代谢失衡–心血管疾病的中西医协同干预研究进展——从能量代谢重编程到心血管保护
Research Advances in Integrated Traditional Chinese and Western Medicine Interventions for Metabolic Imbalance and Cardiovascular Diseases—From Energy Metabolic Reprogramming to Cardiovascular Protection
摘要: 代谢失衡与心血管疾病的密切关联已成为全球公共卫生领域的重大挑战,传统单一干预模式在应对复杂代谢紊乱机制时面临显著局限性。本综述系统阐述了代谢紊乱通过能量代谢重编程驱动心血管疾病的核心机制,重点关注脂肪酸氧化失衡、线粒体功能障碍及其引发的氧化应激等病理过程。揭示中西医协同干预的创新价值:现代医学提供精准的代谢调控靶点,而中医药则发挥多组分、多靶点的整体调节优势。通过整合人工智能与多组学技术,研究构建新型生物标志物预测模型,将深入解析中西医协同的作用网络。临床研究数据证实,中西医结合治疗可显著改善心血管事件预后,降低糖尿病转化风险。未来研究需要进一步阐明代谢调控的分子机制,建立基于多维度数据的精准防控体系,推动中西医协同治疗从经验医学向循证医学的范式转变。
Abstract: The close association between metabolic imbalance and cardiovascular diseases has emerged as a major global public health challenge, with conventional single-intervention approaches demonstrating significant limitations in addressing complex metabolic dysregulation mechanisms. This review systematically elaborates on the core mechanisms through which metabolic disorders drive cardiovascular diseases via energy metabolic reprogramming, with particular focus on pathological processes including fatty acid oxidation imbalance, mitochondrial dysfunction, and consequent oxidative stress. The study reveals the innovative value of integrated traditional Chinese and Western medicine interventions: while modern medicine provides precise metabolic regulation targets, traditional Chinese medicine exerts comprehensive regulatory advantages through multi-component, multi-target approaches. By integrating artificial intelligence and multi-omics technologies, the research has established novel biomarker prediction models, providing in-depth analysis of the synergistic networks in integrated medicine. Clinical research data confirm that combined traditional Chinese and Western medicine therapy can significantly improve cardiovascular event prognosis and reduce diabetes conversion risk. Future studies should further elucidate the molecular mechanisms of metabolic regulation, establish precision prevention and control systems based on multidimensional data, and promote the paradigm shift of integrated medicine from empirical practice to evidence-based medicine.
文章引用:黄睿臻, 李同一. 代谢失衡–心血管疾病的中西医协同干预研究进展——从能量代谢重编程到心血管保护[J]. 中医学, 2025, 14(6): 2589-2595. https://doi.org/10.12677/tcm.2025.146382

1. 引言

随着社会经济进步和生活方式转变,代谢紊乱日益凸显为公共健康的关键问题,尤其在心血管疾病的高风险人群中更为显著[1]。全球疾病、伤害和风险因素负担研究(GBD) 2021的分析显示,自2000年至2021年,与代谢相关的危险因素(高血压、高体重指数和血脂异常等)导致的全球残疾调整寿命年增加了49.4% [2]。2019年全球约有5.23亿人患有心血管疾病,心血管疾病已成为导致残疾和死亡的主要原因[3]。同年,由代谢相关的危险因素导致的心血管疾病死亡人数达到了1370万,占所有心血管疾病相关死亡人数的73.7% [4]。目前,中国正处于这些疾病高发和高负担的阶段。代谢异常涉及组分多且发病机制复杂,中国和其他国家在防控MS引发的心血管事件方面仍处于初步阶段,现有的防治策略效果有限[5]。面对日益严峻的心血管疾病和代谢紊乱的挑战,整合医学的理念受到越来越多的关注。现代药理学也证实,中医药具有多成分、多靶点和整体性的特点,在多种心血管疾病的防治中发挥着积极而重要的作用[6]。特别是将西方医学中针对能量代谢重编程的干预策略与中医(TCM)的整体观相结合,有望为代谢失衡相关心血管疾病的防治提供更全面有效的方案[7]

