[1]
|
Wang, L., Peng, W., Zhao, Z., Zhang, M., Shi, Z., Song, Z., et al. (2021) Prevalence and Treatment of Diabetes in China, 2013-2018. Journal of the American Medical Association, 326, Article 2498. https://doi.org/10.1001/jama.2021.22208
|
[2]
|
Ensrud, K.E. and Crandall, C.J. (2017) Osteoporosis. Annals of Internal Medicine, 167, ITC17-ITC32. https://doi.org/10.7326/aitc201708010
|
[3]
|
Wang, L., Yu, W., Yin, X., Cui, L., Tang, S., Jiang, N., et al. (2021) Prevalence of Osteoporosis and Fracture in China. JAMA Network Open, 4, e2121106. https://doi.org/10.1001/jamanetworkopen.2021.21106
|
[4]
|
Hou, Y., Hou, X., Nie, Q., Xia, Q., Hu, R., Yang, X., et al. (2023) Association of Bone Turnover Markers with Type 2 Diabetes Mellitus and Microvascular Complications: A Matched Case-Control Study. Diabetes, Metabolic Syndrome and Obesity, 16, 1177-1192. https://doi.org/10.2147/dmso.s400285
|
[5]
|
Gao, L., Liu, C., Hu, P., Wang, N., Bao, X., Wang, B., et al. (2022) The Role of Advanced Glycation End Products in Fracture Risk Assessment in Postmenopausal Type 2 Diabetic Patients. Frontiers in Endocrinology, 13, Article 1013397. https://doi.org/10.3389/fendo.2022.1013397
|
[6]
|
Cavati, G., Pirrotta, F., Merlotti, D., Ceccarelli, E., Calabrese, M., Gennari, L., et al. (2023) Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification. Antioxidants, 12, Article 928. https://doi.org/10.3390/antiox12040928
|
[7]
|
Zhang, W., Shen, X., Wan, C., Zhao, Q., Zhang, L., Zhou, Q., et al. (2012) Effects of Insulin and Insulin-Like Growth Factor 1 on Osteoblast Proliferation and Differentiation: Differential Signalling via Akt and Erk. Cell Biochemistry and Function, 30, 297-302. https://doi.org/10.1002/cbf.2801
|
[8]
|
Sheu, A., Greenfield, J.R., White, C.P. and Center, J.R. (2023) Contributors to Impaired Bone Health in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 34, 34-48. https://doi.org/10.1016/j.tem.2022.11.003
|
[9]
|
Chen, R., Yang, C., Zhu, Q., Li, Y., Hu, H., Wang, D., et al. (2023) Comparison of the Effects of Metformin and Thiazolidinediones on Bone Metabolism: A Systematic Review and Meta-Analysis. Medicina, 59, Article 904. https://doi.org/10.3390/medicina59050904
|
[10]
|
Rajpathak, S.N., Fu, C., Brodovicz, K.G., Engel, S.S. and Lapane, K. (2015) Sulfonylurea Use and Risk of Hip Fractures among Elderly Men and Women with Type 2 Diabetes. Drugs & Aging, 32, 321-327. https://doi.org/10.1007/s40266-015-0254-0
|
[11]
|
Cortizo, A.M., Sedlinsky, C., McCarthy, A.D., Blanco, A. and Schurman, L. (2006) Osteogenic Actions of the Anti-Diabetic Drug Metformin on Osteoblasts in Culture. European Journal of Pharmacology, 536, 38-46. https://doi.org/10.1016/j.ejphar.2006.02.030
|
[12]
|
Steppe, L., Megafu, M., Tschaffon-Müller, M.E.A., Ignatius, A. and Haffner-Luntzer, M. (2023) Fracture Healing Research: Recent Insights. Bone Reports, 19, Article 101686. https://doi.org/10.1016/j.bonr.2023.101686
|
[13]
|
Chen, Y., Zhou, Y., Lin, J. and Zhang, S. (2022) Challenges to Improve Bone Healing under Diabetic Conditions. Frontiers in Endocrinology, 13, Article 861878. https://doi.org/10.3389/fendo.2022.861878
