等离子体活化水的杀菌作用及机制的相关医学研究进展
Antibacterial Effects and Mechanisms of Plasma-Activated Water: Recent Advances in Medical Research
摘要: 等离子体活化水(plasma-activated water, PAW)是一种使用常压冷等离子体处理的水或溶液,PAW作为一种新型杀菌技术,已被证实是高效、环保且对多种微生物无耐药性的。本文综述了等离子体活化水的杀菌作用,包括对多种细菌、病毒、真菌等微生物的杀灭效果及其影响因素,并探讨了其杀菌机制,主要涉及氧化应激、酸化作用、物理效应等方面。PAW凭借其高效、无耐药性及安全性优势,在院内感染防控、创面处理及医疗器械灭菌等医学场景展现出重要应用价值,其临床转化研究将成为未来重点方向。
Abstract: Plasma-activated water (PAW), generated by treating water or aqueous solutions with atmospheric cold plasma under ambient conditions, has emerged as a novel disinfection technology. PAW has been demonstrated to be highly effective, environmentally friendly, and non-inductive of microbial resistance against a broad spectrum of pathogens. This review systematically summarizes the antibacterial effects of PAW, including its microbicidal efficacy against diverse microorganisms (bacteria, viruses, and fungi) and key influencing factors. Furthermore, the underlying bactericidal mechanisms are elucidated, focusing on oxidative stress, acidification effects, and physical interactions. Notably, PAW exhibits significant potential for medical applications such as hospital-acquired infection control, wound management, and medical device sterilization, owing to its high efficiency, absence of resistance development, and biosafety. Future research should prioritize clinical translation studies to advance its practical implementation in healthcare settings.
文章引用:葛靖雯. 等离子体活化水的杀菌作用及机制的相关医学研究进展[J]. 临床医学进展, 2025, 15(6): 1891-1898. https://doi.org/10.12677/acm.2025.1561928

1. 引言

重症监护病房(intensive care unit, ICU)患者的细菌感染(bacterial infection, BI)发病率高达51%~54%,其相关死亡率达到25%~30%,显著高于非感染患者[1]。常见感染类型包括肺炎(尤其是呼吸机相关性肺炎)、尿路感染和血流感染[2]。BI的高危因素涉及多个方面,包括手术和侵入性操作、长期或广谱抗生素的使用、免疫力低下状态以及医疗设备和环境污染等[3]

传统杀菌方法在杀灭细菌方面存在一定的局限性。例如,高温灭菌易损坏热敏感器械且穿透力不足,可能导致灭菌死角。紫外线杀菌因无法深入器械缝隙或管腔内部而存在消毒盲区,且需在无人环境下操作[4]。化学消毒剂(如酒精、含氯消毒剂)虽广泛应用,但其残留毒性可能危害人体健康,长期使用还可能诱发耐药菌产生,同时这类消毒剂具有腐蚀性,可能对医疗器材及设备造成不可逆的损伤[5]。传统杀菌方法难以满足现代医疗环境的需求,因此,开发新型、安全、高效且环保的抗菌方法已成为当务之急。

PAW作为一种新兴的抗菌技术,近年来引起了广泛关注。PAW是通过大气冷等离子体(atmospheric cold plasma, ACP)处理水或溶液而生成的,其具有广泛的抗菌活性,且对环境友好[6]。等离子体是一种由高能粒子(如电子、离子、激发态原子和分子、自由基等)组成的物质状态,具有超强的氧化特性。等离子体活化水中主要包含的活性物质有活性氧(reactive oxygen species, ROS)和活性氮(reactive nitrogen species, RNS),如过氧化氢(H2O2)、臭氧(O3)、羟基自由基(·OH)、一氧化氮(·NO)和过氧亚硝酸根(ONOO)等,这些物质在杀菌过程中起到了关键作用[7]

与传统杀菌方法相比,PAW具有显著优势,它能够在较低温度下实现高效杀菌,同时,PAW的抗菌效果持久,且不会产生有害副产物。尽管PAW具有诸多优点,但在实际应用中仍面临一些挑战,如生产成本较高、反应性物种的稳定性以及对不同微生物的杀菌机制尚不完全明确[8]。因此,深入研究PAW的杀菌机制、优化其生产工艺以及探索其在不同领域的应用潜力,对于推动这一新兴技术的发展具有重要意义。本文旨在综述PAW的杀菌作用及机制研究进展,探讨其在医学领域的应用前景,为PAW在杀菌方面的进一步研究和应用提供参考。

