Nd(Co0.8Fe0.2)2化合物在居里转变处的临界指数研究
Critical Exponents at Curie Transition in Nd(Co0.8Fe0.2)2 Compound
DOI: 10.12677/app.2025.156067, PDF, HTML, XML,    科研立项经费支持
作者: 翟 琳:南京信息职业技术学院电子信息学院,江苏 南京;郑文根:南京航空航天大学物理学院,江苏 南京
关键词: 相变临界行为Phase Transitions Critical Behavior
摘要: 本文通过直流磁化测量研究了Nd(Co0.8Fe0.2)2在居里温度(TC)附近的临界行为。利用Kouvel-Fisher法、改进的Arrotts图法以及临界等温分析,获得了临界指数 β=0.38( 5 ) γ=1.31( 4 ) δ=4.41( 3 ) 。通过 M | t | β H | t | ( β+γ ) 的对数标度图验证了所得临界指数的可靠性。此外,临界指数 β γ δ 以及交换相互作用 J( r )~1/ r 4.87 表明,Nd(Co0.8Fe0.2)2符合三维海森堡模型,其中短程相互作用占主导地位。
Abstract: The critical behavior around the Curie temperature (TC) of Nd(Co0.8Fe0.2)2 was investigated by dc magnetization measurement. The critical exponents β=0.38( 5 ) , γ=1.31( 4 ) and δ=4.41( 3 ) were carried out by Kouvel-Fisher, modified Arrotts Plot methods, as well as critical isothermal analysis. The reliability of the obtained critical exponents was verified by the logarithmic scaling plot of M | t | β versus H | t | ( β+γ ) . Besides, the exponents β, γ, and δ, as well as the exchange interaction J( r )~1/ r 4.87 proposed a three-dimensional Heisenberg model for Nd(Co0.8Fe0.2)2 in which the short-range interaction becomes dominant.
文章引用:翟琳, 郑文根. Nd(Co0.8Fe0.2)2化合物在居里转变处的临界指数研究[J]. 应用物理, 2025, 15(6): 620-627. https://doi.org/10.12677/app.2025.156067

1. 引言

近几十年来,由于在磁制冷技术中的潜在应用价值,研发具有优异磁制冷性能材料一直是凝聚态物理领域的重点研究方向[1]-[3]。近年来,具有丰富的磁学特性及相对简单的晶体结构的RT2型Laves相化合物(其中R为稀土金属,T为过渡金属)成为磁学材料领域的研究热点[4]-[7]。在众多材料体系中,RCo2基化合物因其显著的磁热效应(MCE)而备受关注[8]-[11]。例如,DyCo2、HoCo2、ErCo2等化合物因其在居里温度TC附近具有较大的磁熵变而成为磁热效应研究中最具应用潜力的候选材料[6] [9] [12] [13]。然而,一级相变材料通常存在显著的热滞与磁滞现象,且工作温区相对狭窄,这成为制约其实际应用的关键瓶颈。近年来,研究发现赝二元化合物Nd(Co1−XFeX)2展现出巨磁熵变与宽工作温区的特性,这为磁制冷技术带来重要突破[14] [15]。在Nd(Co1−XFeX)2中掺杂Fe元素可提升居里温度(TC)并拓宽工作温区,该规律同样适用于A(Co1−XFeX)2体系(A = Dy, Tb, Er, Ho) [16]-[20]。但是,这一现象背后的物理机制至今仍未完全阐明。要理解Nd(Co1−XFeX)2的磁性与物理性质,明确化合物中磁相互作用的类型至关重要。在磁性体系相变研究中,临界指数( β , γ , δ )能够有效表征化合物的相变本质。其中有三种经典模型:三维海森堡模型( β=0.365 , γ=1.386 )、三维伊辛模型( β=0.325 , γ=1.241 )和平均场理论模型( β=0.5 , γ=1 ),而前两者描述短程磁相互作用,后者表征长程相互作用[21]

本文针对Nd(Co0.8Fe0.2)2合金在顺磁–铁磁相变边界处的临界行为展开了系统研究,通过修正Arrott图技术(MAP) [22]与Kouvel-Fisher (KF)方法[23],实验测得临界指数。结果通过 M | t | β H | t | ( β+γ ) 的修正等温线得以验证。我们的研究证实,Nd (Co0.8Fe0.2)2磁相变附近的临界行为符合具有短程铁磁相互作用的三维海森堡模型。

