IgA血管炎儿童外周血淋巴细胞精细分群与血清免疫球蛋白的特点及机制探讨
Characteristics and Mechanism Exploration of Peripheral Blood Lymphocyte Fine Subgroupings and Serum Immunoglobulins in Children with Immunoglobulin A Vasculitis
DOI: 10.12677/acm.2025.1561927, PDF, HTML, XML,   
作者: 张峻宁:青岛大学青岛医学院,山东 青岛;青岛大学附属医院儿童肾脏风湿免疫科,山东 青岛;王大海, 柏 翠, 常 红, 林 毅*:青岛大学附属医院儿童肾脏风湿免疫科,山东 青岛;段于河:青岛大学附属医院小儿外科,山东 青岛
关键词: IgA血管炎T淋巴细胞精细分群B淋巴细胞精细分群免疫球蛋白儿童Immunoglobulin A Vasculitis T Lymphocyte Fine Subgrouping B Lymphocyte Fine Subgrouping Immunoglobulin Child
摘要: 目的:观察IgA血管炎(IgAV)急性期患儿外周血淋巴细胞精细分群与血清免疫球蛋白的变化,以及两者之间的相关性,以探究淋巴细胞精细分群在儿童IgAV发病机制中的作用。方法:选取2021年7月至2024年1月于青岛大学附属医院确诊并于儿童肾脏风湿免疫科住院治疗的50例IgAV急性期患儿为实验组;选取同期于青岛大学附属医院健康体检的儿童27例为健康对照组。收集临床资料,应用流式细胞术检测外周血淋巴细胞精细分群,并与血清免疫球蛋白水平进行相关性分析。结果:与健康对照组比较,实验组外周血活化CD4+ T细胞、活化CD8+ T细胞、CD4+效应记忆T细胞、CD8+效应记忆T细胞、记忆调节性T细胞、双阴性T细胞、B细胞百分比升高,差异具有统计学意义(P < 0.05);CD4+初始T细胞、CD8+初始T细胞、初始调节性T细胞、幼稚未成熟B细胞(过渡型B细胞)百分比降低,差异具有统计学意义(P < 0.05);CD4+效应T细胞、CD8+效应T细胞、CD4+中央记忆T细胞、CD8+中央记忆T细胞、调节性T细胞、初始B细胞、经典转变型B细胞、浆母细胞、边缘区B细胞百分比差异无统计学意义(P > 0.05)。实验组血清IgA、IgE水平较健康对照组升高,差异具有统计学意义(P < 0.05),血清IgG、IgM水平较健康对照组差异无统计学意义(P > 0.05)。实验组外周血双阴性T细胞、活化CD4+ T细胞、活化CD8+ T细胞、CD4+效应记忆T细胞、CD8+效应记忆T细胞百分比与血清IgA水平呈正相关(P < 0.05);幼稚未成熟B细胞(过渡型B细胞)百分比与血清IgA水平呈负相关(P < 0.05)。实验组外周血活化CD4+ T细胞、CD4+效应记忆T细胞百分比与血清IgG水平呈正相关(P < 0.05);CD4+初始T细胞百分比与血清IgG水平呈负相关(P < 0.05)。实验组外周血活化CD4+ T细胞、CD4+效应记忆T细胞、浆母细胞百分比与血清IgE水平呈正相关(P < 0.05);CD4+初始T细胞、CD8+初始T细胞百分比与血清IgE水平呈负相关(P < 0.01)。实验组外周血淋巴细胞精细分群与血清IgM水平无明显相关性(P > 0.05)。结论:IgAV急性期患儿外周血淋巴细胞精细分群呈现明显失衡,主要表现为双阴性T细胞、活化T细胞、效应记忆T细胞及B细胞百分比升高,而且双阴性T细胞、活化T细胞、效应记忆T细胞百分比与血清IgA水平呈明显正相关性,提示这些淋巴细胞精细分群可能促进IgA水平升高而参与IgAV发病。
Abstract: Objective: To observe the alterations and correlations of peripheral blood lymphocyte fine subgroupings and serum immunoglobulins in children with acute-phase immunoglobulin A vasculitis (IgAV), as well as the correlations between them, and to explore the role of lymphocyte fine subgroupings in the pathogenesis of IgAV in children. Methods: Fifty children diagnosed with acute-phase IgAV and hospitalized in the Department of Pediatric Nephrology and Rheumatology Immunology at the Affiliated Hospital of Qingdao University from July 2021 to January 2024 were enrolled as the experimental group. Twenty-seven healthy children undergoing routine physical examinations during the same period were selected as the healthy control group. Clinical data were collected, and peripheral blood lymphocyte fine subgroupings were analyzed by using flow cytometry-based detection, and correlation analysis with serum immunoglobulin levels. Results: Compared with the healthy control group, the experimental group showed significantly increased percentages of peripheral blood double-negative T cells, activated CD4+ T cells, activated CD8+ T cells, CD4+ effector memory T cells, CD8+ effector memory T cells, memory regulatory T cells and B cells (P < 0.05), while the percentages of peripheral blood CD4+ naïve T cells, CD8+ naïve T cells, naïve regulatory T cells and transitional B cells were significantly decreased (P < 0.05). No statistically significant differences were observed in the percentages of peripheral blood CD4+ effector T cells, CD8+ effector T cells, CD4+ central memory T cells, CD8+ central memory T cells, regulatory T cells, naïve B cells, class-switched B cells, plasmablasts or marginal zone B cells between the experimental group and the healthy control group (P > 0.05). Serum IgA and IgE levels in the experimental group were significantly higher than those in the healthy control group (P < 0.05), while serum IgG and IgM levels showed no significant differences (P > 0.05). In the experimental group, the percentages of peripheral blood double-negative T cells, activated CD4+ T cells, activated CD8+ T cells, CD4+ effector memory T cells, and CD8+ effector memory T cells were significantly positively correlated with serum IgA levels (P < 0.05), whereas the percentages of transitional B cells was significantly negatively correlated with serum IgA levels (P < 0.05); the percentages of peripheral blood activated CD4+ T cells and CD4+ effector memory T cells were positively correlated with serum IgG levels (P < 0.05), while the percentage of CD4+ naïve T cells was negatively correlated with serum IgG levels (P < 0.05); the percentages of peripheral blood activated CD4+ T cells, CD4+ effector memory T cells, and plasmablasts were positively correlated with serum IgE levels (P < 0.05), while CD4+ naïve T cells and CD8+ naïve T cells showed significant negative correlations with serum IgE levels (P < 0.01). No significant correlations were observed between peripheral blood fine subgrouping of lymphocytes and serum IgM levels in the experimental group. Conclusion: In children with acute-phase IgAV, the peripheral blood lymphocyte fine subgroupings exhibited significant dysregulation, primarily characterized by increased percentages of double-negative T cells (DNT), activated T cells, effector memory T cells (Tem), and B cells. Furthermore, the proportions of DNT, activated T cells, and Tem showed a marked positive correlation with serum IgA levels, indicating that these lymphocyte fine subgroupings may promote elevated IgA production and contribute to the pathogenesis of IgAV.
文章引用:张峻宁, 王大海, 柏翠, 段于河, 常红, 林毅. IgA血管炎儿童外周血淋巴细胞精细分群与血清免疫球蛋白的特点及机制探讨[J]. 临床医学进展, 2025, 15(6): 1877-1890. https://doi.org/10.12677/acm.2025.1561927