2. PAW的杀菌特性

2.1. PAW的广谱杀菌性

研究表明,PAW能够有效灭活多种微生物,包括细菌、真菌、病毒等,展现出巨大的应用潜力。

2.1.1. PAW对细菌的杀菌效果

PAW对革兰氏阳性菌和革兰氏阴性菌均具有显著的杀灭效果,且对耐药菌株也表现出良好的杀菌活性。例如,Droste等人(2024)的研究证明PAW在生理盐水和自来水中均能显著杀灭金黄色葡萄球菌和大肠杆菌,接触30分钟后存活率分别降低约4.9log和5.9log [9]。同样的,Bălan等人(2018)用PAW处理附有大肠埃希菌、肺炎克雷伯菌、鲍曼不动杆菌和铜绿假单胞菌的十二指肠镜30分钟,所有细菌均显著减少[10]。PAW还可以通过破坏细胞壁和菌毛对淋病奈瑟菌产生显著的抗菌作用[11]。除此之外,PAW对MRSA的杀灭率可达>99.9% (减少3log CFU/mL),对比传统消毒剂(如次氯酸钠),PAW在相同时间内对MRSA的灭活效率提高2~3倍[12]

2.1.2. PAW对真菌的杀菌效果

PAW对真菌也展现出强大的抑制能力。例如,PAW能够通过影响麦角甾醇生物合成来抑制白色念珠菌的生长,并显著降低其生物膜形成能力和磷脂酶、蛋白酶活性[13]。Yao等人(2023)的实验表明PAW能有效抑制黄曲霉毒素B1的生物合成,经5天培养后毒素含量从120 ppm降至14 ppm,降幅达88.3% [14]。Lee等人(2021)进一步研究发现降低硝酸盐浓度可以增强PAW对假长隐球菌的抗真菌效果[15]。研究表明,PAW可有效杀灭草莓、花生等新鲜农产品表面的真菌并抑制毒素生成;同时PAW能显著抑制白色念珠菌生物膜形成并降低其毒力因子表达,展现出在治疗浅表真菌感染方面的潜在应用价值。

2.1.3. PAW对病毒的杀菌效果

PAW对病毒的杀菌效果也得到了广泛研究。Guo等人(2021)发现PAW能够有效灭活SARS-CoV-2的S蛋白,通过破坏S蛋白的受体结合域(RBD)来抑制病毒与宿主细胞的结合[16]。Kaushik等人(2023)的研究证明,富含一氧化氮的PAW能够有效抑制HCoV-229E的感染,并上调宿主细胞的抗病毒基因表达,增强了宿主细胞的抗病毒能力[17]

2.2. PAW的高效杀菌性

2.2.1. 快速杀灭特性

PAW可在与微生物接触后迅速产生显著杀菌效果,例如,在一项研究中,金黄色葡萄球菌和铜绿假单胞菌经过PAW处理150秒后杀菌率分别达90.00%和98.99% [18];PAW对人腺病毒(human adenovirus, hAV)也表现出可快速的灭活效果,PAW处理后的hAV在短时间内(240秒)即可实现超过3log的病毒灭活效果[19]。这种快速作用源于其产生活性物质能瞬时破坏微生物膜系统。

2.2.2. 低浓度有效性

Lee等人(2022)的研究中,5倍稀释的PAW处理SARS-CoV-2病毒10分钟即可实现4.56log TCID50/mL滴度下降(灭活率99.99%),且无细胞毒性,而半浓度的PAW对沙门氏菌、蜡状芽孢杆菌及铜绿假单胞菌的灭活效率接近3log CFU/mL。稀释后的PAW在维持显著抗微生物活性的同时,降低了使用成本与生态风险,为多场景病原体防控提供了可持续解决方案[20]

3. PAW杀菌效果的影响因素

3.1. PAW的理化性质

PAW中的活性氧氮物种(reactive oxygen and nitrogen species, RONS)是杀菌的核心成分,其浓度和种类直接决定杀菌强度。例如,空气放电产生的PAW因含更高浓度的H2O2和·OH,杀菌效率显著优于氮气放电[21] [22]