2. 代谢紊乱和能量代谢重编程驱动心血管疾病发生发展

代谢紊乱包括葡萄糖和脂质代谢失调、肥胖和胰岛素抵抗等多组分,通过复杂的相互关联的生物学机制,在心脑血管事件(如动脉粥样硬化、心肌梗死和卒中)的发生和发展中起着核心作用[8]。肥胖在胰岛素抵抗中起着核心作用,包括高胰岛素血症、高血压、高血脂、2型糖尿病和动脉粥样硬化性心血管疾病风险增加[9]。功能失调的脂肪组织导致胰岛素抵抗、动脉粥样硬化性血脂异常和高血压,形成恶性循环[10]。胰岛素抵抗,特别是脂肪组织中的胰岛素抵抗,导致脂肪分解增加,血液中游离脂肪酸水平升高,肝脏极低密度脂蛋白(VLDL)的生成和分泌增加,VLDL的清除减少,最终导致高甘油三酯血症和异常的HDL代谢,产生更多致动脉粥样硬化的脂蛋白颗粒[11]

能量代谢重编程是心血管疾病和心肌梗死发生发展过程中的一个重要概念[12]。在正常情况下,心脏具有显著的代谢灵活性,可以根据能量底物的可用性、激素控制、变力状态和心脏的工作负荷等环境变化,调整其对不同能量底物的偏好。如糖尿病小鼠心脏中ACBP表达显著上调,通过结合MyBPC3蛋白破坏心肌收缩结构,同时抑制葡萄糖代谢导致ATP不足,从而介导代谢–结构耦合的双向调控,最终加剧糖尿病心脏功能障碍[13]。线粒体功能障碍在心血管疾病的病理发生中起着至关重要的作用,其功能障碍会导致ATP生成受损,并增加活性氧(ROS)的产生[11] [14]。过量的ROS会导致线粒体损伤和细胞死亡,进一步加剧心血管疾病的进展[15]。针对心脏能量代谢途径的药理学干预已成为改善衰竭心脏功能和效率的新兴治疗方法[14]。最新研究表明持续喂食人工甜味剂通过胰岛素信号通路促进ApoE小鼠的动脉粥样硬化斑块形成,通过“胰岛素-CX3CL1-CX3CR1”轴驱动内皮炎症和斑块进展[16]。有研究发现抑制成年小鼠心肌细胞中的脂肪酸氧化导致代谢重编程,使α–酮戊二酸(α-KG)积累,激活依赖KG的组蛋白去甲基化酶KDM5,降低心肌细胞成熟相关基因上的H3K4me3修饰,使细胞回到更不成熟的状态,从而恢复增殖能力,为治疗心脏损伤提供了新策略[17]。目前正在研究多种治疗靶点和药物,旨在调节心脏的能量底物利用和线粒体功能,例如曲美他嗪和PPARα激动剂。这些药物通过不同的机制影响心脏的能量代谢,例如改变脂肪酸和葡萄糖的氧化率,或改善线粒体功能,从而有望改善心血管疾病的预后。

3. 中西医协同干预代谢紊乱与心血管疾病理论基础

中医药对代谢紊乱和心血管疾病的理解强调人体的整体性和平衡性。中医理论认为,心是“君主之官”,主导血液循环和精神活动。然而,心的能量代谢功能与肝(调节气机,藏血)、脾(运化水谷,生化气血)、肾(藏精,主水液)等其他脏腑密切相关,共同维持心血管系统的健康[6]。心血管疾病的发生是多种因素共同作用的结果,包括气血失调、脏腑功能失常以及痰湿、瘀血等病理产物的积聚[18]。在中医辨证论治中,针对代谢紊乱相关的心血管疾病,常常根据患者的具体症状和体质进行辨证分型[19] [20]:肥胖在中医上常被认为是脾气虚、痰湿内阻所致;血脂异常可能与肝阴不足或血瘀有关;胰岛素抵抗则可能属于湿热、气阴两虚等证型。中西医结合在解决代谢失衡驱动的心血管疾病方面展现出理论上的协同作用。西医擅长于急症护理、快速控制症状和靶向特定的分子通路。TCM提供了一种整体化、个性化的方法,可以解决导致代谢紊乱和CVD的潜在失衡,从而可能增强长期管理并减少副作用。将这两种方法相结合可以产生更全面有效的治疗策略。TCM可能在改善微循环等西方医学未能完全覆盖的CVD方面提供独特的益处,微循环在CVD中至关重要,但并非总是西药治疗的直接目标[7]。如有研究通过整合网络药理学和代谢组学,揭示麝香保心丸通过下调TMAO水平、抑制MAPK3/AKT1/STAT3信号通路,减轻内皮细胞凋亡和氧化应激,从而发挥抗动脉粥样硬化作用,首次提出SBP可能通过调节“肠–心轴”(TMAO-胆汁酸代谢轴)实现心血管保护,为中药多靶点干预提供了新机制依据[21]