1. 引言

IgA血管炎(Immunoglobulin A Vasculitis, IgAV)又称过敏性紫癜(Henoch-Schönlein Purpura, HSP),是儿童时期常见的系统性血管炎,属于免疫复合物介导的小血管炎。根据2012年修订的教堂山共识会议(Chapel Hill Consensus Conference, CHCC)血管炎命名体系,建议将过敏性紫癜更名为IgA血管炎[1]。IgAV主要临床表现为双侧对称、压之不褪色的非血小板减少性皮疹,以双下肢及臀部分布居多;同时可伴随关节疼痛、腹痛甚至消化道出血、肾脏损害等表现,亦可有生殖系统及神经系统受累,少数患儿伴有血管神经性水肿。IgAV患儿多数呈自限性病程,预后良好,但部分患儿会累及肾脏而进展为IgA血管炎肾炎(IgA Vasculitis Nephritis, IgAVN) [2],少部分的IgAVN儿童可能进展为慢性肾脏病(Chronic Kidney Disease, CKD) [3]甚至发生终末期肾病(End Stage Renal Disease, ESRD)。据统计,IgAVN占儿童ESRD的1%~2% [4]。IgAV的发病机制仍不十分明确,目前认为异常糖基化的IgA1的产生及其清除障碍在IgAV发病中发挥了关键性作用[5]。淋巴细胞免疫功能的紊乱也在儿童IgAV的发生和发展中起到了重要作用[6]。已有研究证实,IgAV患儿体内存在B细胞亚群的紊乱及体液免疫紊乱[7] [8]。T细胞特别是记忆T细胞(Memory T cells, Tm)在IgAV的发生过程中起着重要作用[9] [10],但目前缺乏对于IgAV患儿外周血淋巴细胞精细分群的系统研究。本次研究拟通过分析IgAV急性期患儿外周血T、B淋巴细胞精细分群的变化,以及淋巴细胞精细分群与血清免疫球蛋白水平的相关性,探讨IgAV发病中免疫紊乱的特点及淋巴细胞精细分群可能参与的发病机制。

2. 资料及研究方法

2.1. 一般资料

收集2021年7月至2024年1月初次发病、并在青岛大学附属医院儿童肾脏风湿免疫科住院治疗的IgAV急性期患儿50例为实验组;选取同期于青岛大学附属医院健康体检的儿童27例为健康对照组。参与本次研究的儿童取清晨空腹外周静脉血进行外周血淋巴细胞精细分群及血清免疫球蛋白检测。所有入组儿童的家长均签署了知情同意书,本研究经青岛大学附属医院医学伦理委员会审批通过(伦理编号:QYFY WZLL 29526)。

2.2. 研究对象的纳入和排除标准

实验组:诊断标准参照中华医学会儿科分会免疫学组发布的《儿童过敏性紫癜循证诊治建议》[11]。采集样本时间均介于患儿发病初期(出现典型皮疹1周以内),即急性期,并且为避免具有干扰性的因素影响本次研究结果,入组患儿排除以下情况:① 存在自身免疫性疾病病史、免疫缺陷病病史、肿瘤病史;② 入组前1月内接受过糖皮质激素及免疫抑制剂治疗。③ 受试前2周内有发热病史;④ 既往有严重过敏性疾病病史;⑤ 有家族免疫相关性疾病病史。健康对照组:纳入条件:① 身体健康、营养状态良好;② 无自身免疫性疾病病史或免疫缺陷病病史;③ 入组前1月内未应用糖皮质激素及免疫抑制剂;④ 入组前2周内无发热病史;⑤ 无严重过敏性疾病病史;⑥ 无家族免疫相关性疾病病史。

2.3. 检测方法

2.3.1. 主要试剂

① 购自天津灏洋华科生物科技有限公司的人外周血淋巴细胞分离液、购自BECKMAN COULTER的免疫表型DC细胞管及购自Coulter LH Series Diluent的PBS液;② 抗人CD3抗体、抗人CD4抗体、抗人CD8抗体、抗人CD25抗体、抗人CD127抗体、抗人HLA-DR抗体、抗人CD45RA抗体、抗人CD45RO抗体、抗人TCRαβ抗体;抗人CD27抗体、抗人CD38抗体、抗人CD24抗体、抗人CD19抗体、抗人IgD抗体。

2.3.2. 流式细胞术检测外周血淋巴细胞精细分群

① 取精制T、B细胞冻干抗体检测管加入40 μl PBS液溶解干粉;② 取实验组及健康对照组2 ml EDTA抗凝血与2 ml外周静脉血淋巴细胞分离液混匀,2000 rpm离心5 min;③ 提取120 μl白细胞层,加入2 ml PBS液洗涤3次(1200 rpm,5 min/次);④ 取40 μl洗涤后的浓缩白细胞加入精制T、B细胞冻干抗体检测管,避光静置30 min (室温);⑤ 静置后加入2 ml PBS液,1200 rpm离心5 min,弃上清液;⑥ 离心后加入0.5 ml PBS液,NAVIOS流式细胞仪进行检测,用自动分析软件分析。

2.3.3. 免疫散射比浊法测定血清免疫球蛋白

采用全自动生化分析仪对血清样本中的IgA、IgG、IgM与IgE水平进行检测。

2.4. 统计学方法

应用SPSS 26.0软件进行数据分析,计数资料以例数(N)和百分比(%)表示。分类资料组间应用Pearson卡方检验(χ2)。使用Shapiro-Wilk检验评估计数资料是否符合正态分布,正态分布的计数资料以均值±标准偏差( X ¯ ± SD)表示,非正态分布的计数资料则以中位数及四分位数[M (P25, P75)]表示。进行比较的两组计数资料若均符合正态分布,则采用独立样本t检验,否则采用Mann-Whitney U检验。分析相关性时,若两组计数资料均符合正态分布,则使用Pearson相关分析,否则使用Spearman等级相关分析。P < 0.05表示差异具有统计学意义,P < 0.01表示差异具有显著统计学意义。

3. 结果

3.1. 一般资料

本研究中实验组共50例,包含男性26例,女性24例,男女比例(1.08:1)。健康对照组共27例,其中男性20例,女性7例,男女比例(2.86:1)。两组间儿童年龄及性别差异无统计学意义(P > 0.05)。结果见表1

Table 1. Comparison of general information between the experimental group and the healthy control group

1. 实验组与健康对照组一般资料比较

组别

结果

男(%)

女(%)

年龄

实验组(N = 50)

26 (52.00%)

24 (48.00%)

8.26 ± 2.91

健康对照组(N = 27)

20 (74.07%)

7 (25.93%)

6.85 ± 4.61

统计值

χ2 = 3.552

t = 0.059

t = 1.447

P

0.156

注:① χ2表示Pearson卡方检验统计值,② t表示独立样本t检验统计值。

3.2. 实验组与健康对照组外周血淋巴细胞精细分群百分比比较

流式细胞术分析显示,与健康对照组比较,实验组外周血活化CD4+ T细胞(aCD4+ T)、活化CD8+ T细胞(aCD8+ T)、CD4+效应记忆T细胞(CD4+ Tem)、CD8+效应记忆T细胞(CD8+ Tem)、记忆调节性T细胞(mTreg)、双阴性T细胞(DNT)、B细胞(B cells)百分比升高,差异具有统计学意义(P < 0.05)或显著统计学意义(P < 0.01);CD4+初始T细胞(CD4+ Tn)、CD8+初始T细胞(CD8+ Tn)、初始调节性T细胞(nTreg)、幼稚未成熟B细胞(过渡型B细胞,transitional B cells)百分比降低,差异具有统计学意义(P < 0.05)或显著统计学意义(P < 0.01);而CD4+效应T细胞(CD4+ Teff)、CD8+效应T细胞(CD8+ Teff)、CD4+中央记忆T细胞(CD4+ Tcm)、CD8+中央记忆T细胞(CD8+ Tcm)、调节性T细胞(Treg)、初始B细胞(naïve B cells)、经典转变型B细胞(class-switched B cells)、浆母细胞(plasmablasts)、边缘区B细胞(MZ B cells)百分比差异无统计学意义(P > 0.05)。结果见表2