2. 实验方法

单相的Nd(Co0.8Fe0.2)2化合物通过高纯度电弧熔炼及后续退火工艺制备。实验中添加5%过量Nd以补偿烧损并防止富Co相的形成。样品为单一的Laves相结构[11] [15]。磁化等温线测量在250至280 K的升温过程中、最高30 kOe外磁场下完成。

3. 结果与讨论

先前工作显示Nd(Co0.8Fe0.2)2化合物的居里温度为263 K [15]。因此,我们在263 K附近(250~280 K)以2 K为步长、磁场从0至30 kOe递增的条件下测量了等温磁化强度,如图1(a)所示。

在相变理论中,临界指数通常通过以下理论模型给出:

M s ( T )= M 0 | t | β ( t<0 ) (1)

x 0 1 ( T )=( h 0 M 0 ) t γ ( t>0 ) (2)

M=D H 1/δ ( t=0 ) (3)

其中 t= ( T T C )/ T C M0h0/M0D为临界振幅, M s ( T ) 是自发磁化强度, χ 0 1 ( T ) 代表温度为T时初始磁化率的倒数[24] [25]。假设Nd(Co0.8Fe0.2)2的磁化强度服从平均场模型( β=0.5 , γ=1 ),其M2H/M的关系曲线如图1(b)所示。根据Banerjee判据,Nd(Co0.8Fe0.2)2的磁相变被确认为二级相变,其核心实验证据为M2 vs. H/M曲线的斜率为正[25]。此外,根据Arrott-Noakes公式[22]

( H/M ) 1/γ =at+b M 1/β (4)

其中ab为常数,不同温度下的 M 1/β ( H/M ) 1/γ 曲线(如图1(b)所示)在高场范围内应呈平行关系。同时,居里温度 T C 对应的直线应通过原点。因此,图1(b)中不平行的曲线表明平均场模型不适用。

Figure 1. (a) (Color online) (a) Isothermal magnetization curves of Nd(Co0.8Fe0.2)2 near TC. (b) Arrott plot isotherms of M2 versus H/M curves

1. (a) (在线彩图) Nd(Co0.8Fe0.2)2在居里温度(TC)附近的等温磁化曲线 (b) M2H/M的Arrott等温线图

为进一步获得可靠的 β γ ,我们使用了改进的Arrott图(MAP)方法[22]。以初始值 β=0.5 γ=1 为基础,通过高场区线性外推与 M 1/β 轴和 ( H/M ) 1/γ 轴的交点,分别获得居里温度以下的饱和磁化强度 M s ( T ) 和居里温度以上的初始磁化率倒数 χ 0 1 ( T ) 。通过将 M s ( T ) χ 0 1 ( T ) 分别与方程(1)和(2)拟合,可获得新的 β γ 值。随后,这些 β γ 值将作为新的初始值用于下一轮计算。经过几轮迭代后,结果收敛于 β=0.38( 5 ) γ=1.31( 4 ) 。采用 β=0.38( 5 ) γ=1.31( 4 ) 绘制的新MAP图展示在图2中。高场下平行的等温线以及几乎呈线性且过原点的264 K曲线证实了 β γ 的可靠性。低场下线性的偏移可以解释为磁畴的重新排列[26]。饱和磁化强度Ms和初始磁化率倒数 χ 0 1 的温度依赖性及 β=0.38( 5 ) γ=1.31( 4 ) 的拟合结果如图3(a)所示。两条拟合曲线分别给出居里温度为262.34 (9) K和262.36 (8) K。

Figure 2. (Color online) Modified Arrott plot isotherms of M2 versus H/M with the critical exponents β=0.38( 5 ) and γ=1.31( 4 )

2. (在线彩图)修正Arrott图:M2H/M的等温线图(含临界指数 β=0.38( 5 ) γ=1.31( 4 ) )

同时,KF方法也是一种计算临界指数的方法,其相关公式为[23]

M s ( T ) d M s ( T )/ dT = T T C β (5)

χ 0 1 ( T ) d χ 0 1 ( T )/ dT = T T C γ (6)

Figure 3. (Color online) (a) and (b) The fits of Ms and χ  0 1 using MAP methods and KF methods, respectively. (c) lnM versus lnH curve at 262 K, δ=4.51( 9 ) is obtained by the linear fit (red line)

3. (在线彩图) (a)和(b)分别利用MAP和KF方法对饱和磁化强度Ms(T)和初始磁化率倒数 χ 0 1 ( T ) 的拟合. (c) 262 K下的lnM vs. lnH曲线及临界指数 δ

