[1]
|
Sekeres, M.A. and Taylor, J. (2022) Diagnosis and Treatment of Myelodysplastic Syndromes. JAMA, 328, 872-880. https://doi.org/10.1001/jama.2022.14578
|
[2]
|
Ochi, T., Fujiwara, T., Ono, K., Suzuki, C., Nikaido, M., Inoue, D., et al. (2022) Exploring the Mechanistic Link between SF3B1 Mutation and Ring Sideroblast Formation in Myelodysplastic Syndrome. Scientific Reports, 12, Article No. 14562. https://doi.org/10.1038/s41598-022-18921-2
|
[3]
|
Patnaik, M.M. and Tefferi, A. (2021) Myelodysplastic Syndromes with Ring Sideroblasts (MDS‐RS) and MDS/Myeloproliferative Neoplasm with RS and Thrombocytosis (MDS/MPN‐RS‐T)—“2021 Update on Diagnosis, Risk‐Stratification, and Management”. American Journal of Hematology, 96, 379-394. https://doi.org/10.1002/ajh.26090
|
[4]
|
Pellagatti, A. and Boultwood, J. (2021) SF3B1 Mutant Myelodysplastic Syndrome: Recent Advances. Advances in Biological Regulation, 79, Article ID: 100776. https://doi.org/10.1016/j.jbior.2020.100776
|
[5]
|
Han, A. (2001) Heme-Regulated EIF2α Kinase (HRI) Is Required for Translational Regulation and Survival of Erythroid Precursors in Iron Deficiency. The EMBO Journal, 20, 6909-6918. https://doi.org/10.1093/emboj/20.23.6909
|
[6]
|
Adema, V., Ma, F., Kanagal-Shamanna, R., Thongon, N., Montalban-Bravo, G., Yang, H., et al. (2022) Targeting the EIF2AK1 Signaling Pathway Rescues Red Blood Cell Production in SF3B1-Mutant Myelodysplastic Syndromes with Ringed Sideroblasts. Blood Cancer Discovery, 3, 554-567. https://doi.org/10.1158/2643-3230.bcd-21-0220
|
[7]
|
Kouroukli, O., Symeonidis, A., Foukas, P., Maragkou, M. and Kourea, E.P. (2022) Bone Marrow Immune Microenvironment in Myelodysplastic Syndromes. Cancers, 14, Article 5656. https://doi.org/10.3390/cancers14225656
|
[8]
|
Petzer, V., Theurl, I., Weiss, G. and Wolf, D. (2021) Environmental Aspects in Myelodysplastic Syndrome. International Journal of Molecular Sciences, 22, Article 5202. https://doi.org/10.3390/ijms22105202
|
[9]
|
Balaian, E., Wobus, M., Bornhäuser, M., Chavakis, T. and Sockel, K. (2021) Myelodysplastic Syndromes and Metabolism. International Journal of Molecular Sciences, 22, Article 11250. https://doi.org/10.3390/ijms222011250
|
[10]
|
Zhang, X., Yang, X., Ma, L., Zhang, Y. and Wei, J. (2023) Immune Dysregulation and Potential Targeted Therapy in Myelodysplastic Syndrome. Therapeutic Advances in Hematology, 14. https://doi.org/10.1177/20406207231183330
|
[11]
|
Khalilian, P., Eskandari, N., Sharifi, M.J., Soltani, M. and Nematollahi, P. (2024) Toll-Like Receptor 4, 2, and Interleukin 1 Receptor Associated Kinase4: Possible Diagnostic Biomarkers in Myelodysplastic Syndrome Patients. Advanced Biomedical Research, 13. https://doi.org/10.4103/abr.abr_67_23
|
[12]
|
Scott, J.S., Degorce, S.L., Anjum, R., Culshaw, J., Davies, R.D.M., Davies, N.L., et al. (2017) Discovery and Optimization of Pyrrolopyrimidine Inhibitors of Interleukin-1 Receptor Associated Kinase 4 (IRAK4) for the Treatment of Mutant MYD88L265P Diffuse Large B-Cell Lymphoma. Journal of Medicinal Chemistry, 60, 10071-10091. https://doi.org/10.1021/acs.jmedchem.7b01290
|
[13]
|
Pellagatti, A. and Boultwood, J. (2023) Splicing Factor Mutations in the Myelodysplastic Syndromes: Role of Key Aberrantly Spliced Genes in Disease Pathophysiology and Treatment. Advances in Biological Regulation, 87, Article ID: 100920. https://doi.org/10.1016/j.jbior.2022.100920