Table 2. Comparison of percentages of peripheral blood lymphocyte fine subgroupings between the experimental group and the healthy control group

2. 实验组与健康对照组外周血淋巴细胞精细分群百分比比较

参数

实验组(N = 50)

健康对照组(N = 27)

统计值

P

DNT (% T)

13.08 (9.77, 17.32)

9.79 (8.27, 16.16)

Z = −2.231

0.026*

CD4+ T (% T)

52.82 (44.89, 61.52)

56.07 (48.62, 63.99)

Z = −1.430

0.153

aCD4+ T (% CD4+ T)

3.88 (2.41, 5.08)

1.84 (0.88, 3.11)

Z = −4.329

0.000*

CD4+ Tn (% CD4+ T)

42.35 ± 17.87

57.87 ± 13.39

t = −3.947

0.000*

CD4+ Teff (% CD4+ T)

3.06 (0.87, 6.45)

3.34 (1.89, 8.65)

Z = −1.083

0.279

CD4+ Tcm (% CD4+ T)

19.75 (11.55, 25.99)

18.05 (13.74, 21.12)

Z = −0.971

0.331

CD4+ Tem (% CD4+ T)

27.96 (19.85, 43.27)

19.68 (10.73, 24.97)

Z = −3.437

0.001*

Treg (% CD4+ T)

5.30 ± 2.05

6.22 ± 2.81

t = −1.656

0.102

nTreg (% Treg)

33.15 ± 16.24

50.42 ± 18.94

t = −4.199

0.000*

mTreg (% Treg)

65.00 ± 16.65

48.98 ± 18.77

t = 3.851

0.000*

CD8+ T (% T)

32.65 ± 9.36

31.00 ± 8.56

t = 0.762

0.449

aCD8+ T (% CD8+ T)

7.56 (4.79, 15.83)

3.54 (1.66, 6.94)

Z = −3.720

0.000*

CD8+ Tn (% CD8+ T)

47.66 ± 17.96

58.39 ± 15.04

t = −2.644

0.010*

CD8+ Teff (% CD8+ T)

12.71 (6.34, 21.28)

13.33 (10.78, 20.39)

Z = −1.244

0.214

CD8+ Tcm (% CD8+ T)

2.64 (1.65, 4.97)

3.35 (1.80, 5.67)

Z = −1.222

0.222

CD8+ Tem (% CD8+ T)

31.87 (22.92, 42.90)

18.57 (10.27, 32.06)

Z = −3.448

0.001*

B cells (% Lymphocyte)

22.00 ± 9.74

16.69 ± 6.30

t = 2.895

0.005*

naïve B cells (% B)

70.79 ± 9.96

72.71 ± 11.20

t = −0.770

0.444

MZ B cells (% B)

9.80 (7.58, 13.55)

13.26 (7.34, 15.87)

Z = −1.046

0.295

transitional B cells (% B)

4.29 (2.32, 7.86)

7.80 (4.61, 10.65)

Z = −2.583

0.010*

class-switched B cells (% B)

12.76 ± 5.50

10.63 ± 5.15

t = 1.661

0.101

plasmablasts (% B)

0.81 (0.43, 2.30)

1.03 (0.62, 1.68)

Z = −0.673

0.501

注:① t表示独立样本t检验统计值,② Z表示非参数秩和检验统计值,③ *表示差异具有统计学意义(P < 0.05)或显著统计学意义(P < 0.01)。

3.3. 实验组与健康对照组血清免疫球蛋白水平比较

与健康对照组儿童比较,实验组血清IgA、IgE水平升高,差异具有统计学意义(P < 0.05),血清IgM、IgG水平差异无统计学意义(P > 0.05)。结果见表3

Table 3. Comparison of serum immunoglobulin levels between the experimental group and the healthy control group

3. 实验组与健康对照组血清免疫球蛋白水平比较

免疫球蛋白

实验组(N = 50)

健康对照组(N = 27)

统计值

P

IgA (g/L)

2.07 (1.63, 2.53)

1.56 (1.18, 1.97)

Z = −2.482

0.013*

IgG (g/L)

10.90 ± 2.78

9.86 ± 1.98

t = 1.714

0.091

IgM (g/L)

1.04 (0.81, 1.31)

1.06 (0.80, 1.63)

Z = −1.121

0.262

IgE (IU/mL)

127.75 (28.83, 380.03)

60.18 (16.70, 158.10)

Z = −2.423

0.015*

注:① t表示独立样本t检验统计值,② Z表示非参数秩和检验统计值,③ *表示差异具有统计学意义(P < 0.05)。

3.4. 实验组外周血淋巴细胞精细分群与血清免疫球蛋白相关性分析

正态性检验:实验组血清IgA (Shapiro-Wilk = 0.927, P = 0.004 < 0.01)、IgE (Shapiro-Wilk = 0.814, P < 0.01)水平均呈偏态分布,因此与实验组外周血各淋巴细胞精细分群之间均应用Spearman等级相关分析。实验组血清IgG (Shapiro-Wilk = 0.981, P = 0.614 > 0.05)、IgM (Shapiro-Wilk = 0.965, P = 0.141 > 0.05)水平均呈正态分布;外周血CD4+ T细胞、CD4+ Tn、Treg、nTreg、mTreg、CD8+ T细胞、CD8+ Tn、CD8+ Tem、B细胞(B cells)、初始B细胞(naïve B cells)、经典转变型B细胞(class-switched B cells)百分比均呈正态性分布(P > 0.05),与血清IgG、IgM水平之间应用Pearson相关分析;其余外周血淋巴细胞精细分群百分比均呈偏态性分布(P < 0.05),与血清IgG、IgM水平之间应用Spearman等级相关分析。

实验组外周血双阴性T细胞(DNT)百分比(P < 0.05)、活化CD4+ T细胞(aCD4+ T)百分比(P < 0.05)、活化CD8+ T细胞(aCD8+ T)百分比(P < 0.01)、CD4+效应记忆T细胞(CD4+ Tem)百分比(P < 0.05)、CD8+效应记忆T细胞(CD8+ Tem)百分比(P < 0.05)与血清IgA水平呈正相关;外周血过渡型B细胞(transitional B cells)百分比(P < 0.05)与血清IgA水平呈负相关(P < 0.05)。实验组外周血活化CD4+ T细胞(aCD4+ T)百分比(P < 0.01)、CD4+效应记忆T细胞(CD4+ Tem)百分比(P < 0.05)与血清IgG水平呈正相关;CD4+初始T细胞(CD4+ Tn)百分比与血清IgG水平呈负相关(P < 0.05)。实验组外周血活化CD4+ T细胞(aCD4+ T)百分比(P < 0.05)、CD4+效应记忆T细胞(CD4+ Tem)百分比(P < 0.05)、浆母细胞(plasmablasts)百分比(P < 0.05)与血清IgE水平呈正相关;CD4+初始T细胞(CD4+ Tn)百分比(P < 0.01)、CD8+初始T细胞(CD8+ Tn)百分比(P < 0.01)与血清IgE水平呈负相关。实验组外周血淋巴细胞各精细分群均与血清IgM水平无相关性(P > 0.05)。实验组外周血淋巴细胞精细分群百分比与血清免疫球蛋白水平相关系数(r)结果见表4

Table 4. Correlation analysis between peripheral blood lymphocyte fine subgroupings and serum immunoglobulins in the experimental group