PAW的杀菌效果与其pH值密切相关。研究表明,酸性条件下的PAW杀菌效果显著增强。Oehmigen等(2010)研究发现,PAW在酸性条件下(pH值约为3)对金黄色葡萄球菌的杀菌效果显著增强[23]。同样,Bai等(2020)也指出,随着PAW pH值的降低,其杀灭蜡样芽孢杆菌孢子的效果显著提高[24]。低pH值的PAW由于含有较高浓度的H+离子,能够破坏细菌细胞壁的结构和功能,增强ROS和RNS渗透性,从而增强杀菌效果[25] [26]

3.2. 等离子体处理参数

等离子体处理参数对PAW的杀菌效果有显著影响,处理时间、功率、温度和接触方式是影响等离子体输入能量的关键因素。Zhao等人(2020)发现延长处理时间和暴露时间会提高PAW的杀菌效率;Pemen等人(2017)研究发现,在90 W功率下处理20分钟菌落数量只能减少0.8log CFU/mL,而在120 W和150 W功率下处理10分钟则能达到2.8至4.0 logCFU/mL的杀菌效果[27]

Shen等人(2016)进一步研究了PAW在不同温度下储存时的杀菌稳定性,结果表明,储存于−80℃的PAW在30天内对S. aureus的杀菌效果最佳,可实现3~4个数量级的细菌减少,常温储存则活性物质快速衰减,这表明PAW在低温条件下能够较好地保持其抗菌活性[28]。此外,Hadinoto等人证明雾化喷洒PAW处理大肠杆菌和沙门氏菌的效率显著高于浸泡处理,雾化喷洒通过生成微米级液滴,大幅提升PAW中活性物质与菌体的接触面积,使活性成分渗透效率提高40%以上,从而加速微生物氧化损伤[29]

3.3. 微生物特性

微生物的特性也会影响PAW的杀菌效果。一般来说,革兰氏阴性菌比革兰氏阳性菌更容易被PAW杀灭。在Zhao等人(2020)的研究中,高敏感的3株革兰氏阴性菌减少5个对数所需暴露时间小于0.5小时,而低敏感性菌种(金黄色葡萄球菌)则需要超过5小时[30]。这种差异源于革兰氏阳性菌的细胞壁较厚(20至80 nm),而革兰氏阴性菌的细胞壁较薄(10至15 nm),导致后者更容易被PAW中的ROS和RNS穿透,增加细胞膜通透性,导致细胞内容物泄漏,最终导致细胞死亡。

微生物的初始浓度对PAW的杀菌效率也有显著影响,初始浓度越高,PAW的灭活效率越低。Kamgang-Youbi等人(2008)的研究中,以Hafnia alvei为模型菌株,发现当微生物初始浓度从2 × 104 CFU/ml增加到8 × 106 CFU/ml时,最大灭活速率从0.89 min⁻1降低到0.61 min⁻1 [31]。Zheng等人(2017)的研究也表明,初始浓度为108 CFU/ml的金黄色葡萄球菌,PAW处理的D值(达到90%灭活所需的能量)为182 J/L;而在106 CFU/ml的初始浓度下,D值降低至83 J/L [32]。这可能是由于当存在较高的微生物负荷时,微生物倾向于彼此聚集,这种聚集形成了物理屏障,减少了活性物质与内部细菌的直接接触,此外,高浓度的微生物会吸收更多的紫外线,减少其穿透能力,从而降低PAW的杀菌效果。

3.4. 水的背景环境

水中有机物的存在会显著降低等离子体处理的灭活效果,例如,Ryu等人研究发现,水、盐水和酵母提取物-蛋白胨-葡萄糖(YPD)环境对非热等离子体的杀菌效果存在显著差异。水中酵母细胞的活性受到最严重的损害,而在盐水和YPD中,细胞的损害程度较轻[33]。无机溶液如生理盐水和磷酸盐缓冲液(PBS)对PAW的杀菌效果有不同的影响。Traylor等人(2011)对比了PAW和等离子体活化磷酸盐缓冲液(PAPBS)的杀菌效果,结果表明,PAW的抗菌效果依赖于其酸性和多种活性成分的协同作用,而PAPBS由于其接近中性的pH值,抗菌效果较弱[34]

