai, K., et al. (2011) Linear Ubiquitin Assembly Complex Negatively Regulates RIG-I-and TRIM25-Mediated Type I Interferon Induction. Molecular Cell, 41, 354-365. https://doi.org/10.1016/j.molcel.2010.12.029
|
[39]
|
Quicke, K.M., Kim, K.Y., Horvath, C.M. and Suthar, M.S. (2019) RNA Helicase LGP2 Negatively Regulates RIG-I Signaling by Preventing TRIM25-Mediated Caspase Activation and Recruitment Domain Ubiquitination. Journal of Interferon & Cytokine Research, 39, 669-683. https://doi.org/10.1089/jir.2019.0059
|
[40]
|
Yan, J., Li, Q., Mao, A.-P., Hu, M.-M. and Shu, H.-B. (2014) TRIM4 Modulates Type I Interferon Induction and Cellular Antiviral Response by Targeting RIG-I for K63-Linked Ubiquitination. Journal of Molecular Cell Biology, 6, 154-163. https://doi.org/10.1093/jmcb/mju005
|
[41]
|
Kuniyoshi, K., Takeuchi, O., Pandey, S., Satoh, T., Iwasaki, H., Akira, S., et al. (2014) Pivotal Role of RNA-Binding E3 Ubiquitin Ligase MEX3C in RIG-I-Mediated Antiviral Innate Immunity. Proceedings of the National Academy of Sciences, 111, 5646-5651. https://doi.org/10.1073/pnas.1401674111
|
[42]
|
Jiang, X., Xiao, Y., Hou, W., Yu, J., He, T. and Xu, L. (2023) The RNA‐Binding Protein ZFP36 Strengthens Innate Antiviral Signaling by Targeting RIG‐I for K63‐linked Ubiquitination. Journal of Cellular Physiology, 238, 2348-2360. https://doi.org/10.1002/jcp.31088
|
[43]
|
Wang, W., Jiang, M., Liu, S., Zhang, S., Liu, W., Ma, Y., et al. (2016) RNF122 Suppresses Antiviral Type I Interferon Production by Targeting RIG-I Cards to Mediate RIG-I Degradation. Proceedings of the National Academy of Sciences, 113, 9581-9586. https://doi.org/10.1073/pnas.1604277113
|
[44]
|
Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T. and Shimotohno, K. (2007) Negative Regulation of the RIG-I Signaling by the Ubiquitin Ligase RNF125. Proceedings of the National Academy of Sciences, 104, 7500-7505. https://doi.org/10.1073/pnas.0611551104
|
[45]
|
Hao, Q., Jiao, S., Shi, Z., Li, C., Meng, X., Zhang, Z., et al. (2015) A Non‐Canonical Role of the P97 Complex in RIG‐I Antiviral Signaling. The EMBO Journal, 34, 2903-2920. https://doi.org/10.15252/embj.201591888
|
[46]
|
Zhou, P., Ding, X., Wan, X., Liu, L., Yuan, X., Zhang, W., et al. (2018) MLL5 Suppresses Antiviral Innate Immune Response by Facilitating Stub1-Mediated RIG-I Degradation. Nature Communications, 9, Article No. 1243. https://doi.org/10.1038/s41467-018-03563-8
|
[47]
|
Chen, W., Han, C., Xie, B., Hu, X., Yu, Q., Shi, L., et al. (2013) Induction of Siglec-G by RNA Viruses Inhibits the Innate Immune Response by Promoting RIG-I Degradation. Cell, 152, 467-478. https://doi.org/10.1016/j.cell.2013.01.011
|
[48]
|
Zhao, K., Zhang, Q., Li, X., Zhao, D., Liu, Y., Shen, Q., et al. (2016) Cytoplasmic STAT4 Promotes Antiviral Type I IFN Production by Blocking Chip-Mediated Degradation of RIG-I. The Journal of Immunology, 196, 1209-1217. https://doi.org/10.4049/jimmunol.1501224