4. 实验组外周血淋巴细胞精细分群与血清免疫球蛋白相关性分析

IgA

IgG

IgM

IgE

DNT

0.301*

0.110

0.028

0.177

CD4+ T

−0.199

−0.380

−0.283

−0.065

aCD4+ T

0.238*

0.377**

−0.056

0.328*

CD4+ Tn

−0.126

−0.311*

−0.135

−0.335**

CD4+ Teff

0.151

−0.119

0.167

−0.020

CD4+ Tcm

−0.210

0.182

−0.024

0.087

CD4+ Tem

0.238*

0.289*

0.250

0.250*

Treg

−0.118

−0.091

−0.086

−0.092

nTreg

−0.110

−0.187

−0.066

−0.072

mTreg

0.144

0.178

−0.074

0.039

CD8+ T

0.083

0.264

0.247

0.049

aCD8+ T

0.387**

0.234

−0.208

0.098

CD8+ Tn

−0.181

−0.035

0.049

−0.318**

CD8+ Teff

0.270

−0.063

−0.031

0.056

CD8+ Tcm

−0.219

0.079

0.049

0.132

CD8+ Tem

0.212*

0.232

−0.024

0.246

B cells

0.006

0.128

0.138

0.049

naïve B cells

−0.056

0.176

0.002

−0.018

MZ B cells

0.036

−0.086

−0.155

−0.146

transitional B cells

−0.271*

−0.053

−0.149

0.120

class-switched B cells

0.094

−0.201

−0.049

0.050

plasmablasts

−0.291

−0.019

−0.179

0.227*

注:*表示P < 0.05,**表示P < 0.01。

4. 讨论

IgAV是儿童时期常发生的血管炎,尽管多数患儿预后良好,部分患儿仍可因急性期严重的胃肠道并发症、后期的肾脏受累而预后不佳。IgAV的具体发病机制现仍不完全明确,目前认为IgAV是以半乳糖缺陷型免疫球蛋白A1 (galactose-deficient IgA1, Gd-IgA1)为主的异常糖基化IgA1与自身抗体结合形成的免疫复合物沉积所导致的系统性小血管炎。Gd-IgA1无法正常地被肝脏摄取和清除[12],机体针对这种异常IgA1产生特异性抗体并与之结合,形成循环免疫复合物沉积于小血管壁,引起系统性血管炎[1] [13]。含Gd-IgA1的循环免疫复合物沉积于肾脏,尤其可沉积于肾小球系膜区[14],导致肾小球炎症和肾功能损伤,引发IgAVN [15] [16]

作为免疫球蛋白种类之一,IgA是体液免疫的重要组成部分。异常IgA的产生与适应性免疫及淋巴细胞功能紊乱密不可分。有研究[17]发现IgAV急性期患儿存在CD4+ T、CD8+ T细胞亚群紊乱,且CD4+ T、CD8+ T细胞亚群与IgAV患儿病情程度相关。而且异常T细胞亚群会促进细胞因子的产生[18],加剧Gd-IgA1产生[5],这提示T细胞亚群参与了IgAV的发病。而T细胞免疫紊乱亦可能影响B细胞功能,不仅引起IgAV发病,而且也可促使疾病向IgAVN进展[8] [16]

T细胞的发育分化主要在胸腺中完成。经过阳性选择和阴性选择的前体T细胞主要分化为表达CD4或CD8的初始T细胞(naïve T cells, Tn, CD3+CCR7+CD45RA+),CD45RA+是辨别初始T细胞的重要表面标志。胸腺中发育成熟的初始T细胞尚未接触抗原刺激。在接受抗原刺激后,Tn会活化生成活化CD4+ T细胞(activated CD4+ T cells, aCD4+ T, CD3+CD4+HLA-DR+)和活化CD8+ T细胞(activated CD8+ T cells, aCD8+ T, CD3+CD8+HLA-DR+),进而分化为不同的效应T细胞(effector T cells, Teff),即:辅助性T细胞(helper T cells, Th)和细胞毒性T细胞(cytotoxic T lymphocytes, CTL),从而发挥免疫应答功能。我们的研究发现,实验组的外周血CD4+ T细胞百分比、CD8+ T细胞百分比较健康对照组差异无统计学意义(P > 0.05),然而aCD4+ T、aCD8+ T百分比较健康对照组显著升高(P < 0.01),且aCD4+ T (P < 0.05)、aCD8+ T (P < 0.01)百分比与血清IgA水平呈正相关。IgAV发病常有前期诱发因素,实验组外周血活化T细胞百分比增高,且与血清IgA水平呈正相关,提示IgAV患儿急性期时存在可能由前期诱因引起的T细胞过度活化,且T细胞的过度活化可能与IgAV发病有关。

效应T细胞(Teff)由Tn受抗原刺激后迅速增殖分化而来[19],在执行免疫效应后大量凋亡,少量存活的Teff和Tn可分化为记忆T细胞(memory T cells, Tm) [9] [20]。Tm的表面标志是CD45RO+。既往研究[9]发现IgAVN患儿CD45RA+ T细胞CD4 CD45RA+比率及计数明显低于单纯型IgAV患儿,并提示CD45RA+ T细胞的减少可能与IgAVN的发生有关,IgAVN患儿体内CD45RA+ T细胞可能更多地向CD45RO+ T细胞转化,以进一步刺激B细胞的活化,从而合成更多的免疫球蛋白及相关免疫复合物,沉积于肾脏以致肾脏损伤。记忆T细胞可分为中央记忆T细胞(central memory T cells, Tcm, CD3+CCR7+CD45RACD45RO+)和效应记忆T细胞(effector memory T cells, Tem, CD3+CCR7CD45RACD45RO+),二者可通过是否表达趋化因子受体-7 (或归巢受体,chemokine receptor 7,CCR7)进行区分[21]-[23]。Tcm主要位于淋巴组织,在外周血中存在相对较少,且其分化及效应功能较慢[20]。Tem主要在外周组织循环,在机体接触抗原时可直接、迅速地响应外周组织中的病原体,发挥与Teff相似的即时效应功能,如产生细胞因子及杀伤感染细胞[22] [24] [25]。本研究观察到,相较于健康对照组,实验组外周血CD4+ Tn、CD8+ Tn百分比降低(P < 0.05),CD4+ Tem、CD8+ Tem百分比(P < 0.01)升高,而CD4+ Tcm、CD8+ Tcm百分比较健康对照组差异无统计学意义(P > 0.05),提示IgAV患儿在疾病急性期可能经历了迅速且较强的免疫应答,T细胞存在持续活化,并进一步分化为效应记忆T细胞。同时,实验组外周血CD4+ Tem、CD8+ Tem百分比与血清IgA水平呈正相关(P < 0.05),也提示Tem可能协同B细胞促进IgA产生。有证据表明,CD4+ Tem参与了系统性红斑狼疮(SLE) [26]、ANCA相关性血管炎(AAV) [27]等多种自身免疫性疾病的发病机制,是自身免疫性破坏的关键介质。除CD4+ Tem之外,CD8+ Tem百分比在再生障碍性贫血患者体内也有增加的情况,提示Tem百分比升高可能与AA发病机制中的异常免疫状态有关[28]。Tem可产生白细胞介素-4 (interleukin-4, IL-4),可导致炎症反应发生[22] [29]-[33]。既往研究发现IgAV患者血清IL-4水平与血清IgA水平呈正相关[34],更有研究发现IL-4可导致IgA肾病(IgA nephropathy, IgAN)患者半乳糖缺陷型IgA1的水平显著升高[35],而IgAV与IgAN的发病机制均涉及Gd-IgA1的生成以及其免疫复合物的沉积,具有一定相似性,只不过IgAV以系统性小血管炎为特征,而IgAN则以肾小球病变为主要表现。而实验组外周血Tcm百分比与健康对照组差异无统计学意义(P > 0.05),可能是因其免疫应答速度缓慢而暂未有明显增殖;同时Tcm也可能因为其自身的分布特点,所以在外周血中未被检测到其百分比有明显变化。