|
[14]
|
Choudhary, G.S., Pellagatti, A., Agianian, B., Smith, M.A., Bhagat, T.D., Gordon-Mitchell, S., et al. (2022) Activation of Targetable Inflammatory Immune Signaling Is Seen in Myelodysplastic Syndromes with SF3B1 Mutations. eLife, 11, e78136. https://doi.org/10.7554/elife.78136
|
[15]
|
Winter, S., Schneider, M., Oelschlaegel, U., Maggioni, G., Riva, E., Raddi, M.G., et al. (2024) Mutations in the Splicing Factor SF3B1 Are Linked to Frequent Emergence of HLA-drlow/neg Monocytes in Lower-Risk Myelodysplastic Neoplasms. Leukemia, 38, 1427-1431. https://doi.org/10.1038/s41375-024-02249-z
|
[16]
|
Bennett, J. and Starczynowski, D.T. (2021) IRAK1 and IRAK4 as Emerging Therapeutic Targets in Hematologic Malignancies. Current Opinion in Hematology, 29, 8-19. https://doi.org/10.1097/moh.0000000000000693
|
[17]
|
Deguine, J. and Barton, G.M. (2014) MyD88: A Central Player in Innate Immune Signaling. F1000Prime Reports, 6, Article 97. https://doi.org/10.12703/p6-97
|
[18]
|
Bennett, J., Ishikawa, C., Agarwal, P., Yeung, J., Sampson, A., Uible, E., et al. (2023) Paralog-Specific Signaling by IRAK1/4 Maintains MyD88-Independent Functions in MDS/AML. Blood, 142, 989-1007. https://doi.org/10.1182/blood.2022018718
|
[19]
|
Vollmer, S., Strickson, S., Zhang, T., Gray, N., Lee, K.L., Rao, V.R., et al. (2017) The Mechanism of Activation of IRAK1 and IRAK4 by Interleukin-1 and Toll-Like Receptor Agonists. Biochemical Journal, 474, 2027-2038. https://doi.org/10.1042/bcj20170097
|
[20]
|
Yoon, S., Hong, H., Lim, H., Choi, J.H., Choi, Y.P., Seo, S.W., et al. (2023) A Novel IRAK4/PIM1 Inhibitor Ameliorates Rheumatoid Arthritis and Lymphoid Malignancy by Blocking the TLR/MYD88-Mediated NF-κB Pathway. Acta Pharmaceutica Sinica B, 13, 1093-1109. https://doi.org/10.1016/j.apsb.2022.12.001
|
[21]
|
Paracatu, L.C. and Schuettpelz, L.G. (2020) Contribution of Aberrant Toll Like Receptor Signaling to the Pathogenesis of Myelodysplastic Syndromes. Frontiers in Immunology, 11, Article 1236. https://doi.org/10.3389/fimmu.2020.01236
|
[22]
|
Dolatshad, H., Pellagatti, A., Fernandez-Mercado, M., Yip, B.H., Malcovati, L., Attwood, M., et al. (2015) Erratum: Disruption of SF3B1 Results in Deregulated Expression and Splicing of Key Genes and Pathways in Myelodysplastic Syndrome Hematopoietic Stem and Progenitor Cells. Leukemia, 29, 1798-1798. https://doi.org/10.1038/leu.2015.178
|
[23]
|
Owen, K.L., Brockwell, N.K. and Parker, B.S. (2019) JAK-STAT Signaling: A Double-Edged Sword of Immune Regulation and Cancer Progression. Cancers, 11, Article 2002. https://doi.org/10.3390/cancers11122002
|
[24]
|
Xue, C., Yao, Q., Gu, X., Shi, Q., Yuan, X., Chu, Q., et al. (2023) Evolving Cognition of the JAK-STAT Signaling Pathway: Autoimmune Disorders and Cancer. Signal Transduction and Targeted Therapy, 8, Article No. 204. https://doi.org/10.1038/s41392-023-01468-7
|
[25]
|
Munoz, J., Dhillon, N., Janku, F., Watowich, S.S. and Hong, D.S. (2014) STAT3 Inhibitors: Finding a Home in Lymphoma and Leukemia. The Oncologist, 19, 536-544. https://doi.org/10.1634/theoncologist.2013-0407
|
[26]
|
王欢, 尼罗帕尔·吐尔逊, 赵芳, 等. JAK-STAT信号通路与骨髓增生异常综合征Th17/Treg细胞免疫失调相关性的研究[J]. 现代肿瘤医学, 2022, 30(10): 1826-1831.