|
[49]
|
Zhao, C., Jia, M., Song, H., Yu, Z., Wang, W., Li, Q., et al. (2017) The E3 Ubiquitin Ligase TRIM40 Attenuates Antiviral Immune Responses by Targeting MDA5 and RIG-I. Cell Reports, 21, 1613-1623. https://doi.org/10.1016/j.celrep.2017.10.020
|
[50]
|
Shen, Y., Tang, K., Chen, D., Hong, M., Sun, F., Wang, S., et al. (2021) Riok3 Inhibits the Antiviral Immune Response by Facilitating TRIM40-Mediated RIG-I and MDA5 Degradation. Cell Reports, 35, Article 109272. https://doi.org/10.1016/j.celrep.2021.109272
|
[51]
|
Lang, X., Tang, T., Jin, T., Ding, C., Zhou, R. and Jiang, W. (2016) TRIM65-Catalized Ubiquitination Is Essential for MDA5-Mediated Antiviral Innate Immunity. Journal of Experimental Medicine, 214, 459-473. https://doi.org/10.1084/jem.20160592
|
[52]
|
Narayan, K., Waggoner, L., Pham, S.T., Hendricks, G.L., Waggoner, S.N., Conlon, J., et al. (2014) TRIM13 Is a Negative Regulator of MDA5-Mediated Type I Interferon Production. Journal of Virology, 88, 10748-10757. https://doi.org/10.1128/jvi.02593-13
|
[53]
|
Mattiroli, F. and Sixma, T.K. (2014) Lysine-Targeting Specificity in Ubiquitin and Ubiquitin-Like Modification Pathways. Nature Structural & Molecular Biology, 21, 308-316. https://doi.org/10.1038/nsmb.2792
|
[54]
|
Chen, R., Zhang, L., Zhong, B., Tan, B., Liu, Y. and Shu, H. (2010) The Ubiquitin-Specific Protease 17 Is Involved in Virus-Triggered Type I IFN Signaling. Cell Research, 20, 802-811. https://doi.org/10.1038/cr.2010.41
|
[55]
|
Wang, L., Zhao, W., Zhang, M., Wang, P., Zhao, K., Zhao, X., et al. (2013) USP4 Positively Regulates RIG-I-Mediated Antiviral Response through Deubiquitination and Stabilization of RIG-I. Journal of Virology, 87, 4507-4515. https://doi.org/10.1128/jvi.00031-13
|
[56]
|
Pauli, E., Chan, Y.K., Davis, M.E., Gableske, S., Wang, M.K., Feister, K.F., et al. (2014) The Ubiquitin-Specific Protease USP15 Promotes RIG-I-Mediated Antiviral Signaling by Deubiquitylating TRIM25. Science Signaling, 7, ra3. https://doi.org/10.1126/scisignal.2004577
|
[57]
|
Cui, J., Song, Y., Li, Y., Zhu, Q., Tan, P., Qin, Y., et al. (2013) USP3 Inhibits Type I Interferon Signaling by Deubiquitinating RIG-I-Like Receptors. Cell Research, 24, 400-416. https://doi.org/10.1038/cr.2013.170
|
[58]
|
Fan, Y., Mao, R., Yu, Y., Liu, S., Shi, Z., Cheng, J., et al. (2014) USP21 Negatively Regulates Antiviral Response by Acting as a RIG-I Deubiquitinase. Journal of Experimental Medicine, 211, 313-328. https://doi.org/10.1084/jem.20122844
|
[59]
|
Li, H., Zhao, Z., Ling, J., Pan, L., Zhao, X., Zhu, H., et al. (2018) USP14 Promotes K63‐Linked RIG‐I Deubiquitination and Suppresses Antiviral Immune Responses. European Journal of Immunology, 49, 42-53. https://doi.org/10.1002/eji.201847603
|
[60]
|