调节性T细胞(regulatory T cells, Treg, CD3+CD4+CD25+CD127low)是CD4+ T细胞的亚群之一,参与维持免疫稳态及抑制过度的自身免疫反应,通常在自身免疫性疾病中发挥调节功能[36] [37]。Treg也可通过CD45表达的不同,分化为初始调节性T细胞(naïve regulatory T cells, nTreg, CD4+CD25+CD45RA+CD127low)和记忆调节性T细胞(memory regulatory T cells, mTreg, CD4+CD25+CD45RO+CD127low) [38]。本研究中,实验组外周血Treg百分比较健康对照组差异无统计学意义(P > 0.05),这与既往报道结果相同[39],而nTreg百分比较健康对照组显著降低(P < 0.01),mTreg百分比较健康对照组显著升高(P < 0.01),提示IgAV急性期患儿外周血Treg亚群存在分布紊乱。mTreg能够通过抑制Teff的活化,防止过度免疫反应发生[38] [40] [41]。因此我们推测,IgAV患儿在疾病急性期时,机体处于异常免疫状态,mTreg可能会发挥免疫调节作用,通过调控Teff的活性来抑制炎症损伤。双阴性T细胞(double-negative T cells, DNT, CD3+CD4CD8)既不表达CD4也不表达CD8。研究[42]证实DNT可高效地抑制CD4+ T细胞和CD8+ T细胞应答,能够抑制高度活化的T细胞的增殖和效应功能,但仅在受APC (抗原呈递细胞,antigen-presenting cells)激活后才发挥其抑制活性。然而,DNT被观察到在自身免疫性疾病中存在数量的改变,并且与自身免疫性疾病的发病机制有关,其可通过产生白介素-17 (interleukin-17, IL-17)、干扰素-γ (interferon-γ, IFN-γ)促进炎症反应的发生,也可助力肾脏损伤[42]-[44]。Gülhan等[45]研究发现,IgAVN患儿肾小球和肾小管内存在IFN-γ和IL-17的显著表达,且提示IFN-γ和IL-17对IgAV发病有所助力。既往研究[46] [47]发现IgAV急性期患儿血清IL-17水平明显升高,可能在一定程度上促进了血管炎症,且IL-17有助于Gd-IgA1合成增加[48]。本次研究发现实验组外周血DNT细胞百分比较健康对照组升高,并与血清IgA水平呈正相关,差异具有统计学意义(P < 0.05),这提示DNT可能参与了IgAV甚至IgAVN的发病机制。调节性T细胞在IgAV疾病过程中所发挥的作用也可能存在争议。FILLERON等[36]发现健康儿童Treg百分比与IgA的产生呈正相关,IgAV患儿的Treg百分比则与IgA水平呈负相关。在对新发强直性脊柱炎(Ankylosing Spondylitis, AS)的研究[49]中同样发现Treg的数量与血清IgA水平呈负相关;Donadio等[50]发现IgAV患儿体内Treg的活性明显降低,提示Treg亚群在IgAV患儿急性期可能未能抑制机体的过度免疫应答。

B细胞是体液免疫中的重要成员。外周血的B细胞可分为包括初始B细胞、过渡型B细胞、浆母细胞、记忆B细胞在内的不同亚群[51]。B细胞(B cells, CD19+CD3)的发育在骨髓中开始,在骨髓中的未成熟B细胞(immature B cells)经过阴性选择后进入脾脏,并分化为过渡型B细胞(幼稚未成熟B细胞,transitional B cells, CD19+CD27CD38highCD24+),后进一步成为具有免疫应答潜力的初始B细胞(naïve B cells, CD19+CD27IgD+)并进入血液循环。初始B细胞在经受抗原刺激后,可分化为分泌抗体的浆细胞(plasma cells)和经典转变型B细胞(class-switched B cells, CD19+CD27+CD38dimIgD),其中经典转变型B细胞最终可分化为记忆B细胞(memory B cells) [51] [52]。记忆B细胞具有长效免疫记忆能力,在再次接触同种抗原时产生快速、有效的免疫应答[53]。浆母细胞(plasmablasts, CD19+CD27highCD38highIgD)是未成熟的浆细胞前体,在后续分化为浆细胞[54]。浆母细胞是连接B细胞激活与长效体液免疫的关键桥梁,通过快速抗体分泌、定向迁移及微环境适应,协调早期防御与长期免疫记忆。边缘区B细胞(marginal zone B cells, MZ B cells, CD19+CD27+IgD+)的功能目前了解并不完全,近年研究发现[55] MZ B细胞可通过识别连接在MHC-II类分子上的C3分子,以发现并吞噬自身的树突状细胞,经此过程,边缘区B细胞自身亦可出现MHC-II类分子及其俘获的抗原,然后与自身的Th细胞结合,发挥类似抗原提呈的作用。本次研究中,我们发现实验组外周血B细胞百分比显著高于健康对照组(P < 0.01),提示IgAV急性期患儿体内B淋巴细胞处在明显活化状态。B细胞接触抗原后不断增殖分化,使得血清IgA大量增加[56],同时B细胞也可能发挥抗原呈递的作用参与T细胞介导的免疫应答[57],参与了IgAV的发病。然而,本研究中实验组外周血初始B细胞、边缘区B细胞、经典转变型B细胞及浆母细胞百分比较健康对照组差异无统计学意义(P > 0.05),可能是因为IgAV患儿机体受抗原刺激后,活化状态下的B细胞占优势,其他细胞种类则相对减少。过渡型B细胞是调节性B细胞(regulatory B cells, Breg)的来源之一,也能够分泌IL-10 (白细胞介素-10,interleukin-10)发挥免疫调节作用[58] [59]。本研究中实验组外周血过渡型B细胞百分比低于健康对照组,且与血清IgA水平呈负相关(P < 0.05),提示IgAV急性期患儿体内B细胞相关的免疫调节功能也可能出现异常,外周血过渡型B细胞的百分比降低可能使得过度免疫反应未能得到有效或足够的抑制,导致IgA产生增多。

另外,本次研究发现实验组血清IgE水平较健康对照组升高(P < 0.05),既往研究也证实IgAV患儿体内的IgA、IgE水平均明显升高[60]。实验组外周血aCD4+ T、CD4+ Tem、浆母细胞百分比与血清IgE水平呈正相关(P < 0.05),CD4+ Tn、CD8+ Tn百分比与血清IgE水平呈显著负相关(P < 0.01),这提示IgAV患儿急性期时,Tn活化后向Tem分化,Tem受刺激后可能通过产生IL-4,辅助B细胞的IgE类别转换[61] [62]。既往研究[63]还发现,过敏性哮喘患儿外周血浆母细胞显著增加,且浆母细胞与血清IgE水平呈正相关。IgE是过敏反应的效应性抗体,有过敏性疾病病史的儿童后续患IgAV的风险也有所增加[64],上述淋巴细胞精细分群与IgE的相关性也说明其在一定程度上对机体过敏有一定影响,从而诱发IgAV起病。IgAV的血管损伤主要由IgA相关的免疫复合物驱动,血清IgE水平升高也可能反映免疫紊乱的伴随现象。

值得注意的是,本次研究还发现实验组外周血CD4+ Tn百分比与血清IgG水平呈负相关(P < 0.05),aCD4+ T百分比(P < 0.01)、CD4+ Tem百分比(P < 0.05)与血清IgG水平呈正相关,而实验组血清IgG水平较健康对照组差异却无统计学意义(P > 0.05),提示IgAV患儿在疾病急性期时,CD4+ Tn活化并分化为CD4+ Tem,Tem受刺激后可产生高水平的IL-4 [22]。IL-4作为IgE和IgG亚类的类别转换因子[62],可能通过辅助B细胞间接促进IgG的产生,特异性IgG结合半乳糖缺陷型IgA1形成的免疫复合物增多,促进IgAV发生;考虑到在免疫球蛋白方面,IgAV发病主要由IgA介导,相较于显著增加的IgA水平,IgG水平升高则不明显。

