|
[1]
|
Ritchie, R.H. (1957) Plasma Losses by Fast Electrons in Thin Films. Physical Review, 106, 874-881. [Google Scholar] [CrossRef]
|
|
[2]
|
Agassi, D. and Eberly, J.H. (1985) Effect of Surface Dynamical Fluctuations on Light Scattering by a Nearby Dipole. Physical Review Letters, 54, 34-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sun, Q., Ueno, K., Yu, H., Kubo, A., Matsuo, Y. and Misawa, H. (2013) Direct Imaging of the Near Field and Dynamics of Surface Plasmon Resonance on Gold Nanostructures Using Photoemission Electron Microscopy. Light: Science & Applications, 2, e118. [Google Scholar] [CrossRef]
|
|
[4]
|
Yoo, S.Y., Kim, D., Park, T.J., Kim, E.K., Tamiya, E. and Lee, S.Y. (2010) Detection of the Most Common Corneal Dystrophies Caused by bigh3 Gene Point Mutations Using a Multispot Gold-Capped Nanoparticle Array Chip. Analytical Chemistry, 82, 1349-1357. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, Y., Zhen, Y., Neumann, O., Day, J.K., Nordlander, P. and Halas, N.J. (2014) Coherent Anti-Stokes Raman Scattering with Single-Molecule Sensitivity Using a Plasmonic Fano Resonance. Nature Communications, 5, Article No. 4424. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Mårsell, E., Losquin, A., Svärd, R., Miranda, M., Guo, C., Harth, A., et al. (2015) Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna. Nano Letters, 15, 6601-6608. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Xu, Y., Qin, Y., Ji, B., Song, X. and Lin, J. (2020) Polarization Manipulated Femtosecond Localized Surface Plasmon Dephasing Time in an Individual Bowtie Structure. Optics Express, 28, 9310-9319. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hensen, M., Huber, B., Friedrich, D., Krauss, E., Pres, S., Grimm, P., et al. (2019) Spatial Variations in Femtosecond Field Dynamics within a Plasmonic Nanoresonator Mode. Nano Letters, 19, 4651-4658. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fernandez-Garcia, R., Rahmani, M., Hong, M., Maier, S.A. and Sonnefraud, Y. (2013) Use of a Gold Reflecting-Layer in Optical Antenna Substrates for Increase of Photoluminescence Enhancement. Optics Express, 21, 12552-12561. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Evlyukhin, A.B., Bozhevolnyi, S.I., Stepanov, A.L., Kiyan, R., Reinhardt, C., Passinger, S., et al. (2007) Focusing and Directing of Surface Plasmon Polaritons by Curved Chains of Nanoparticles. Optics Express, 15, 16667-16680. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhao, W., Eldaiki, O.M., Yang, R. and Lu, Z. (2010) Deep Subwavelength Waveguiding and Focusing Based on Designer Surface Plasmons. Optics Express, 18, 21498-21503. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cui, W., Peng, W., Yu, L., Luo, X., Gao, H., Chu, S., et al. (2019) Hybrid Nanodisk Film for Ultra-Narrowband Filtering, Near-Perfect Absorption and Wide Range Sensing. Nanomaterials, 9, Article No. 334. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lalanne, P., Hugonin, J.P., Liu, H.T. and Wang, B. (2009) A Microscopic View of the Electromagnetic Properties of Sub-λ Metallic Surfaces. Surface Science Reports, 64, 453-469. [Google Scholar] [CrossRef]
|
|
[14]
|
Johnson, P.B. and Christy, R.W. (1972) Optical Constants of the Noble Metals. Physical Review B, 6, 4370-4379. [Google Scholar] [CrossRef]
|
|
[15]
|
Barnes, W.L., Dereux, A. and Ebbesen, T.W. (2003) Surface Plasmon Subwavelength Optics. Nature, 424, 824-830. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Xia, M., Zhang, P., Qiao, K., Bai, Y. and Xie, Y. (2015) Coupling SPP with LSPR for Enhanced Field Confinement: A Simulation Study. The Journal of Physical Chemistry C, 120, 527-533. [Google Scholar] [CrossRef]
|
|
[17]
|
Farhang, A., Bigler, N. and Martin, O.J.F. (2013) Coupling of Multiple LSP and SPP Resonances: Interactions between an Elongated Nanoparticle and a Thin Metallic Film. Optics Letters, 38, 4758-4761. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zeng, P., Cadusch, J., Chakraborty, D., Smith, T.A., Roberts, A., Sader, J.E., et al. (2016) Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons. Nano Letters, 16, 2651-2656. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yang, J., Sun, Q., Ueno, K., Shi, X., Oshikiri, T., Misawa, H., et al. (2018) Manipulation of the Dephasing Time by Strong Coupling between Localized and Propagating Surface Plasmon Modes. Nature Communications, 9, Article No. 4858. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wang, L., Ji, B., Xu, Y., Lang, P., Song, X. and Lin, J. (2022) Analysis of Dephasing Time of Plasmonic Hybridization Modes Using a Quasi-Normal Mode Method. Journal of the Optical Society of America B, 40, 178-186. [Google Scholar] [CrossRef]
|
|
[21]
|
Hensen, M., Huber, B., Friedrich, D., Krauss, E., Pres, S., Grimm, P., et ssal. (2019) Spatial Variations in Femtosecond Field Dynamics within a Plasmonic Nanoresonator Mode. Nano Letters, 19, 4651-4658. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ueno, K., Yang, J., Sun, Q., Aoyo, D., Yu, H., Oshikiri, T., et al. (2019) Control of Plasmon Dephasing Time Using Stacked Nanogap Gold Structures for Strong Near-Field Enhancement. Applied Materials Today, 14, 159-165. [Google Scholar] [CrossRef]
|