|
[27]
|
薛婷婷, 陶雨晨, 陆嘉惠. 雄黄通过STAT3/GLUT1信号通路促进骨髓增生异常综合征细胞凋亡[J]. 上海中医药杂志, 2023, 57(12): 88-95.
|
[28]
|
Azrakhsh, N.A., Mensah-glanowska, P., Sand, K. and Kittang, A.O. (2019) Targeting Immune Signaling Pathways in Clonal Hematopoiesis. Current Medicinal Chemistry, 26, 5262-5277. https://doi.org/10.2174/0929867326666190325100636
|
[29]
|
Di Vito, A., Ravegnini, G., Gorini, F., Aasen, T., Serrano, C., Benuzzi, E., et al. (2023) The Multifaceted Landscape behind Imatinib Resistance in Gastrointestinal Stromal Tumors (GISTs): A Lesson from Ripretinib. Pharmacology & Therapeutics, 248, Article ID: 108475. https://doi.org/10.1016/j.pharmthera.2023.108475
|
[30]
|
Flynn, J.P. and Gerriets, V. (2024) Imatinib. StatPearls.
|
[31]
|
Harrington, R., Harkins, P. and Conway, R. (2023) Janus Kinase Inhibitors in Rheumatoid Arthritis: An Update on the Efficacy and Safety of Tofacitinib, Baricitinib and Upadacitinib. Journal of Clinical Medicine, 12, Article 6690. https://doi.org/10.3390/jcm12206690
|
[32]
|
Goes, J.V.C., Viana, M.D.A., Sampaio, L.R., Cavalcante, C.B.A., Melo, M.M.D.L., de Oliveira, R.T.G., et al. (2024) Gene Expression Patterns of Sirtuin Family Members (SIRT1 to SIRT7): Insights into Pathogenesis and Prognostic of Myelodysplastic Neoplasm. Gene, 915, Article ID: 148428. https://doi.org/10.1016/j.gene.2024.148428
|
[33]
|
Baran, M., Miziak, P., Stepulak, A. and Cybulski, M. (2023) The Role of Sirtuin 6 in the Deacetylation of Histone Proteins as a Factor in the Progression of Neoplastic Disease. International Journal of Molecular Sciences, 25, Article 497. https://doi.org/10.3390/ijms25010497
|
[34]
|
Bursch, K.L., Goetz, C.J. and Smith, B.C. (2024) Current Trends in Sirtuin Activator and Inhibitor Development. Molecules, 29, Article 1185. https://doi.org/10.3390/molecules29051185
|
[35]
|
Qin, Y.T., et al. (2020) [Expression and Significance of Shh Signaling Pathway in Bone Marrow CD34⁺ Cells of Patients with Myelodysplastic Syndrome and Acute Myeloid Leukemia with Myelodysplasia-Related Changes]. Journal of Experimental Hematology, 28, 1637-1642.
|
[36]
|
Zhao, F., Wang, J., Yao, L., Qin, Y., Tuerxun, N., Wang, H., et al. (2021) Synergistic Inhibitory Effect of SMO Inhibitor Jervine and Its Combination with Decitabine Can Target Hedgehog Signaling Pathway to Inhibit Myelodysplastic Syndrome Cell Line. Hematology, 26, 518-528. https://doi.org/10.1080/16078454.2021.1950897
|
[37]
|
Qin, Y., Jiang, M., Tuerxung, N., Wang, H., Zhao, F., Zhen, Y., et al. (2020) Sonic Hedgehog Signaling Pathway in Myelodysplastic Syndrome: Abnormal Activation and Jervine Intervention. Gene, 754, Article ID: 144881. https://doi.org/10.1016/j.gene.2020.144881
|
[38]
|
Doheny, D., Manore, S.G., Wong, G.L. and Lo, H. (2020) Hedgehog Signaling and Truncated GLI1 in Cancer. Cells, 9, Article 2114. https://doi.org/10.3390/cells9092114
|