同时,本研究中实验组血清IgM水平较健康对照组差异无统计学意义(P > 0.05),与外周血淋巴细胞各精细分群也无明显相关性,考虑到IgM是免疫反应中最早产生的抗体,可能因已经发生了抗体类别转换而导致其血清水平无明显变化。

目前靶向B细胞的生物制剂已经在多种自身免疫性疾病中表现出良好的疗效[65] [66]。被应用于常规免疫抑制药物难治性IgAV或IgAVN治疗的利妥昔单抗(Rituximab, RTX)通过B细胞耗竭减少Gd-IgA1的产生,成功地控制了疾病[67]。另一种B细胞耗竭剂奥法木单抗(Ofatumumab, OFAB)目前虽仅被批准用于多发性硬化症的治疗,也在严重IgAV或IgAVN中显示出疗效,而且凭借其完全人源化的优势,OFAB可能会被作为RTX耐受不良或无应答患者的替代药物[68]。抗CD52单克隆抗体阿伦单抗(Alemtuzumab, ALE)可通过靶向淋巴细胞表面CD52,诱导淋巴细胞耗竭,减缓记忆T细胞的免疫重建,或能有效抑制IgAV患儿体内的过度免疫反应,从而实现疾病控制[69]

总之,IgAV急性期患儿外周血淋巴细胞精细分群的百分比分布存在显著紊乱,这种异常分布及免疫失调可能在IgAV的发病机制中起关键作用。靶向B细胞或记忆T细胞的治疗或许能够有效改善IgAV患儿的病情进展和预后,有望成为未来治疗IgAV及IgAVN的新策略。

伦理批准和知情同意

本研究涉及的所有试验均已通过青岛大学附属医院医学伦理委员会的审核批准(伦理编号:QYFY WZLL 29526)。所有试验过程均遵照《人体医学研究的伦理准则》的条例进行。受试对象或其亲属已经签署知情同意书。