|
[14]
|
Dhaliwal, R., Ewing, S.K., Vashishth, D., Semba, R.D. and Schwartz, A.V. (2020) Greater Carboxy-Methyl-Lysine Is Associated with Increased Fracture Risk in Type 2 Diabetes. Journal of Bone and Mineral Research, 37, 265-272. https://doi.org/10.1002/jbmr.4466
|
[15]
|
Khosla, S., Samakkarnthai, P., Monroe, D.G. and Farr, J.N. (2021) Update on the Pathogenesis and Treatment of Skeletal Fragility in Type 2 Diabetes Mellitus. Nature Reviews Endocrinology, 17, 685-697. https://doi.org/10.1038/s41574-021-00555-5
|
[16]
|
Segura-Egea, J.J., Cabanillas-Balsera, D., Martín-González, J. and Cintra, L.T.A. (2022) Impact of Systemic Health on Treatment Outcomes in Endodontics. International Endodontic Journal, 56, 219-235. https://doi.org/10.1111/iej.13789
|
[17]
|
Zhang, E., Miramini, S., Patel, M., Richardson, M., Ebeling, P. and Zhang, L. (2022) Role of TNF-α in Early-Stage Fracture Healing under Normal and Diabetic Conditions. Computer Methods and Programs in Biomedicine, 213, Article 106536. https://doi.org/10.1016/j.cmpb.2021.106536
|
[18]
|
Jeyabalan, J., Viollet, B., Smitham, P., Ellis, S.A., Zaman, G., Bardin, C., et al. (2013) The Anti-Diabetic Drug Metformin Does Not Affect Bone Mass in Vivo or Fracture Healing. Osteoporosis International, 24, 2659-2670. https://doi.org/10.1007/s00198-013-2371-0
|
[19]
|
Mu, W., Wang, Z., Ma, C., Jiang, Y., Zhang, N., Hu, K., et al. (2018) Metformin Promotes the Proliferation and Differentiation of Murine Preosteoblast by Regulating the Expression of Sirt6 and Oct4. Pharmacological Research, 129, 462-474. https://doi.org/10.1016/j.phrs.2017.11.020
|
[20]
|
Ruan, Z., Yin, H., Wan, T., Lin, Z., Zhao, S., Long, H., et al. (2023) Metformin Accelerates Bone Fracture Healing by Promoting Type H Vessel Formation through Inhibition of YAP1/TAZ Expression. Bone Research, 11, Article No. 45. https://doi.org/10.1038/s41413-023-00279-4
|
[21]
|
Guo, Y., Wei, J., Liu, C., Li, X. and Yan, W. (2023) Metformin Regulates Bone Marrow Stromal Cells to Accelerate Bone Healing in Diabetic Mice. eLife, 12, e88310. https://doi.org/10.7554/elife.88310
|
[22]
|
Grewe, J.M., Knapstein, P., Donat, A., Jiang, S., Smit, D.J., Xie, W., et al. (2022) The Role of Sphingosine-1-Phosphate in Bone Remodeling and Osteoporosis. Bone Research, 10, Article No. 34. https://doi.org/10.1038/s41413-022-00205-0
|
[23]
|
Chen, X., Li, X., Yang, M., Song, Y. and Zhang, Y. (2018) Osteoprotective Effects of Salidroside in Ovariectomized Mice and Diabetic Mice. European Journal of Pharmacology, 819, 281-288. https://doi.org/10.1016/j.ejphar.2017.12.025
|
[24]
|
Bhatti, J.S., Sehrawat, A., Mishra, J., Sidhu, I.S., Navik, U., Khullar, N., et al. (2022) Oxidative Stress in the Pathophysiology of Type 2 Diabetes and Related Complications: Current Therapeutics Strategies and Future Perspectives. Free Radical Biology and Medicine, 184, 114-134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019
|
[25]
|
Black, H.S. (2022) A Synopsis of the Associations of Oxidative Stress, ROS, and Antioxidants with Diabetes Mellitus. Antioxidants, 11, Article 2003. https://doi.org/10.3390/antiox11102003