4. PAW的杀菌机制研究

PAW的杀菌机制是一个复杂的过程,涉及多种活性物质和生物大分子之间的相互作用。目前,普遍认为PAW的杀菌机制主要与以下几个方面有关:

4.1. 物理效应

等离子体处理过程中产生的物理因素对细菌产生损伤,主要包括紫外线(UV)辐射和冲击波。等离子体放电过程中产生的高能紫外线能够有效破坏细菌的DNA,导致其无法复制和生存。例如,Lukes等人研究表明,脉冲电晕放电在水中产生的紫外线辐射(波长190~280 nm)对细菌的灭活贡献约为30% [35]。此外,紫外线还可通过光解作用生成具有强氧化性的·OH,进一步增强杀菌效果[36]。同时,冲击波能够促进等离子体活化水中活性物质的生成,如H2O2和O3,这些物质具有强氧化性,能够进一步增强杀菌效果[37]

4.2. 活性氧氮物种(RONS)的协同氧化损伤

基于低温等离子体独特的活性粒子生成能力,通过气液界面定向能量传递,产生的活性粒子可高效转移至液相体系,最终形成富含活性氧氮物种(RONS)的PAW。活性氧(reactive oxygen species, ROS)主要包括过氧化氢(H2O2)、过羟基自由基(·OH)及单线态氧(1O2),而活性氮(reactive nitrogen species, RNS)则以一氧化氮(NO)、过氧亚硝酸盐(ONOO⁻)、亚硝酸盐( NO 2 )和硝酸盐( NO 3 )等为代表。研究证明,RONS在PAW杀菌过程中发挥重要作用,主要包括以下两个方面:

4.2.1. 细胞膜结构与功能的破坏

ROS通过多途径介导细胞毒性,例如·OH和1O2通过引发膜脂质过氧化反应,破坏细胞膜结构完整性,进而提升RONS向胞内的渗透效率;同时RONS可以通过攻击蛋白质巯基、氨基等功能基团,致蛋白质构象改变与功能失活,扰乱细胞代谢进程[38]

4.2.2. DNA等遗传物质的损伤

ROS(如·OH)直接攻击DNA双螺旋,导致磷酸二酯键断裂或引发碱基氧化等损伤,阻碍DNA复制与转录。RNS(如ONOO⁻)可诱导DNA链交联或碱基硝化,进一步加剧遗传物质代谢紊乱,干扰遗传信息传递[39]

4.3. 酸性环境协同机制

等离子体处理过程中,水中的pH值显著降低,形成酸性环境,这种酸性环境有助于增强PAW的杀菌效果。研究表明,酸性环境可以促进RONS的生成和稳定[40]。例如,PAW中常见的过氧化氢(H2O2)、硝酸盐( NO 3 )和亚硝酸盐( NO 2 )在酸性条件下更稳定,并且其抗菌效果更强[41]。此外,酸性环境还可以破坏细菌细胞壁的完整性,使得RONS更容易渗透并破坏细菌的内部结构[42]。因此,尽管酸性环境本身对细菌的杀灭作用有限,但它可以显著增强PAW中RONS的抗菌活性,从而提高整体的杀菌效果[43]

5. PAW在医学方面的挑战与展望

等离子体活化水在临床应用前景广阔,在医疗杀菌领域展现出多场景应用价值。在伤口处理方面,PAW可有效清除耐药菌并加速慢性伤口愈合[44],例如对糖尿病溃疡中的铜绿假单胞菌实现15分钟完全灭活,同时减轻创面的细菌毒素炎症反应[45]。在牙科领域,PAW可替代传统消毒剂用于根管治疗,不损伤牙本质的同时,抑制牙周致病菌的黏附行为[46]。针对医疗器械灭菌需求,实现内镜等热敏器械的快速无残留消毒[47]。此外,PAW还可作为无刺激性皮肤消毒剂,并与抗生素协同增强杀菌效果。

尽管PAW具有高效杀菌、无毒环保等优势,其活性成分的不稳定性导致需现制现用,且设备差异造成的质量标准化问题仍需解决。未来研究需聚焦设备优化与临床验证,制定标准化的应用指南,并通过更多的实验和临床试验验证PAW在临床应用中的安全性和有效性[48]。在机制研究方面,需进一步阐明短寿命与长寿命RONS的协同作用,并通过转录组与代谢组学分析,阐明细菌对PAW的应激响应通路及逃逸策略;同时探索PAW与抗生素、噬菌体疗法、纳米材料复合、物理疗法等的协同作用,构建多重耐药菌清除网络;在跨学科融合方面,可以通过开发等离子体功能化抗菌材料与人工智能多组学预测模型等,实现精准治疗与风险防控,并同步开展PAW长期毒性评估保障临床应用安全。