Tao, X., Chu, B., Xin, D., Li, L. and Sun, Q. (2020) USP27X Negatively Regulates Antiviral Signaling by Deubiquitinating RIG-I. PLOS Pathogens, 16, e1008293. https://doi.org/10.1371/journal.ppat.1008293
|
[61]
|
Jahan, A.S., Biquand, E., Muñoz-Moreno, R., Le Quang, A., Mok, C.K., Wong, H.H., et al. (2020) OTUB1 Is a Key Regulator of RIG-I-Dependent Immune Signaling and Is Targeted for Proteasomal Degradation by Influenza A NS1. Cell Reports, 30, 1570-1584.E6. https://doi.org/10.1016/j.celrep.2020.01.015
|
[62]
|
Friedman, C.S., O’Donnell, M.A., Legarda‐Addison, D., Ng, A., Cárdenas, W.B., Yount, J.S., et al. (2008) The Tumour Suppressor CYLD Is a Negative Regulator of RIG‐I‐Mediated Antiviral Response. EMBO Reports, 9, 930-936. https://doi.org/10.1038/embor.2008.136
|
[63]
|
Gill, G. (2004) SUMO and Ubiquitin in the Nucleus: Different Functions, Similar Mechanisms? Genes & Development, 18, 2046-2059. https://doi.org/10.1101/gad.1214604
|
[64]
|
Hay, R.T. (2005) SUMO: A History of Modification. Molecular Cell, 18, 1-12. https://doi.org/10.1016/j.molcel.2005.03.012
|
[65]
|
Zhu, G., Tong, N., Zhu, Y., Wang, L. and Wang, Q. (2024) The Crosstalk between Sumoylation and Immune System in Host-Pathogen Interactions. Critical Reviews in Microbiology, 51, 164-186. https://doi.org/10.1080/1040841x.2024.2339259
|
[66]
|
Mi, Z., Fu, J., Xiong, Y. and Tang, H. (2010) Sumoylation of RIG-I Positively Regulates the Type I Interferon Signaling. Protein & Cell, 1, 275-283. https://doi.org/10.1007/s13238-010-0030-1
|
[67]
|
Yang, D., Geng, T., Harrison, A.G., Cahoon, J.G., Xing, J., Jiao, B., et al. (2024) UBR5 Promotes Antiviral Immunity by Disengaging the Transcriptional Brake on RIG-I Like Receptors. Nature Communications, 15, Article No. 780. https://doi.org/10.1038/s41467-024-45141-1
|
[68]
|
Zhang, Y. and Samuelson, A.V. (2024) Antiviral Defense in Aged Caenorhabditis Elegans Declines Due to Loss of DRH-1/RIG-I deSUMOylation via ULP-4/SENP7. Preprint. https://doi.org/10.1101/2024.11.12.623310
|
[69]
|
Jenkins, K., Khoo, J.J., Sadler, A., Piganis, R., Wang, D., Borg, N.A., et al. (2013) Mitochondrially Localised MUL1 Is a Novel Modulator of Antiviral Signaling. Immunology & Cell Biology, 91, 321-330. https://doi.org/10.1038/icb.2013.7
|
[70]
|
Hu, M., Liao, C., Yang, Q., Xie, X. and Shu, H. (2017) Innate Immunity to RNA Virus Is Regulated by Temporal and Reversible Sumoylation of RIG-I and Mda5. Journal of Experimental Medicine, 214, 973-989. https://doi.org/10.1084/jem.20161015
|
[71]
|
Chen, Y., Li, J., Fu, J., Xiao, L., Chu, J., Qin, W., et al. (2025) SENP2 Negatively Regulates RIG-I/MDA5 Mediated Innate Immunity in Black Carp. Fish & Shellfish Immunology, 157, Article 110097. https://doi.org/10.1016/j.fsi.2024.110097
|
[72]
|
Kubota, T., Matsuoka, M., Xu, S., Otsuki, N., Takeda, M., Kato, A., et al. (2011) Piasy Inhibits Virus-Induced and Interferon-Stimulated Transcription through Distinct Mechanisms. Journal of Biological Chemistry, 286, 8165-8175. https://doi.org/10.1074/jbc.m110.195255