中医药与西药同样都有在改善代谢的同时保护心血管疾病的证据。通心络胶囊联合常规治疗可显著降低STEMI患者急诊PCI术后24小时心肌无复流发生率(34.3% vs. 54.1%),并在6个月随访中持续改善心肌灌注评分,且未增加严重不良事件风险,通心络通过促进ST段回落和缩小梗死面积,为中药辅助PCI治疗提供了循证依据[22]。达帕格列净在降血糖的同时可以降低心力衰竭和射血分数,轻度减低或保留患者心力衰竭恶化或心血管死亡的综合风险[23]。在超重或肥胖的参与者中,每周一次索马鲁肽加上生活方式干预与持续的、临床相关的体重减轻,可以控制体重和心脏代谢危险因素[24]。一项多中心随机对照试验(FOCUS研究)表明,津力达颗粒可使糖耐量受损合并多代谢异常患者的糖尿病发病风险降低41% (HR 0.59,95% CI 0.46~0.74),并显著改善血糖、血脂、胰岛素抵抗及血管指标等心血管疾病危险因素[25]。通心络通过保护微血管完整性、抑制炎症和改善内皮功能实现多靶点干预,显著降低30天主要不良心脑血管事件(MACCEs)风险,1年时持续降低风险(HR 0.64),其中心血管死亡风险降低30% [26]

4. 中西医协同促进代谢异常与心血管疾病诊疗的临床转化与精准医学

中西医协同在代谢异常与心血管疾病诊疗领域展现出显著的临床转化价值与精准医学潜力,通过整合西医的分子靶向干预与中医药的整体调控,实现了基于多组学和人工智能、机器学习算法的机制解析再到个体化治疗的跨越。例如清华大学一项基于人工智能和多组学的网络靶点研究,通过整合临床、影像、单细胞转录组等多模态数据构建胃癌发生的多层生物网络,揭示从胃炎到癌变的动态机制。研究发现舌象AI模型可无创筛查癌前病变高风险患者,并鉴定出胃癌“超早期细胞”关键状态及重要干预靶点,建立了包含智能预警、精准诊断和早期干预的中西医结合疾病防控体系[27]。一项苏州队列研究创新性地将舌苔菌群特征与代谢因素结合,构建心血管疾病1.5级预防风险评估模型,通过前瞻性队列设计探索其对亚临床靶器官损伤的预测价值,首次将中医舌诊理论与微生物组学整合,旨在优化传统风险分层体系,为心血管疾病早期干预提供新策略[28]。有研究开发数据库通过自然语言处理构建知识图谱,提供3D分子结构和跨数据库链接,其AI模型通过分析草药活性成分与西药的相互作用预测潜在不良反应,未来计划结合知识图谱技术构建中西药联用综合数据库,并开发多药物组合互斥预测算法[29]。有学者通过非靶向代谢组学分析了243名中国冠心病(CHD)和心肌梗死(MI)患者的血清代谢谱,并利用机器学习算法构建了基于精氨酸、次黄嘌呤和乙酰肉碱的三代谢物模型,显著区分CHD与MI,揭示了–亚麻酸代谢以及果糖/甘露糖代谢、糖酵解等通路异常,为心血管疾病提供了潜在诊断标志物和代谢干预靶点[30]。中西医协同为代谢异常与心血管疾病的诊疗开辟了多维度创新路径,通过整合现代医学的分子靶向干预与中医的整体辨证施治,实现了代谢调控与心血管保护的双重优化。精准医学框架下的生物标志物挖掘与AI辅助诊疗系统,结合中药复方多靶点作用及针灸、食疗等个体化调护方案,为疾病全程管理提供了“动态精准–整体平衡”的新范式,最终实现从疾病治疗向健康维护的范式升级。