6. 结论

等离子活化水作为一种新型的杀菌技术,凭借其高效、环保和成本低廉的特点,在医疗消毒、食品加工和环境治理等领域具有广阔的应用前景。本文综述了PAW的杀菌作用及影响因素,还讨论了其杀菌机制,包括氧化应激,酸性环境以及紫外线辐射、冲击波等物理效应。同时,本文还介绍了PAW杀菌在医学领域中的潜在应用与挑战。未来的研究将进一步探索其作用机制,优化制备工艺,并推动其在实际应用中的广泛普及。

参考文献

[1] Esposito, S., Leone, S. and Noviello, S. (2005) Management of Severe Bacterial Infections. Expert Review of Anti-infective Therapy, 3, 593-600.
https://doi.org/10.1586/14787210.3.4.593
[2] Eickelberg, G., Sanchez-Pinto, L.N., Kline, A.S. and Luo, Y. (2023) Transportability of Bacterial Infection Prediction Models for Critically Ill Patients. Journal of the American Medical Informatics Association, 31, 98-108.
https://doi.org/10.1093/jamia/ocad174
[3] Ritchie, D.J., Alexander, B.T. and Finnegan, P.M. (2009) New Antimicrobial Agents for Use in the Intensive Care Unit. Infectious Disease Clinics of North America, 23, 665-681.
https://doi.org/10.1016/j.idc.2009.04.010
[4] Dancer, S.J. (2014) Controlling Hospital-Acquired Infection: Focus on the Role of the Environment and New Technologies for Decontamination. Clinical Microbiology Reviews, 27, 665-690.
https://doi.org/10.1128/cmr.00020-14
[5] Zhang, G., Li, W., Chen, S., Zhou, W. and Chen, J. (2020) Problems of Conventional Disinfection and New Sterilization Methods for Antibiotic Resistance Control. Chemosphere, 254, Article ID: 126831.
https://doi.org/10.1016/j.chemosphere.2020.126831
[6] Kim, S. and Kim, C. (2021) Applications of Plasma-Activated Liquid in the Medical Field. Biomedicines, 9, Article No. 1700.
https://doi.org/10.3390/biomedicines9111700
[7] Oliveira, M., Fernández-Gómez, P., Álvarez-Ordóñez, A., Prieto, M. and López, M. (2022) Plasma-Activated Water: A Cutting-Edge Technology Driving Innovation in the Food Industry. Food Research International, 156, Article ID: 111368.
https://doi.org/10.1016/j.foodres.2022.111368
[8] Herianto, S., Hou, C., Lin, C. and Chen, H. (2020) Nonthermal Plasma‐Activated Water: A Comprehensive Review of This New Tool for Enhanced Food Safety and Quality. Comprehensive Reviews in Food Science and Food Safety, 20, 583-626.
https://doi.org/10.1111/1541-4337.12667
[9] Droste, N.C., Hummert, M., Leenders, P., Mellmann, A., Becker, K. and Kuczius, T. (2024) Plasma-Activated Tap Water with Oxidative Potential Has an Inactivating Effect on Microbiological Contaminants in Aqueous Suspensions. Pathogens, 13, Article No. 535.
https://doi.org/10.3390/pathogens13070535
[10] Bălan, G.G., Roșca, I., Ursu, E., Doroftei, F., Bostănaru, A., Hnatiuc, E., et al. (2018) Plasma-Activated Water: A New and Effective Alternative for Duodenoscope Reprocessing. Infection and Drug Resistance, 11, 727-733.
https://doi.org/10.2147/idr.s159243
[11] Liu, J., Yang, C., Cheng, C., Zhang, C., Zhao, J. and Fu, C. (2021) In Vitro Antimicrobial Effect and Mechanism of Action of Plasma-Activated Liquid on Planktonic Neisseria gonorrhoeae. Bioengineered, 12, 4605-4619.
https://doi.org/10.1080/21655979.2021.1955548
[12] Rotondo, P.R., Aceto, D., Ambrico, M., Stellacci, A.M., Faretra, F., De Miccolis Angelini, R.M., et al. (2025) Physicochemical Properties of Plasma-Activated Water and Associated Antimicrobial Activity against Fungi and Bacteria. Scientific Reports, 15, Article No. 5536.
https://doi.org/10.1038/s41598-025-88369-7