|
[73]
|
Li, R., Pan, Y., Shi, D., Zhang, Y. and Zhang, J. (2013) PIAS1 Negatively Modulates Virus Triggered Type I IFN Signaling by Blocking the DNA Binding Activity of Irf3. Antiviral Research, 100, 546-554. https://doi.org/10.1016/j.antiviral.2013.09.001
|
[74]
|
Fu, J., Xiong, Y., Xu, Y., Cheng, G. and Tang, H. (2011) MDA5 Is Sumoylated by PIAS2β in the Upregulation of Type I Interferon Signaling. Molecular Immunology, 48, 415-422. https://doi.org/10.1016/j.molimm.2010.09.003
|
[75]
|
Perng, Y. and Lenschow, D.J. (2018) ISG15 in Antiviral Immunity and Beyond. Nature Reviews Microbiology, 16, 423-439. https://doi.org/10.1038/s41579-018-0020-5
|
[76]
|
Tecalco-Cruz, A.C. and Zepeda-Cervantes, J. (2023) Protein Isgylation: A Posttranslational Modification with Implications for Malignant Neoplasms. Exploration of Targeted Anti-Tumor Therapy, 4, 699-715. https://doi.org/10.37349/etat.2023.00162
|
[77]
|
Malakhov, M.P., Malakhova, O.A., Kim, K.I., Ritchie, K.J. and Zhang, D. (2002) UBP43 (USP18) Specifically Removes ISG15 from Conjugated Proteins. Journal of Biological Chemistry, 277, 9976-9981. https://doi.org/10.1074/jbc.m109078200
|
[78]
|
Desai, S.D., Haas, A.L., Wood, L.M., Tsai, Y., Pestka, S., Rubin, E.H., et al. (2006) Elevated Expression of ISG15 in Tumor Cells Interferes with the Ubiquitin/26S Proteasome Pathway. Cancer Research, 66, 921-928. https://doi.org/10.1158/0008-5472.can-05-1123
|
[79]
|
Wang, Y., Feng, H., Li, X., Ruan, Y., Guo, Y., Cui, X., et al. (2024) Dampening of Isgylation of RIG-I by ADAP Regulates Type I Interferon Response of Macrophages to RNA Virus Infection. PLOS Pathogens, 20, e1012230. https://doi.org/10.1371/journal.ppat.1012230
|
[80]
|
Sarkar, L., Liu, G., Acharya, D., Zhu, J., Sayyad, Z. and Gack, M.U. (2024) MDA5 ISGylation Is Crucial for Immune Signaling to Control Viral Replication and Pathogenesis. Preprint. https://doi.org/10.1101/2024.09.20.614144
|
[81]
|
Liu, G., Lee, J.H., Parker, Z.M., et al. (2021) ISG15-Dependent Activation of the RNA Sensor MDA5 and Its Antagonism by the SARS-CoV-2 Papain-Like Protease. Nature Microbiology, 6, 467-478. https://doi.org/10.1038/s41564-021-00884-1
|
[82]
|
Nguyen, N.T.H., Now, H., Kim, W., Kim, N. and Yoo, J. (2016) Ubiquitin-Like Modifier FAT10 Attenuates RIG-I Mediated Antiviral Signaling by Segregating Activated RIG-I from Its Signaling Platform. Scientific Reports, 6, Article No. 23377. https://doi.org/10.1038/srep23377
|
[83]
|
Wang, G., Kouwaki, T., Okamoto, M. and Oshiumi, H. (2019) Attenuation of the Innate Immune Response against Viral Infection Due to ZNF598-Promoted Binding of FAT10 to RIG-I. Cell Reports, 28, 1961-1970.E4. https://doi.org/10.1016/j.celrep.2019.07.081
|
[84]
|