因此,通过 M s ( T ) d M s ( T )/ dT χ 0 1 ( T ) d χ 0 1 ( T )/ dT 对温度T的斜率可以分别得到 β γ 。如图3(b)所示,利用式(5)拟合得到 β=0.38( 5 ) 且居里温度 T C =262.17( 7 ) ,而式(6)给出 γ=1.32( 0 ) T C =262.30( 0 ) 。MAP方法与KF方法的结果相互吻合,且接近三维海森堡模型预测的值( β=0.368 , γ=1.396 ) [27]图3(c)展示了在居里温度 T C lnH lnM 的曲线,根据式(3),斜率的倒数给出 δ=4.51( 9 ) 。另一方面,Widom标度关系也是另一种计算 δ 值的方法[28]

δ=1+ γ β (7)

采用MAP方法和KF方法分别获得 δ=4.41( 3 ) δ=4.42( 9 ) ,二者在实验误差范围内均与标度假设一致。

此外,通过标度分析验证了所得临界指数的可靠性。根据标度假设,实验测得的 M | t | β H | t | ( β+γ ) 满足以下关系:

M | t | β = f ± ( H | t | ( β+γ ) ) (8)

对于 T> T C T< T C f + f 分别为正则函数[29]。因此,实验测得的M(H)曲线在 T> T C T< T C 时应塌缩为两条普适曲线。图4展示了利用 β=0.38( 5 ) γ=1.31( 4 ) 绘制的 M | t | β H | t | ( β+γ ) 对数标度图,两个独立分支证实了 β γ 的可靠性。

此外,Nd(Co0.8Fe0.2)2中的自旋相互作用可通过关系式 J( r )~1/ r d+σ 估算,其中d为空间维度, σ 为相互作用范围参数,该参数可由方程求得[30] [31]

γ=1+ 4 d [ n+2 n+8 ]Δσ+ 8( n+2 )( n+4 ) d 2 ( n+8 ) 2 ×[ 1+ 2G( d 2 )( 7n+20 ) ( n4 )( n+8 ) ] ( Δσ ) 2 (9)

其中 Δσ=( σ d 2 ) G( d 2 )=3 1 4 ( d 2 ) 2 。由于Nd(Co0.8Fe0.2)2被归类为三维海森堡模型,因此采用空间维度d = 3和自旋维度n = 3。根据MAP方法获得的 γ=1.31( 4 ) ,计算得到 σ=1.87( 3 ) 。因此,交换相互作用表现为 J( r )~1/ r 4.87 ,这与具有短程磁相互作用的三维海森堡模型 J( r )~1/ r 5 相当。另一方面,NdCo2中居里温度以下长程磁有序的存在已通过粉末中子衍射证实[32]。Nd(Co0.8Fe0.2)2中从长程到短程磁相互作用的转变可能是由于掺杂Fe导致化合物中磁矩的局域化引起的[33]

Figure 4. (Color online) Logarithmic scaling plot of M | t | β versus H | t | ( β+γ ) with β=0.38( 5 ) and γ=1.31( 4 ) for Nd(Co0.8Fe0.2)2

4. (在线彩图):Nd(Co0.8Fe0.2)2 M | t | β H | t | ( β+γ ) 对数标度图

4. 结论

我们对Nd(Co0.8Fe0.2)2在居里温度附近的临界行为进行了研究。Banerjee判据和普适行为均表明该体系发生二级相变,且实验测得的相变温度与计算值一致。采用改进的Arrott图(MAP)方法和KF方法对临界特性进行了研究,两种方法结果吻合。临界指数值及自旋相互作用研究表明,Nd(Co0.8Fe0.2)2中存在服从三维海森堡模型的短程磁相互作用。