作者声明

张峻宁、常红、林毅、王大海、柏翠、段于河参与了研究设计,张峻宁、林毅、常红参与了论文的写作和修改。所有作者均阅读并同意发表该论文,且均声明不存在利益冲突。

NOTES

*通讯作者。

参考文献

[1] Jennette, J.C., Falk, R.J., Bacon, P.A., Basu, N., Cid, M.C., Ferrario, F., et al. (2012) 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis & Rheumatism, 65, 1-11.
https://doi.org/10.1002/art.37715
[2] 中华医学会儿科学分会肾脏病学组. 儿童常见肾脏疾病诊治循证指南(二): 紫癜性肾炎的诊治循证指南(试行) [J]. 中华儿科杂志, 2009, 47(12): 911-913.
[3] Ozen, S., Marks, S.D., Brogan, P., Groot, N., de Graeff, N., Avcin, T., et al. (2019) European Consensus-Based Recommendations for Diagnosis and Treatment of Immunoglobulin a Vasculitis—The SHARE Initiative. Rheumatology, 58, 1607-1616.
https://doi.org/10.1093/rheumatology/kez041
[4] Oni, L. and Sampath, S. (2019) Childhood IgA Vasculitis (Henoch Schonlein Purpura)—Advances and Knowledge Gaps. Frontiers in Pediatrics, 7, Article No. 257.
https://doi.org/10.3389/fped.2019.00257
[5] 热爱拉·加那提, 刘细细, 朱学军. 免疫球蛋白A血管炎病因及发病机制的研究进展[J]. 中国当代儿科杂志, 2023, 25(12): 1287-1292.
[6] 熊晓, 余理, 冯园, 等. 淋巴细胞亚群在儿科临床的应用[J]. 中华临床免疫和变态反应杂志, 2022, 16(5): 504-510.
[7] Zhang, N., Tian, G., Sun, Y., Pan, J., Xu, W. and Li, Z. (2021) Altered B Cell Compartment Associated with Tfh Cells in Children with Henoch-Schonlein Purpura. BMC Pediatrics, 21, Article No. 399.
https://doi.org/10.1186/s12887-021-02873-z
[8] Schmitt, R., Carlsson, F., Mörgelin, M., Tati, R., Lindahl, G. and Karpman, D. (2010) Tissue Deposits of IgA-Binding Streptococcal M Proteins in IgA Nephropathy and Henoch-Schönlein Purpura. The American Journal of Pathology, 176, 608-618.
https://doi.org/10.2353/ajpath.2010.090428
[9] 陈伽豪, 杨紫薇, 王建军. 过敏性紫癜患儿外周血T淋巴细胞亚群CD45RA+、CD45RO+表达的研究[J]. 中国基层医药, 2019, 26: 2835-2839.
[10] Raphael, I., Joern, R.R. and Forsthuber, T.G. (2020) Memory CD4+ T Cells in Immunity and Autoimmune Diseases. Cells, 9, Article No. 531.
https://doi.org/10.3390/cells9030531
[11] 中华医学会儿科学分会免疫学组, 《中华儿科杂志》编辑委员会. 儿童过敏性紫癜循证诊治建议[J]. 中华儿科杂志, 2013, 51(7): 502-507.
[12] Novak, J., Vu, H.L., Novak, L., Julian, B.A., Mestecky, J. and Tomana, M. (2002) Interactions of Human Mesangial Cells with IgA and IgA-Containing Immune Complexes. Kidney International, 62, 465-475.
https://doi.org/10.1046/j.1523-1755.2002.00477.x
[13] Suzuki, H., Fan, R., Zhang, Z., Brown, R., Hall, S., Julian, B.A., et al. (2009) Aberrantly Glycosylated IgA1 in IgA Nephropathy Patients Is Recognized by IgG Antibodies with Restricted Heterogeneity. Journal of Clinical Investigation, 119, 1668-1677.
https://doi.org/10.1172/jci38468
[14] Suzuki, H., Yasutake, J., Makita, Y., Tanbo, Y., Yamasaki, K., Sofue, T., et al. (2018) IgA Nephropathy and IgA Vasculitis with Nephritis Have a Shared Feature Involving Galactose-Deficient IgA1-Oriented Pathogenesis. Kidney International, 93, 700-705.
https://doi.org/10.1016/j.kint.2017.10.019
[15] Pohl, M. (2014) Henoch-Schönlein Purpura Nephritis. Pediatric Nephrology, 30, 245-252.
https://doi.org/10.1007/s00467-014-2815-6
[16] 王文菩, 陈朝英, 涂娟. 半乳糖缺乏的IgA1在紫癜性肾炎发病机制中的作用研究进展[J]. 中国医刊, 2020, 55(6): 612-614.
[17] 林林东, 王晓冬, 龚娅. 过敏性紫癜患儿免疫球蛋白及T淋巴细胞亚群水平与疾病严重程度的相关性研究[J]. 国际检验医学杂志, 2018, 39(13): 1651-1653.
[18] Kuret, T., Lakota, K., Žigon, P., Ogrič, M., Sodin-Šemrl, S., Čučnik, S., et al. (2018) Insight into Inflammatory Cell and Cytokine Profiles in Adult IgA Vasculitis. Clinical Rheumatology, 38, 331-338.
https://doi.org/10.1007/s10067-018-4234-8
[19] Gerlach, C., van Heijst, J.W.J. and Schumacher, T.N.M. (2011) The Descent of Memory T Cells. Annals of the New York Academy of Sciences, 1217, 139-153.
https://doi.org/10.1111/j.1749-6632.2010.05830.x
[20] 刘君晗, 关凤军, 程巾, 等. 激素敏感型肾病综合征患儿记忆T淋巴细胞亚群精细分型的临床意义[J]. 实用医学杂志, 2023, 39(4): 436-441.
[21] Bose, T. (2017) Role of Immunological Memory Cells as a Therapeutic Target in Multiple Sclerosis. Brain Sciences, 7, Article No. 148.
https://doi.org/10.3390/brainsci7110148
[22] Sallusto, F., Lenig, D., Förster, R., Lipp, M. and Lanzavecchia, A. (1999) Two Subsets of Memory T Lymphocytes with Distinct Homing Potentials and Effector Functions. Nature, 401, 708-712.
https://doi.org/10.1038/44385
[23] Gattinoni, L., Speiser, D.E., Lichterfeld, M. and Bonini, C. (2017) T Memory Stem Cells in Health and Disease. Nature Medicine, 23, 18-27.
https://doi.org/10.1038/nm.4241
[24] Liu, Q., Sun, Z. and Chen, L. (2020) Memory T Cells: Strategies for Optimizing Tumor Immunotherapy. Protein & Cell, 11, 549-564.
https://doi.org/10.1007/s13238-020-00707-9
[25] Rheinländer, A., Schraven, B. and Bommhardt, U. (2018) CD45 in Human Physiology and Clinical Medicine. Immunology Letters, 196, 22-32.
https://doi.org/10.1016/j.imlet.2018.01.009
[26] Fritsch, R.D., Shen, X., Illei, G.G., Yarboro, C.H., Prussin, C., Hathcock, K.S., et al. (2006) Abnormal Differentiation of Memory T Cells in Systemic Lupus Erythematosus. Arthritis & Rheumatism, 54, 2184-2197.
https://doi.org/10.1002/art.21943
[27] Abdulahad, W.H., Stegeman, C.A., Limburg, P.C. and Kallenberg, C.G.M. (2007) CD4‐Positive Effector Memory T Cells Participate in Disease Expression in Anca‐Associated Vasculitis. Annals of the New York Academy of Sciences, 1107, 22-31.
https://doi.org/10.1196/annals.1381.003
[28] Hu, X., Gu, Y., Wang, Y., Cong, Y., Qu, X. and Xu, C. (2009) Increased CD4+ and CD8+ Effector Memory T Cells in Patients with Aplastic Anemia. Haematologica, 94, 428-429.
https://doi.org/10.3324/haematol.13412
[29] Roesner, L.M., Heratizadeh, A., Wieschowski, S., Mittermann, I., Valenta, R., Eiz-Vesper, B., et al. (2016) α-NAC-Specific Autoreactive CD8+ T Cells in Atopic Dermatitis Are of an Effector Memory Type and Secrete IL-4 and IFN-γ. The Journal of Immunology, 196, 3245-3252.
https://doi.org/10.4049/jimmunol.1500351
[30] Bhargava, P. and Calabresi, P.A. (2015) Novel Therapies for Memory Cells in Autoimmune Diseases. Clinical and Experimental Immunology, 180, 353-360.
https://doi.org/10.1111/cei.12602
[31] Raeber, M.E., Zurbuchen, Y., Impellizzieri, D. and Boyman, O. (2018) The Role of Cytokines in T‐Cell Memory in Health and Disease. Immunological Reviews, 283, 176-193.
https://doi.org/10.1111/imr.12644
[32] Fazeli, P., Kalani, M. and Hosseini, M. (2023) T Memory Stem Cell Characteristics in Autoimmune Diseases and Their Promising Therapeutic Values. Frontiers in Immunology, 14, Article ID: 1204231.
https://doi.org/10.3389/fimmu.2023.1204231
[33] Sallusto, F., Geginat, J. and Lanzavecchia, A. (2004) Central Memory and Effector Memory T Cell Subsets: Function, Generation, and Maintenance. Annual Review of Immunology, 22, 745-763.
https://doi.org/10.1146/annurev.immunol.22.012703.104702
[34] Liu, M., Yang, Z., Wu, Q., Yang, Y., Zhao, D., Cheng, Q., et al. (2023) IL-4-Secreting CD40L(+) MAIT Cells Support Antibody Production in the Peripheral Blood of Heonch-Schönlein Purpura Patients. Inflammation Research, 73, 35-46.
https://doi.org/10.1007/s00011-023-01816-x
[35] Suzuki, H., Raska, M., Yamada, K., Moldoveanu, Z., Julian, B.A., Wyatt, R.J., et al. (2014) Cytokines Alter IgA1 O-Glycosylation by Dysregulating C1GalT1 and ST6GalNAc-II Enzymes. Journal of Biological Chemistry, 289, 5330-5339.
https://doi.org/10.1074/jbc.m113.512277
[36] Filleron, A., Cezar, R., Fila, M., Protsenko, N., Van Den Hende, K., Jeziorski, E., et al. (2024) Regulatory T and B Cells in Pediatric Henoch-Schönlein Purpura: Friends or Foes? Arthritis Research & Therapy, 26, Article No. 52.
https://doi.org/10.1186/s13075-024-03278-w
[37] 邵晓珊, 江超, 李宇红, 等. 儿童紫癜性肾炎CD4+CD25+调节性T细胞的功能研究[J]. 中华儿科杂志, 2014, 52(7): 516-520.