[13] Rahimi-Verki, N., Shapoorzadeh, A., Razzaghi-Abyaneh, M., Atyabi, S., Shams-Ghahfarokhi, M., Jahanshiri, Z., et al. (2016) Cold Atmospheric Plasma Inhibits the Growth of Candida Albicans by Affecting Ergosterol Biosynthesis and Suppresses the Fungal Virulence Factors in Vitro. Photodiagnosis and Photodynamic Therapy, 13, 66-72.
https://doi.org/10.1016/j.pdpdt.2015.12.007
[14] Yao, Q., Xu, H., Zhuang, J., Cui, D., Ma, R. and Jiao, Z. (2023) Inhibition of Fungal Growth and Aflatoxin B1 Synthesis in Aspergillus flavus by Plasma-Activated Water. Foods, 12, Article No. 2490.
https://doi.org/10.3390/foods12132490
[15] Lee, G.J., Lamichhane, P., Ahn, S.J., Kim, S.H., Yewale, M.A., Choong, C.E., et al. (2021) Nitrate Capture Investigation in Plasma-Activated Water and Its Antifungal Effect on Cryptococcus pseudolongus Cells. International Journal of Molecular Sciences, 22, Article No. 12773.
https://doi.org/10.3390/ijms222312773
[16] Guo, L., Yao, Z., Yang, L., Zhang, H., Qi, Y., Gou, L., et al. (2021) Plasma-Activated Water: An Alternative Disinfectant for S Protein Inactivation to Prevent SARS-CoV-2 Infection. Chemical Engineering Journal, 421, Article ID: 127742.
https://doi.org/10.1016/j.cej.2020.127742
[17] Kaushik, N.K., Bhartiya, P., Kaushik, N., Shin, Y., Nguyen, L.N., Park, J.S., et al. (2023) Nitric-Oxide Enriched Plasma-Activated Water Inactivates 229E Coronavirus and Alters Antiviral Response Genes in Human Lung Host Cells. Bioactive Materials, 19, 569-580.
https://doi.org/10.1016/j.bioactmat.2022.05.005
[18] 刘雅夫, 符腾飞, 刘宸成, 等. 低温等离子体对金黄色葡萄球菌和铜绿假单胞菌的杀菌效果及动力学特性[J]. 现代食品科技, 2021, 37(12): 127-135.
[19] Weiss, M., Daeschlein, G., Kramer, A., Burchardt, M., Brucker, S., Wallwiener, D., et al. (2017) Virucide Properties of Cold Atmospheric Plasma for Future Clinical Applications. Journal of Medical Virology, 89, 952-959.
https://doi.org/10.1002/jmv.24701
[20] Lee, H.R., Lee, Y.S., You, Y.S., Huh, J.Y., Kim, K., Hong, Y.C., et al. (2022) Antimicrobial Effects of Microwave Plasma-Activated Water with Skin Protective Effect for Novel Disinfectants in Pandemic Era. Scientific Reports, 12, Article No. 5968.
https://doi.org/10.1038/s41598-022-10009-1
[21] Zhao, Y.M., Ojha, S., Burgess, C.M., et al. (2020) Inactivation Efficacy of Plasma-Activated Water: Influence of Plasma Treatment Time, Exposure Time and Bacterial Species. International Journal of Food Science & Technology, 56, 721-732.
https://doi.org/10.1111/ijfs.14708
[22] Wang, X.-Y., Qi, Z.-H., Song, Y., et al. (2016) Bacteria Sterilization Application by Using Plasma Activated Physiological Saline. Acta Physica Sinica, 65, Article 123301.
https://doi.org/10.7498/aps.65.123301
[23] Oehmigen, K., Hähnel, M., Brandenburg, R., Wilke, C., Weltmann, K. and von Woedtke, T. (2010) The Role of Acidification for Antimicrobial Activity of Atmospheric Pressure Plasma in Liquids. Plasma Processes and Polymers, 7, 250-257.
https://doi.org/10.1002/ppap.200900077
[24] Bai, Y., Idris Muhammad, A., Hu, Y., Koseki, S., Liao, X., Chen, S., et al. (2020) Inactivation Kinetics of Bacillus cereus Spores by Plasma Activated Water (PAW). Food Research International, 131, Article ID: 109041.
https://doi.org/10.1016/j.foodres.2020.109041