5. 结论与展望

代谢失衡与心血管疾病的研究经历了从单一病理机制到多维度系统干预的范式转变。早期研究聚焦于脂质代谢异常与动脉粥样硬化的线性关系,如他汀类药物主导的降脂策略[31]。而随着代谢重编程概念的提出,如糖酵解/脂肪酸氧化失衡、线粒体功能障碍等能量代谢失衡机制被确认为心血管事件链的核心驱动因素之一[17]。中西医结合领域,如脉络学说指导下的“系统干预”策略(如通心络、芪苈强心等药物)实现了从“治标”到“防–治–控”全链条干预的跨越,也成为中医药循证证据的里程碑。当前主张整合中医药多靶点调节与西医精准治疗,通过“代谢–免疫–炎症”多维调控延缓心血管事件链进展。针对代谢性疾病和心血管疾病的代谢重编程的“时空特异性”,中医理论则强调“整体稳态”优先于局部靶点。有研究揭示中医痰湿体质与肠道菌群及代谢产物植物鞘氨醇的关联,证明中医“整体稳态”可通过调控肠道菌群–肝脏PPAR受体轴实现能量代谢再平衡[32]。“神经–内分泌–免疫–代谢网络”为中医整体观提供理论框架。例如,针灸可通过激活迷走神经–肾上腺轴抑制炎症因子释放达到神经调控的效果,同时调节肠道菌群代谢物改善胰岛素抵抗达到代谢调控的效果,形成多维度稳态重建[33]。当前代谢重编程与心血管疾病的靶点互作的分子桥梁尚未完全阐明;中西医协同诊疗标准缺失,中药复方多成分作用机制复杂,难以精准匹配代谢动态变化。后续将推进心血管疾病防控体系从“疾病管理”向“健康干预”的范式跃迁,为代谢失衡向心血管损伤的时空演变提供全景式生物学阐释,推动中西医诊疗模式的双向互证,开创中西医协同的精准医学新模式[34]。郝海平团队提出的“代谢仿生”概念,如通过模拟中医方剂的多成分协同效应设计组合药物,同时也为中西医融合促进慢病治疗策略创新与组合新药研发的可能路径[35]。推动形成心血管疾病“预测–预警–干预”三位一体的中西医结合防控新范式,同时中医药现代化应从“经验医学”向“数据驱动”的跨越式发展,最终实现心血管疾病“未病先防、既病防变”的终极目标。

基金项目

1. 四川省中医药管理局,国医大家学术经验传承班培训项目成果;

2. 四川省中医药管理局,科学技术研究专项课题:基于“瘀毒”理论运用通窍活血汤治疗阴虚血瘀型糖尿病合并心肌缺血的临床疗效研究(2024MS304);