[38] Walter, G.J., Fleskens, V., Frederiksen, K.S., Rajasekhar, M., Menon, B., Gerwien, J.G., et al. (2015) Phenotypic, Functional, and Gene Expression Profiling of Peripheral CD45RA+ and CD45RO+ CD4+CD25+CD127(Low) Treg Cells in Patients with Chronic Rheumatoid Arthritis. Arthritis & Rheumatology, 68, 103-116.
https://doi.org/10.1002/art.39408
[39] Li, Y., Li, C., Wang, G., Yang, J. and Zu, Y. (2011) Investigation of the Change in CD4+ T Cell Subset in Children with Henoch-Schonlein Purpura. Rheumatology International, 32, 3785-3792.
https://doi.org/10.1007/s00296-011-2266-3
[40] Rosenblum, M.D., Gratz, I.K., Paw, J.S., Lee, K., Marshak-Rothstein, A. and Abbas, A.K. (2011) Response to Self-Antigen Imprints Regulatory Memory in Tissues. Nature, 480, 538-542.
https://doi.org/10.1038/nature10664
[41] Gratz, I.K. and Campbell, D.J. (2014) Organ-Specific and Memory Treg Cells: Specificity, Development, Function, and Maintenance. Frontiers in Immunology, 5, Article No. 333.
https://doi.org/10.3389/fimmu.2014.00333
[42] Voelkl, S., Gary, R. and Mackensen, A. (2011) Characterization of the Immunoregulatory Function of Human TCR-αβ+ CD4-CD8-Double‐Negative T Cells. European Journal of Immunology, 41, 739-748.
https://doi.org/10.1002/eji.201040982
[43] Crispín, J.C., Oukka, M., Bayliss, G., Cohen, R.A., Van Beek, C.A., Stillman, I.E., et al. (2008) Expanded Double Negative T Cells in Patients with Systemic Lupus Erythematosus Produce IL-17 and Infiltrate the Kidneys. The Journal of Immunology, 181, 8761-8766.
https://doi.org/10.4049/jimmunol.181.12.8761
[44] Li, H. and Tsokos, G.C. (2020) Double-Negative T Cells in Autoimmune Diseases. Current Opinion in Rheumatology, 33, 163-172.
https://doi.org/10.1097/bor.0000000000000778
[45] Gülhan, B., Orhan, D., Kale, G., Besbas, N. and Özen, S. (2015) Studying Cytokines of T Helper Cells in the Kidney Disease of IgA Vasculitis (Henoch-Schönlein Purpura). Pediatric Nephrology, 30, 1269-1277.
https://doi.org/10.1007/s00467-015-3051-4
[46] Jen, H., Chuang, Y., Lin, S., Chiang, B. and Yang, Y. (2011) Increased Serum Interleukin‐17 and Peripheral Th17 Cells in Children with Acute Henoch-Schönlein Purpura. Pediatric Allergy and Immunology, 22, 862-868.
https://doi.org/10.1111/j.1399-3038.2011.01198.x
[47] Li, B., Ren, Q., Ling, J., Tao, Z., Yang, X. and Li, Y. (2019) The Change of Th17/Treg Cells and IL-10/IL-17 in Chinese Children with Henoch-Schonlein Purpura: A PRISMA-Compliant Meta-Analysis. Medicine, 98, e13991.
https://doi.org/10.1097/md.0000000000013991
[48] Ruszkowski, J., Lisowska, K.A., Pindel, M., Heleniak, Z., Dębska-Ślizień, A. and Witkowski, J.M. (2018) T Cells in IgA Nephropathy: Role in Pathogenesis, Clinical Significance and Potential Therapeutic Target. Clinical and Experimental Nephrology, 23, 291-303.
https://doi.org/10.1007/s10157-018-1665-0
[49] Zhao, S., Hu, J., Wang, J., Lou, X. and Zhou, L. (2011) Inverse Correlation between CD4+CD25highCD127low/− Regulatory T-Cells and Serum Immunoglobulin a in Patients with New-Onset Ankylosing Spondylitis. Journal of International Medical Research, 39, 1968-1974.
https://doi.org/10.1177/147323001103900543
[50] Donadio, M.E., Loiacono, E., Peruzzi, L., Amore, A., Camilla, R., Chiale, F., et al. (2014) Toll-Like Receptors, Immunoproteasome and Regulatory T Cells in Children with Henoch-Schönlein Purpura and Primary IgA Nephropathy. Pediatric Nephrology, 29, 1545-1551.
https://doi.org/10.1007/s00467-014-2807-6
[51] Hoffman, W., Lakkis, F.G. and Chalasani, G. (2016) B Cells, Antibodies, and More. Clinical Journal of the American Society of Nephrology, 11, 137-154.
https://doi.org/10.2215/cjn.09430915
[52] Thomas, M.D., Srivastava, B. and Allman, D. (2006) Regulation of Peripheral B Cell Maturation. Cellular Immunology, 239, 92-102.
https://doi.org/10.1016/j.cellimm.2006.04.007
[53] Cancro, M.P. and Tomayko, M.M. (2021) Memory B Cells and Plasma Cells: The Differentiative Continuum of Humoral Immunity. Immunological Reviews, 303, 72-82.
https://doi.org/10.1111/imr.13016
[54] Radbruch, A., Muehlinghaus, G., Luger, E.O., Inamine, A., Smith, K.G.C., Dörner, T., et al. (2006) Competence and Competition: The Challenge of Becoming a Long-Lived Plasma Cell. Nature Reviews Immunology, 6, 741-750.
https://doi.org/10.1038/nri1886
[55] Schriek, P., Ching, A.C., Moily, N.S., Moffat, J., Beattie, L., Steiner, T.M., et al. (2022) Marginal Zone B Cells Acquire Dendritic Cell Functions by Trogocytosis. Science, 375, eabf7470.
https://doi.org/10.1126/science.abf7470
[56] 唐雪梅. 过敏性紫癜病因及免疫发病机制[J]. 实用儿科临床杂志, 2012, 27(21): 1634-1636.
[57] Mitchison, N.A. (2004) T-Cell-B-Cell Cooperation. Nature Reviews Immunology, 4, 308-312.
https://doi.org/10.1038/nri1334
[58] Rosser, E.C. and Mauri, C. (2015) Regulatory B Cells: Origin, Phenotype, and Function. Immunity, 42, 607-612.
https://doi.org/10.1016/j.immuni.2015.04.005
[59] Blair, P.A., Noreña, L.Y., Flores-Borja, F., Rawlings, D.J., Isenberg, D.A., Ehrenstein, M.R., et al. (2010) CD19(+)CD24(Hi)CD38(Hi) B Cells Exhibit Regulatory Capacity in Healthy Individuals but Are Functionally Impaired in Systemic Lupus Erythematosus Patients. Immunity, 32, 129-140.
https://doi.org/10.1016/j.immuni.2009.11.009
[60] Ruan, J.W., Fan, G.Z., Niu, M.M., Jiang, Q., Li, R.X., Qiu, Z., et al. (2022) Serum Immunoglobulin Profiles in Chinese Children with Henoch-Schönlein Purpura. Scandinavian Journal of Immunology, 96, e13191.
https://doi.org/10.1111/sji.13191
[61] Gould, H.J. and Sutton, B.J. (2008) IgE in Allergy and Asthma Today. Nature Reviews Immunology, 8, 205-217.
https://doi.org/10.1038/nri2273
[62] Crotty, S. (2011) Follicular Helper CD4 T Cells (TFH). Annual Review of Immunology, 29, 621-663.
https://doi.org/10.1146/annurev-immunol-031210-101400
[63] Zhu, Y., Jiang, Q., Lei, C., Yu, Q. and Qiu, L. (2024) The Response of CD27(+)CD38(+) Plasmablasts, CD24(hi)CD38(hi) Transitional B Cells, CXCR5(-)ICOS(+)PD-1(+) Tph, Tph2 and Tfh2 Subtypes to Allergens in Children with Allergic Asthma. BMC Pediatrics, 24, Article No. 154.
https://doi.org/10.1186/s12887-024-04622-4
[64] Chen, A., Lin, C., Shen, T., Li, T., Sung, F. and Wei, C. (2015) Association between Allergic Diseases and Risks of HSP and HSP Nephritis: A Population-Based Study. Pediatric Research, 79, 559-564.
https://doi.org/10.1038/pr.2015.271
[65] Reddy, V., Klein, C., Isenberg, D.A., Glennie, M.J., Cambridge, G., Cragg, M.S., et al. (2017) Obinutuzumab Induces Superior B-Cell Cytotoxicity to Rituximab in Rheumatoid Arthritis and Systemic Lupus Erythematosus Patient Samples. Rheumatology, 56, 1227-1237.
https://doi.org/10.1093/rheumatology/kex067
[66] Trautmann, A., Boyer, O., Hodson, E., Bagga, A., Gipson, D.S., Samuel, S., et al. (2022) IPNA Clinical Practice Recommendations for the Diagnosis and Management of Children with Steroid-Sensitive Nephrotic Syndrome. Pediatric Nephrology, 38, 877-919.
https://doi.org/10.1007/s00467-022-05739-3
[67] Hernández-Rodríguez, J., Carbonell, C., Mirón-Canelo, J., Diez-Ruiz, S., Marcos, M. and Chamorro, A.J. (2020) Rituximab Treatment for IgA Vasculitis: A Systematic Review. Autoimmunity Reviews, 19, Article ID: 102490.
https://doi.org/10.1016/j.autrev.2020.102490
[68] Lundberg, S., Westergren, E., Smolander, J. and Bruchfeld, A. (2016) B Cell-Depleting Therapy with Rituximab or Ofatumumab in Immunoglobulin a Nephropathy or Vasculitis with Nephritis. Clinical Kidney Journal, 10, 20-26.
https://doi.org/10.1093/ckj/sfw106
[69] Bouvy, A.P., Klepper, M., Betjes, M.G.H., Weimar, W., Hesselink, D.A. and Baan, C.C. (2016) Alemtuzumab as Antirejection Therapy: T Cell Repopulation and Cytokine Responsiveness. Transplantation Direct, 2, e83.
https://doi.org/10.1097/txd.0000000000000595