[25] Zhang, Q., Ma, R., Tian, Y., Su, B., Wang, K., Yu, S., et al. (2016) Sterilization Efficiency of a Novel Electrochemical Disinfectant against Staphylococcus aureus. Environmental Science & Technology, 50, 3184-3192.
https://doi.org/10.1021/acs.est.5b05108
[26] Tsoukou, E., Bourke, P. and Boehm, D. (2018) Understanding the Differences between Antimicrobial and Cytotoxic Properties of Plasma Activated Liquids. Plasma Medicine, 8, 299-320.
https://doi.org/10.1615/PlasmaMed.2018028261
[27] Zhao, Y., Patange, A., Sun, D. and Tiwari, B. (2020) Plasma‐Activated Water: Physicochemical Properties, Microbial Inactivation Mechanisms, Factors Influencing Antimicrobial Effectiveness, and Applications in the Food Industry. Comprehensive Reviews in Food Science and Food Safety, 19, 3951-3979.
https://doi.org/10.1111/1541-4337.12644
[28] Shen, J., Tian, Y., Li, Y., Ma, R., Zhang, Q., Zhang, J., et al. (2016) Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water Stored at Different Temperatures. Scientific Reports, 6, Article No. 28505.
https://doi.org/10.1038/srep28505
[29] Hadinoto, K., Yang, H., Zhang, T., Cullen, P.J., Prescott, S. and Trujillo, F.J. (2023) The Antimicrobial Effects of Mist Spraying and Immersion on Beef Samples with Plasma-Activated Water. Meat Science, 200, Article ID: 109165.
https://doi.org/10.1016/j.meatsci.2023.109165
[30] Zhao, Y., Ojha, S., Burgess, C.M., Sun, D. and Tiwari, B.K. (2020) Inactivation Efficacy and Mechanisms of Plasma Activated Water on Bacteria in Planktonic State. Journal of Applied Microbiology, 129, 1248-1260.
https://doi.org/10.1111/jam.14677
[31] Kamgang-Youbi, G., Herry, J., Brisset, J., Bellon-Fontaine, M., Doubla, A. and Naïtali, M. (2008) Impact on Disinfection Efficiency of Cell Load and of Planktonic/Adherent/Detached State: Case of Hafnia Alvei Inactivation by Plasma Activated Water. Applied Microbiology and Biotechnology, 81, 449-457.
https://doi.org/10.1007/s00253-008-1641-9
[32] Zheng, J. (2017) Inactivation of Staphylococcus aureus in Water by Pulsed Spark Discharge. Scientific Reports, 7, Article No. 10311.
https://doi.org/10.1038/s41598-017-10784-2
[33] Ryu, Y., Kim, Y., Lee, J., Shim, G., Uhm, H., Park, G., et al. (2013) Effects of Background Fluid on the Efficiency of Inactivating Yeast with Non-Thermal Atmospheric Pressure Plasma. PLOS ONE, 8, e66231.
https://doi.org/10.1371/journal.pone.0066231
[34] Traylor, M.J., Pavlovich, M.J., Karim, S., Hait, P., Sakiyama, Y., Clark, D.S., et al. (2011) Long-term Antibacterial Efficacy of Air Plasma-Activated Water. Journal of Physics D: Applied Physics, 44, Article ID: 472001.
https://doi.org/10.1088/0022-3727/44/47/472001
[35] Lukes, P., Clupek, M., Babicky, V. and Sunka, P. (2008) Ultraviolet Radiation from the Pulsed Corona Discharge in Water. Plasma Sources Science and Technology, 17, Article ID: 024012.
https://doi.org/10.1088/0963-0252/17/2/024012
[36] Špetlíková, E. (2010) Role of UV Radiation, Solution Conductivity and Pulse Repetition Frequency in the Bactericidal Effects during Pulse Corona Discharge in Water.
[37] Kurita, H., Haruta, N., Uchihashi, Y., Seto, T. and Takashima, K. (2020) Strand Breaks and Chemical Modification of Intracellular DNA Induced by Cold Atmospheric Pressure Plasma Irradiation. PLOS ONE, 15, e0232724.