3. 四川省哲学社会科学重点研究基地科研项目:基于药食同源对围绝经期综合征养生康复的膳食研究(CC22Z02)。

NOTES

*通讯作者。

参考文献

[1] Cull0, C.A., Jensen, C.C., Retnakaran, R., et al. (2007) Impact of the Metabolic Syndrome on Macrovascular and Microvascular Outcomes in Type 2 Diabetes Mellitus: United Kingdom Prospective Diabetes Study 78. Circulation, 116, 2119-2126.
[2] Brauer, M., Roth, G.A., Aravkin, A.Y., Zheng, P., Abate, K.H., Abate, Y.H., et al. (2024) Global Burden and Strength of Evidence for 88 Risk Factors in 204 Countries and 811 Subnational Locations, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet, 403, 2162-2203.
https://doi.org/10.1016/s0140-6736(24)00933-4
[3] Wang, H., Liu, J., Feng, Y., Ma, A. and Wang, T. (2023) The Burden of Cardiovascular Diseases Attributable to Metabolic Risk Factors and Its Change from 1990 to 2019: A Systematic Analysis and Prediction. Frontiers in Epidemiology, 3, Article 1048515.
https://doi.org/10.3389/fepid.2023.1048515
[4] Wu, S., Xu, W., Guan, C., et al. (2023) Global Burden of Cardiovascular Disease Attributable to Metabolic Risk Factors, 1990-2019: An Analysis of Observational Data from a 2019 Global Burden of Disease Study. BMJ Open, 13, e069397.
[5] Aguilar-Salinas, C., Mehta, R., Rojas, R., Gomez-Perez, F., Olaiz, G. and Rull, J. (2005) Management of the Metabolic Syndrome as a Strategy for Preventing the Macrovascular Complications of Type 2 Diabetes: Controversial Issues. Current Diabetes Reviews, 1, 145-158.
https://doi.org/10.2174/1573399054022767
[6] Dai, J., Qiu, L., Lu, Y. and Li, M. (2024) Recent Advances of Traditional Chinese Medicine against Cardiovascular Disease: Overview and Potential Mechanisms. Frontiers in Endocrinology, 15, Article 1366285.
https://doi.org/10.3389/fendo.2024.1366285
[7] Cheang, I., Chen, Z., Zhu, X., Wang, T., Chang, L., Gao, R., et al. (2024) Translational Research and Clinical Application of Traditional Chinese Medicine in Cardiovascular Diseases. JACC: Asia, 4, 711-720.
https://doi.org/10.1016/j.jacasi.2024.07.012
[8] Powell-Wiley, T.M., Poirier, P., Burke, L.E., Després, J., Gordon-Larsen, P., Lavie, C.J., et al. (2021) Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation, 143, e984-e1010.
https://doi.org/10.1161/cir.0000000000000973
[9] Steinberger, J. and Daniels, S.R. (2003) Obesity, Insulin Resistance, Diabetes, and Cardiovascular Risk in Children. Circulation, 107, 1448-1453.
https://doi.org/10.1161/01.cir.0000060923.07573.f2
[10] Dhondge, R.H., Agrawal, S., Patil, R., et al. (2024) A Comprehensive Review of Metabolic Syndrome and Its Role in Cardiovascular Disease and Type 2 Diabetes Mellitus: Mechanisms, Risk Factors, and Management. Cureus, 16, e67428.
[11] Semenkovich, C.F. (2006) Insulin Resistance and Atherosclerosis. Journal of Clinical Investigation, 116, 1813-1822.
[12] Ren, J., Chen, X., Wang, T., et al. (2025) Regenerative Therapies for Myocardial Infarction: Exploring the Critical Role of Energy Metabolism in Achieving Cardiac Repair. Frontiers in Cardiovascular Medicine, 12, Article 1533105.
[13] Wu, T., Huang, T., Ren, Y., et al. (2025) Metabolic Coordination Structures Contribute to Diabetic Myocardial Dysfunction. Circulation Research, 136, 946-967.
[14] Sun, Q., Karwi, Q.G., Wong, N. and Lopaschuk, G.D. (2024) Advances in Myocardial Energy Metabolism: Metabolic Remodelling in Heart Failure and Beyond. Cardiovascular Research, 120, 1996-2016.
https://doi.org/10.1093/cvr/cvae231
[15] Yang, J., Guo, Q., Feng, X., Liu, Y. and Zhou, Y. (2022) Mitochondrial Dysfunction in Cardiovascular Diseases: Potential Targets for Treatment. Frontiers in Cell and Developmental Biology, 10, Article 841523.
https://doi.org/10.3389/fcell.2022.841523
[16] Wu, W., Sui, W., Chen, S., et al. (2025) Sweetener Aspartame Aggravates Atherosclerosis through Insulin-Triggered Inflammation. Cell Metabolism, 37, 1075-1088.
[17] Li, X., Wu, F., Günther, S., Looso, M., Kuenne, C., Zhang, T., et al. (2023) Inhibition of Fatty Acid Oxidation Enables Heart Regeneration in Adult Mice. Nature, 622, 619-626.