|
[26]
|
Chen, B., He, Q., Yang, J., Pan, Z., Xiao, J., Chen, W., et al. (2023) Metformin Suppresses Oxidative Stress Induced by High Glucose via Activation of the Nrf2/HO-1 Signaling Pathway in Type 2 Diabetic Osteoporosis. Life Sciences, 312, Article 121092. https://doi.org/10.1016/j.lfs.2022.121092
|
[27]
|
Lee, Y., Lee, N., Bhattarai, G., Oh, Y., Yu, M., Yoo, I., et al. (2010) Enhancement of Osteoblast Biocompatibility on Titanium Surface with Terrein Treatment. Cell Biochemistry and Function, 28, 678-685. https://doi.org/10.1002/cbf.1708
|
[28]
|
Zhang, B., Yang, Y., Yi, J., Zhao, Z. and Ye, R. (2021) Hyperglycemia Modulates M1/M2 Macrophage Polarization via Reactive Oxygen Species Overproduction in Ligature-Induced Periodontitis. Journal of Periodontal Research, 56, 991-1005. https://doi.org/10.1111/jre.12912
|
[29]
|
Barbagallo, I., Vanella, A., Peterson, S.J., Kim, D.H., Tibullo, D., Giallongo, C., et al. (2009) Overexpression of Heme Oxygenase-1 Increases Human Osteoblast Stem Cell Differentiation. Journal of Bone and Mineral Metabolism, 28, 276-288. https://doi.org/10.1007/s00774-009-0134-y
|
[30]
|
Domazetovic, V., Marcucci, G., Falsetti, I., Bilia, A.R., Vincenzini, M.T., Brandi, M.L., et al. (2020) Blueberry Juice Antioxidants Protect Osteogenic Activity against Oxidative Stress and Improve Long-Term Activation of the Mineralization Process in Human Osteoblast-Like Saos-2 Cells: Involvement of Sirt1. Antioxidants, 9, Article 125. https://doi.org/10.3390/antiox9020125
|
[31]
|
Cao, X., Luo, D., Li, T., Huang, Z., Zou, W., Wang, L., et al. (2019) MnTBAP Inhibits Bone Loss in Ovariectomized Rats by Reducing Mitochondrial Oxidative Stress in Osteoblasts. Journal of Bone and Mineral Metabolism, 38, 27-37. https://doi.org/10.1007/s00774-019-01038-4
|
[32]
|
Domazetovic, V., Marcucci, G., Pierucci, F., Bruno, G., Di Cesare Mannelli, L., Ghelardini, C., et al. (2019) Blueberry Juice Protects Osteocytes and Bone Precursor Cells against Oxidative Stress Partly through Sirt1. FEBS Open Bio, 9, 1082-1096. https://doi.org/10.1002/2211-5463.12634
|
[33]
|
Mohamad, N., Ima-Nirwana, S. and Chin, K. (2020) Are Oxidative Stress and Inflammation Mediators of Bone Loss Due to Estrogen Deficiency? A Review of Current Evidence. Endocrine, Metabolic & Immune Disorders-Drug Targets, 20, 1478-1487. https://doi.org/10.2174/1871530320666200604160614
|
[34]
|
Ru, J. and Wang, Y. (2020) Osteocyte Apoptosis: The Roles and Key Molecular Mechanisms in Resorption-Related Bone Diseases. Cell Death & Disease, 11, Article No. 846. https://doi.org/10.1038/s41419-020-03059-8
|
[35]
|
Barrett-Connor, E. and Kritz-Silverstein, D. (1996) Does Hyperinsulinemia Preserve Bone? Diabetes Care, 19, 1388-1392. https://doi.org/10.2337/diacare.19.12.1388
|
[36]
|
Verhaeghe, J., Herck, E.V., Visser, W.J., Suiker, A.M.H., Thomasset, M., Einhorn, T.A., et al. (1990) Bone and Mineral Metabolism in BB Rats with Long-Term Diabetes: Decreased Bone Turnover and Osteoporosis. Diabetes, 39, 477-482. https://doi.org/10.2337/diab.39.4.477
|
[37]
|
袁志发, 张通, 蔡金池, 等. 肠道菌群、IGF-1与骨代谢联系机制的研究进展[J]. 中国骨质疏松杂志, 2021, 27(4): 599-604.