https://doi.org/10.1371/journal.pone.0232724
[38] Wu, H., Sun, P., Feng, H., Zhou, H., Wang, R., Liang, Y., et al. (2012) Reactive Oxygen Species in a Non‐Thermal Plasma Microjet and Water System: Generation, Conversion, and Contributions to Bacteria Inactivation—An Analysis by Electron Spin Resonance Spectroscopy. Plasma Processes and Polymers, 9, 417-424.
https://doi.org/10.1002/ppap.201100065
[39] Wang, Z., Wang, X., Xu, S., Zhou, R., Zhang, M., Li, W., et al. (2024) Off-Site Production of Plasma-Activated Water for Efficient Disinfection: The Crucial Role of High Valence NO(x) and New Chemical Pathways. Water Research, 267, Article ID: 122541.
https://doi.org/10.1016/j.watres.2024.122541
[40] Sampaio, A.d.G., Chiappim, W., Milhan, N.V.M., Botan Neto, B., Pessoa, R. and Koga-Ito, C.Y. (2022) Effect of the Ph on the Antibacterial Potential and Cytotoxicity of Different Plasma-Activated Liquids. International Journal of Molecular Sciences, 23, Article No. 13893.
https://doi.org/10.3390/ijms232213893
[41] Lu, P., Boehm, D., Bourke, P. and Cullen, P.J. (2017) Achieving Reactive Species Specificity within Plasma‐Activated Water through Selective Generation Using Air Spark and Glow Discharges. Plasma Processes and Polymers, 14, Article ID: 1600207.
https://doi.org/10.1002/ppap.201600207
[42] Patange, A., Lu, P., Boehm, D., Cullen, P.J. and Bourke, P. (2019) Efficacy of Cold Plasma Functionalised Water for Improving Microbiological Safety of Fresh Produce and Wash Water Recycling. Food Microbiology, 84, Article ID: 103226.
https://doi.org/10.1016/j.fm.2019.05.010
[43] Nicol, M.J., Brubaker, T.R., Honish, B.J., Simmons, A.N., Kazemi, A., Geissel, M.A., et al. (2020) Antibacterial Effects of Low-Temperature Plasma Generated by Atmospheric-Pressure Plasma Jet Are Mediated by Reactive Oxygen Species. Scientific Reports, 10, Article No. 3066.
https://doi.org/10.1038/s41598-020-59652-6
[44] Guo, L., Xu, R., Zhao, Y., Liu, D., Liu, Z., Wang, X., et al. (2018) Gas Plasma Pre-Treatment Increases Antibiotic Sensitivity and Persister Eradication in Methicillin-Resistant Staphylococcus aureus. Frontiers in Microbiology, 9, Article No. 537.
https://doi.org/10.3389/fmicb.2018.00537
[45] Yang, L., Niyazi, G., Qi, Y., Yao, Z., Huang, L., Wang, Z., et al. (2021) Plasma-Activated Saline Promotes Antibiotic Treatment of Systemic Methicillin-Resistant Staphylococcus aureus Infection. Antibiotics, 10, Article No. 1018.
https://doi.org/10.3390/antibiotics10081018
[46] Nguyen, L., Lu, P., Boehm, D., Bourke, P., Gilmore, B.F., Hickok, N.J., et al. (2018) Cold Atmospheric Plasma Is a Viable Solution for Treating Orthopedic Infection: A Review. Biological Chemistry, 400, 77-86.
https://doi.org/10.1515/hsz-2018-0235
[47] Daeschlein, G., Napp, M., Lutze, S., Arnold, A., von Podewils, S., Guembel, D., et al. (2015) Skin and Wound Decontamination of Multidrug‐resistant Bacteria by Cold Atmospheric Plasma Coagulation. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 13, 143-149.
https://doi.org/10.1111/ddg.12559
[48] Braný, D., Dvorská, D., Halašová, E. and Škovierová, H. (2020) Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. International Journal of Molecular Sciences, 21, Article No. 2932.
https://doi.org/10.3390/ijms21082932