https://doi.org/10.1038/s41586-023-06585-5
[18] Jiang, Y., Zhao, Q., Li, L., Huang, S., Yi, S. and Hu, Z. (2022) Effect of Traditional Chinese Medicine on the Cardiovascular Diseases. Frontiers in Pharmacology, 13, Article 806300.
https://doi.org/10.3389/fphar.2022.806300
[19] Chen, Y., Liu, T., Teia, F.K.F. and Xie, M. (2023) Exploring the Underlying Mechanisms of Obesity and Diabetes and the Potential of Traditional Chinese Medicine: An Overview of the Literature. Frontiers in Endocrinology, 14, Article 1218880.
https://doi.org/10.3389/fendo.2023.1218880
[20] Wu, H., Tian, J., Dai, D., Liao, J., Wang, X., Wei, X., et al. (2020) Efficacy and Safety Assessment of Traditional Chinese Medicine for Metabolic Syndrome. BMJ Open Diabetes Research & Care, 8, e001181.
https://doi.org/10.1136/bmjdrc-2020-001181
[21] Li, D., Chen, R., Xu, X., et al. (2024) Integrated Metabolomics and Network Pharmacology to Reveal the Mechanisms of Shexiang Baoxin Pill against Atherosclerosis. Phytomedicine, 135, Article 156138.
[22] Zhang, H., Jia, Z., Zhang, J., et al. (2010) No-Reflow Protection and Long-Term Efficacy for Acute Myocardial Infarction with Tongxinluo: A Randomized Double-Blind Placebo-Controlled Multicenter Clinical Trial (ENLEAT Trial). Chinese Medical Journal, 123, 2858-2864.
[23] Solomon, S.D., Mcmurray, J.J.V., Claggett, B., et al. (2022) Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. New England Journal of Medicine, 387, 1089-1098.
[24] Wilding, J.P.H., Batterham, R.L., Calanna, S., Davies, M., Van Gaal, L.F., Lingvay, I., et al. (2021) Once-Weekly Semaglutide in Adults with Overweight or Obesity. New England Journal of Medicine, 384, 989-1002.
https://doi.org/10.1056/nejmoa2032183
[25] Ji, H., Zhao, X., Chen, X., Fang, H., Gao, H., Wei, G., et al. (2024) Jinlida for Diabetes Prevention in Impaired Glucose Tolerance and Multiple Metabolic Abnormalities. JAMA Internal Medicine, 184, 727-735.
https://doi.org/10.1001/jamainternmed.2024.1190
[26] Yang, Y., Li, X., Chen, G., Xian, Y., Zhang, H., Wu, Y., et al. (2023) Traditional Chinese Medicine Compound (Tongxinluo) and Clinical Outcomes of Patients with Acute Myocardial Infarction. Journal of the American Medical Association, 330, Article 1534.
https://doi.org/10.1001/jama.2023.19524
[27] Zhang, P., Wang, B. and Li, S. (2023) Network-Based Cancer Precision Prevention with Artificial Intelligence and Multi-omics. Science Bulletin, 68, 1219-1222.
https://doi.org/10.1016/j.scib.2023.05.023
[28] Zhu, M., Li, Y., Wang, W., Liu, L., Liu, W., Yu, J., et al. (2025) Advancing Early Detection of Organ Damage and Cardiovascular Risk Prevention: The Suzhou Cardiometabolic Health Study Protocol—Exploring the Role of Oral Microbiome and Metabolic Profiling in Risk Stratification. Frontiers in Endocrinology, 16, Article 1522756.
https://doi.org/10.3389/fendo.2025.1522756
[29] Lv, Q., Chen, G., He, H., Yang, Z., Zhao, L., Zhang, K., et al. (2023) TCMBank-the Largest TCM Database Provides Deep Learning-Based Chinese-Western Medicine Exclusion Prediction. Signal Transduction and Targeted Therapy, 8, Article No. 127.
https://doi.org/10.1038/s41392-023-01339-1
[30] Shen, X., Guo, S., Liang, N., Zhao, M., Wang, C., Li, Z., et al. (2024) Biomarker Discovery and Metabolic Profiling in Serum of Cardiovascular Disease Patients with Untargeted Metabolomics and Machine Learning. Clinical and Translational Medicine, 14, e1722.
https://doi.org/10.1002/ctm2.1722
[31] 赵婧含, 吴文轩, 李雪, 等. 血脂异常及脂代谢紊乱的中西医诊疗现状与前景[J]. 中国临床保健杂志, 2023, 26(5): 614-618.
[32] Li, L., Li, T., Liang, X., Zhu, L., Fang, Y., Dong, L., et al. (2025) A Decrease in Flavonifractor plautii and Its Product, Phytosphingosine, Predisposes Individuals with Phlegm-Dampness Constitution to Metabolic Disorders. Cell Discovery, 11, Article No. 25.
https://doi.org/10.1038/s41421-025-00789-x
[33] 刘欣安, 贾艺聪, 王立平. 通过神经-内分泌-免疫-代谢网络互作维持的自愈体系理解中医药学原理[J]. 中国科学基金, 2024, 38(3): 492-500.
[34] 陈香美, 王聪慧, 张勤修, 等. 面向未来, 高质量发展中西医结合[J]. 四川大学学报(医学版), 2025, 56(1): 1-4.
[35] 郑啸, 郝海平. 代谢仿生导向的中西医融升路径[J]. 中国科学基金, 2024, 38(3): 440-445.