|
[38]
|
Hou, J.C., Zernicke, R.F. and Barnard, R.J. (1993) Effects of Severe Diabetes and Insulin on the Femoral Neck of the Immature Rat. Journal of Orthopaedic Research, 11, 263-271. https://doi.org/10.1002/jor.1100110214
|
[39]
|
Strotmeyer, E.S., Cauley, J.A., Schwartz, A.V., Nevitt, M.C., Resnick, H.E., Bauer, D.C., et al. (2005) Nontraumatic Fracture Risk with Diabetes Mellitus and Impaired Fasting Glucose in Older White and Black Adults. Archives of Internal Medicine, 165, Article 1612-1617. https://doi.org/10.1001/archinte.165.14.1612
|
[40]
|
Lawlor, D.A., Sattar, N., Sayers, A. and Tobias, J.H. (2012) The Association of Fasting Insulin, Glucose, and Lipids with Bone Mass in Adolescents: Findings from a Cross-Sectional Study. The Journal of Clinical Endocrinology & Metabolism, 97, 2068-2076. https://doi.org/10.1210/jc.2011-2721
|
[41]
|
Yang, J., Hong, N., Shim, J., Rhee, Y. and Kim, H.C. (2018) Association of Insulin Resistance with Lower Bone Volume and Strength Index of the Proximal Femur in Nondiabetic Postmenopausal Women. Journal of Bone Metabolism, 25, 123-132. https://doi.org/10.11005/jbm.2018.25.2.123
|
[42]
|
Isfort, M., Stevens, S.C.W., Schaffer, S., Jong, C.J. and Wold, L.E. (2013) Metabolic Dysfunction in Diabetic Cardiomyopathy. Heart Failure Reviews, 19, 35-48. https://doi.org/10.1007/s10741-013-9377-8
|
[43]
|
Singh, H.J. and Garland, H.O. (1989) A Comparison of the Effects of Oral and Intravenous Glucose Administration on Renal Calcium Excretion in the Rat. Quarterly Journal of Experimental Physiology, 74, 531-540. https://doi.org/10.1113/expphysiol.1989.sp003300
|
[44]
|
Verhaeghe, J., Bouillon, R., Nyomba, B.L., Lissens, W. and Assche, F.A.V. (1986) Vitamin D and Bone Mineral Homeostasis during Pregnancy in the Diabetic BB Rat. Endocrinology, 118, 1019-1025. https://doi.org/10.1210/endo-118-3-1019
|
[45]
|
Elafros, M.A., Andersen, H., Bennett, D.L., Savelieff, M.G., Viswanathan, V., Callaghan, B.C., et al. (2022) Towards Prevention of Diabetic Peripheral Neuropathy: Clinical Presentation, Pathogenesis, and New Treatments. The Lancet Neurology, 21, 922-936. https://doi.org/10.1016/s1474-4422(22)00188-0
|
[46]
|
Henning, R.J. (2018) Type-2 Diabetes Mellitus and Cardiovascular Disease. Future Cardiology, 14, 491-509. https://doi.org/10.2217/fca-2018-0045
|
[47]
|
Cai, K., Liu, Y. and Wang, D. (2022) Prevalence of Diabetic Retinopathy in Patients with Newly Diagnosed Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetes/Metabolism Research and Reviews, 39, e3586. https://doi.org/10.1002/dmrr.3586
|
[48]
|
Ramirez-Perdomo, C., Perdomo-Romero, A. and Rodríguez-Vélez, M. (2019) Conhecimentos e práticas para a prevenção do pé diabético. Revista Gaúcha de Enfermagem, 40, e20180161. https://doi.org/10.1590/1983-1447.2019.20180161
|