Pan, Q., Xie, Y., Zhang, Y., Guo, X., Wang, J., Liu, M., et al. (2024) EGFR Core Fucosylation, Induced by Hepatitis C Virus, Promotes Trim40-Mediated-RIG-I Ubiquitination and Suppresses Interferon-I Antiviral Defenses. Nature Communications, 15, Article No. 652. https://doi.org/10.1038/s41467-024-44960-6
|
[85]
|
Li, Z., Zhou, Y., Jia, K., Yang, Y., Zhang, L., Wang, S., et al. (2022) JMJD4-Demethylated RIG-I Prevents Hepatic Steatosis and Carcinogenesis. Journal of Hematology & Oncology, 15, Article No. 161. https://doi.org/10.1186/s13045-022-01381-6
|
[86]
|
Hu, Q., Wang, H., Jiang, L., Wang, C., Ju, L., Zhu, Y., et al. (2021) Histone Demethylase LSD1 Promotes RIG-I Poly-ubiquitination and Anti-Viral Gene Expression. PLOS Pathogens, 17, e1009918. https://doi.org/10.1371/journal.ppat.1009918
|
[87]
|
Polevoda, B. and Sherman, F. (2002) The Diversity of Acetylated Proteins. Genome Biology, 3, reviews0006.1. https://doi.org/10.1186/gb-2002-3-5-reviews0006
|
[88]
|
Li, Y. and Alam, H.B. (2011) Modulation of Acetylation: Creating a Pro‐Survival and Anti‐Inflammatory Phenotype in Lethal Hemorrhagic and Septic Shock. BioMed Research International, 2011, Article ID: 523481. https://doi.org/10.1155/2011/523481
|
[89]
|
Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., et al. (2009) Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. Science, 325, 834-840. https://doi.org/10.1126/science.1175371
|
[90]
|
Liu, H.M., Jiang, F., Loo, Y.M., Hsu, S., Hsiang, T., Marcotrigiano, J., et al. (2016) Regulation of Retinoic Acid Inducible Gene-I (RIG-I) Activation by the Histone Deacetylase 6. EBioMedicine, 9, 195-206. https://doi.org/10.1016/j.ebiom.2016.06.015
|
[91]
|
Choi, S.J., Lee, H., Kim, J., Park, S.Y., Kim, T., Lee, W., et al. (2016) HDAC 6 Regulates Cellular Viral RNA Sensing by Deacetylation of RIG‐I. The EMBO Journal, 35, 429-442. https://doi.org/10.15252/embj.201592586
|
[92]
|
Yuan, H., Wu, X., Wu, Q., Chatoff, A., Megill, E., Gao, J., et al. (2023) Lysine Catabolism Reprograms Tumour Immunity through Histone Crotonylation. Nature, 617, 818-826. https://doi.org/10.1038/s41586-023-06061-0
|
[93]
|
He, S., Zhao, J., Song, S., He, X., Minassian, A., Zhou, Y., et al. (2015) Viral Pseudo-Enzymes Activate RIG-I via Deamidation to Evade Cytokine Production. Molecular Cell, 58, 134-146. https://doi.org/10.1016/j.molcel.2015.01.036
|
[94]
|
Zhao, J., Zeng, Y., Xu, S., Chen, J., Shen, G., Yu, C., et al. (2016) A Viral Deamidase Targets the Helicase Domain of RIG-I to Block RNA-Induced Activation. Cell Host & Microbe, 20, 770-784. https://doi.org/10.1016/j.chom.2016.10.011
|
[95]
|
Garcin, D. (2016) HSV1 Pulls the Deamidation Trigger. Cell Host & Microbe, 20, 698-700. https://doi.org/10.1016/j.chom.2016.11.011
|
[96]
|
Huang, H., Zhao, J., Wang, T., Zhang, S., Zhou, Y., Rao, Y., et al. (2021) Species-Specific Deamidation of RIG-I Reveals Collaborative Action between Viral and Cellular Deamidases in HSV-1 Lytic Replication. mBio, 12. https://doi.org/10.1128/mbio.00115-21
|