基金项目

本研究得到南京信息职业技术学院高层次人才引进项目(No. YB20210105)的资助。

参考文献

[1] Tegus, O., Brück, E., Buschow, K.H.J. and de Boer, F.R. (2002) Transition-Metal-Based Magnetic Refrigerants for Room-Temperature Applications. Nature, 415, 150-152.
https://doi.org/10.1038/415150a
[2] Inoue, J. and Shimizu, M. (1988) First-and Second-Order Magnetic Phase Transitions in (R-Y)Co2 and R(Co-Al)2(R = Heavy Rare-Earth Element) Compounds. Journal of Physics F: Metal Physics, 18, 2487-2497.
https://doi.org/10.1088/0305-4608/18/11/020
[3] Hilscher, G. (1982) Onset of Magnetism in Concentrated Ternary Alloys II: Laves Phase Compounds A(Fe1-xBx)2 (A = Y, Zr, U; B = Mn, Co and Al). Journal of Magnetism and Magnetic Materials, 27, 1-31.
https://doi.org/10.1016/0304-8853(82)90279-7
[4] Clark, A.E. (1974) Magnetic and Magnetoelastic Properties of Highly Magnetostrictive Rare Earth-Iron Laves Phase Compounds. AIP Conference Proceedings, 18, 1015-1029.
https://doi.org/10.1063/1.2947192
[5] Levitin, R.Z. and Markosyan, A.S. (1990) Magnetoelastic Properties of RE-3d Intermetallics. Journal of Magnetism and Magnetic Materials, 84, 247-254.
https://doi.org/10.1016/0304-8853(90)90102-v
[6] Ćwik, J. (2014) Experimental Study of the Magnetocaloric Effect in the Pseudo Binary Laves-Phase Compounds. Journal of Superconductivity and Novel Magnetism, 27, 2547-2553.
https://doi.org/10.1007/s10948-014-2601-5
[7] Tanabe, K., Hatoyama, S., Wada, H., Andreev, A.V., Yamauchi, K., Oguchi, T., et al. (2023) Hall Effect of Rco2 (R= Er and Lu) Compounds. Journal of Alloys and Compounds, 960, Article 170743.
https://doi.org/10.1016/j.jallcom.2023.170743
[8] Gratz, E. and Markosyan, A.S. (2001) Physical Properties of Rco2laves Phases. Journal of Physics: Condensed Matter, 13, R385-R413.
https://doi.org/10.1088/0953-8984/13/23/202
[9] Duc, N.H., Kim Anh, D.T. and Brommer, P.E. (2002) Metamagnetism, Giant Magnetoresistance and Magnetocaloric Effects in RCo2-Based Compounds in the Vicinity of the Curie Temperature. Physica B: Condensed Matter, 319, 1-8.
https://doi.org/10.1016/s0921-4526(02)01099-2
[10] Duc, N.H. and Brommer, P.E. (1999) Chapter 3 Formation of 3d-Moments and Spin Fluctuations in Some Rare-Earth-Cobalt Compounds. In: Handbook of Magnetic Materials, Elsevier, 259-394.
https://doi.org/10.1016/s1567-2719(99)12007-9
[11] Hu, C.C., Shi, Y.G., Zheng, T.F., Fan, J.Y., Shi, D.N., Lv, L.Y., et al. (2012) Structural, Magnetic and Magnetostrictive Behavior in Nd(Fe1-xCox)1.9 Compounds. Journal of Applied Physics, 112, Article 063902.
https://doi.org/10.1063/1.4752017
[12] Ćwik, J., Nenkov, K., Tereshina, I.S. and Palewski, T. (2012) The Influence of Er Substitution on Magnetic and Magnetocaloric Properties of Ho1-xERxCo2 Solid Solution. Materials Chemistry and Physics, 136, 492-497.
https://doi.org/10.1016/j.matchemphys.2012.07.016
[13] Bonilla, C.M., Herrero-Albillos, J., Bartolomé, F., García, L.M., Parra-Borderías, M. and Franco, V. (2010) Universal Behavior for Magnetic Entropy Change in Magnetocaloric Materials: An Analysis on the Nature of Phase Transitions. Physical Review B, 81, Article 224424.
https://doi.org/10.1103/physrevb.81.224424
[14] Murtaza, A., Zuo, W., Yaseen, M., Ghani, A., Saeed, A., Hao, C., et al. (2020) Magnetocaloric Effect in the Vicinity of the Magnetic Phase Transition in NdCo2-xFex Compounds. Physical Review B, 101, Article 214427.
https://doi.org/10.1103/physrevb.101.214427
[15] Zheng, W.G., Cui, Y., Chen, F.H., Shi, Y.G. and Shi, D.N. (2018) Magnetocaloric Effect in Nd(Co0.8Fe0.2)2 Laves Compound with Wide Operating Temperature. Journal of Magnetism and Magnetic Materials, 460, 137-140.
https://doi.org/10.1016/j.jmmm.2018.03.059
[16] Han, Z., Hua, Z., Wang, D., Zhang, C., Gu, B. and Du, Y. (2006) Magnetic Properties and Magnetocaloric Effect in Dy(Co1-xFex)2 Alloys. Journal of Magnetism and Magnetic Materials, 302, 109-112.
https://doi.org/10.1016/j.jmmm.2005.08.013
[17] Halder, M., Yusuf, S.M., Mukadam, M.D. and Shashikala, K. (2010) Magnetocaloric Effect and Critical Behavior near the Paramagnetic to Ferrimagnetic Phase Transition Temperature in TbCo2-xFex. Physical Review B, 81, Article 174402.
https://doi.org/10.1103/physrevb.81.174402
[18] Chaaba, I., Othmani, S., Haj-Khlifa, S., de Rango, P., Fruchart, D., Cheikhrouhou-Koubaa, W., et al. (2017) Magnetic and Magnetocaloric Properties of Er(Co1-xFex)2 Intermetallic Compounds. Journal of Magnetism and Magnetic Materials, 439, 269-276.
https://doi.org/10.1016/j.jmmm.2017.05.033
[19] Liu, X.B. and Altounian, Z. (2008) Magnetocaloric Effect in Co-Rich Er(Co1-xFex)2 Laves Phase. Journal of Applied Physics, 103, 07B304.
https://doi.org/10.1063/1.2829758
[20] Anikin, M., Tarasov, E., Kudrevatykh, N., Inishev, A., Zinin, A., Teplykh, A., et al. (2015) Magnetic Structure and Magnetocaloric Properties of Ho(Co1-xFex)2 Quasibinary Intermetallic Compounds. Physics Procedia, 75, 1198-1206.
https://doi.org/10.1016/j.phpro.2015.12.121
[21] Le Guillou, J.C. and Zinn-Justin, J. (1980) Critical Exponents from Field Theory. Physical Review B, 21, 3976-3998.
https://doi.org/10.1103/physrevb.21.3976
[22] Arrott, A. and Noakes, J.E. (1967) Approximate Equation of State for Nickel Near Its Critical Temperature. Physical Review Letters, 19, 786-789.
https://doi.org/10.1103/physrevlett.19.786
[23] Kouvel, J.S. and Fisher, M.E. (1964) Detailed Magnetic Behavior of Nickel near Its Curie Point. Physical Review, 136, A1626-A1632.
https://doi.org/10.1103/physrev.136.a1626
[24] Stanley, H.E. (1971) Introduction to Phase Transition and Critical Phenomena. Oxford University Press.
[25] Banerjee, B.K. (1964) On a Generalised Approach to First and Second Order Magnetic Transitions. Physics Letters, 12, 16-17.
https://doi.org/10.1016/0031-9163(64)91158-8
[26] Aharoni, A. (1971) Introduction to the Theory of Ferromagnetism. Oxford University Press.
[27] Campostrini, M., Hasenbusch, M., Pelissetto, A., Rossi, P. and Vicari, E. (2002) Critical Exponents and Equation of State of the Three-Dimensional Heisenberg Universality Class. Physical Review B, 65, Article 144520.
https://doi.org/10.1103/physrevb.65.144520
[28] Widom, B. (1965) Equation of State in the Neighborhood of the Critical Point. The Journal of Chemical Physics, 43, 3898-3905.
https://doi.org/10.1063/1.1696618
[29] Stanley, H.E. (1999) Scaling, Universality, and Renormalization: Three Pillars of Modern Critical Phenomena. In: Bederson, B., Ed., More Things in Heaven and Earth, Springer New York, 601-616.
https://doi.org/10.1007/978-1-4612-1512-7_39
[30] Fisher, M.E., Ma, S. and Nickel, B.G. (1972) Critical Exponents for Long-Range Interactions. Physical Review Letters, 29, 917-920.
https://doi.org/10.1103/physrevlett.29.917
[31] Samatham, S.S. and Suresh, K.G. (2018) Critical Exponents and Universal Magnetic Behavior of Noncentrosymmetric Fe0.6Co0.4Si. Journal of Physics: Condensed Matter, 30, Article 215802.
https://doi.org/10.1088/1361-648x/aabc17
[32] Ouyang, Z.W., Wang, F.W., Huang, Q., Liu, W.F., Xiao, Y.G., Lynn, J.W., et al. (2005) Magnetic Structure, Magnetostriction, and Magnetic Transitions of the Laves-Phase Compoundndco2. Physical Review B, 71, Article 064405.
https://doi.org/10.1103/physrevb.71.064405
[33] Oppelt, A. and Buschow, K.H.J. (1976) NMR Investigation of the Hyperfine Interactions in Y(Co1-xFex)2 (A = Al, Co, Pt). Physical Review B, 13, Article 4698.