[1]
|
Brown, O. and Eremenko, P. (2006) The Value Proposition for Fractionated Space Architectures.
|
[2]
|
Selva, D., Golkar, A., Korobova, O., Cruz, I.L.I., Collopy, P. and de Weck, O.L. (2017) Distributed Earth Satellite Systems: What Is Needed to Move Forward? Journal of Aerospace Information Systems, 14, 412-438. https://doi.org/10.2514/1.i010497
|
[3]
|
McCurdy, H.E. (2004) Faster, Better, Cheaper: Low-Cost Innovation in the U.S. Space Program, Johns Hopkins University Press.
|
[4]
|
Bartlett, R.O. (1978) NASA Standard Multimission Modular Spacecraft for Future Space Exploration. American Astronautical Society and Deutsche Gesellschaft fuer Luft-und Raumfahrt.
|
[5]
|
Esper, J. (2005) Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration. AIP Conference Proceedings, 746, 1033-1043.
|
[6]
|
Orogo, C., Enoch, M. and Flaggs, D. (2006) Development of Plug-N-Play (Flight) Control Systems for Responsive Spacecraft. https://doi.org/10.2514/6.2006-7243
|
[7]
|
Deborah, M., Grau, J., et al. (2004) Modular Spacecraft Standards: Supporting Low-Cost, Responsive Space.
|
[8]
|
Tanaka, H., Yamamoto, N., Yairi, T. and Machida, K. (2005) Autonomous Assembly of Cellular Satellite by Robot. 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Fukuoka, 17 October-21 October 2005. https://doi.org/10.2514/6.iac-05-d1.2.04
|
[9]
|
Barnhart, D., Hill, L., Fowler, E., et al. (2012) Changing Satellite Morphology through Cellularization. AIAA Space 2012 Conference and Exposition, Washington, 22-24 May 2012, 52-62.
|
[10]
|
Weise, J., Brieß, K., Adomeit, A., et al. (2012) An Intelligent Building Blocks Concept for On-Orbit-Satellite Servicing. Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), Turin, 4-6 September 2012, 1-8.
|
[11]
|
Hölttä-Otto, K. and de Weck, O. (2007) Degree of Modularity in Engineering Systems and Products with Technical and Business Constraints. Concurrent Engineering, 15, 113-126. https://doi.org/10.1177/1063293x07078931
|
[12]
|
Ulrich, K. (1995) The Role of Product Architecture in the Manufacturing Firm. Research Policy, 24, 419-440. https://doi.org/10.1016/0048-7333(94)00775-3
|
[13]
|
Ulrich, K. (1994) Fundamentals of Product Modularity. In: Management of Design, Springer, 219-231. https://doi.org/10.1007/978-94-011-1390-8_12
|
[14]
|
Siddiqi, A. and de Weck, O.L. (2008) Modeling Methods and Conceptual Design Principles for Reconfigurable Systems. Journal of Mechanical Design, 130, Article 101102. https://doi.org/10.1115/1.2965598
|
[15]
|
庞羽佳, 李志, 陈新龙, 等. 模块化可重构空间系统研究[J]. 航天器工程, 2016, 25(3): 101-108.
|
[16]
|
Rossetti, D., Keer, B., Panek, J., Ritter, B., Reed, B.B. and Cepollina, F. (2015) Spacecraft Modularity for Serviceable Satellites. AIAA Space 2015 Conference and Exposition, Pasadena, 31 August-2 September 2015, 1-12. https://doi.org/10.2514/6.2015-4579
|
[17]
|
Adomeit, A., Reimerdes, H., Lakshmanan, M., Schervan, T. and Dafnis, A. (2013) Structural Concept and Design for Modular and Serviceable Spacecraft Systems. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, 8-11 April 2013, 1575. https://doi.org/10.2514/6.2013-1575
|
[18]
|
Lange, C., Witte, L., Rosta, R., Sohl, F., Heffels, A. and Knapmeyer, M. (2017) A Seismic-Network Mission Proposal as an Example for Modular Robotic Lunar Exploration Missions. Acta Astronautica, 134, 121-132. https://doi.org/10.1016/j.actaastro.2017.02.004
|
[19]
|
California Polytechnic State University (2012) CubeSat Design Specification Rev.12. http://www.cubesat.atl.Cal-Poly.edu/images/developers/cds_rev12.pdf
|
[20]
|
Woellert, K., Ehrenfreund, P., Ricco, A.J. and Hertzfeld, H. (2011) Cubesats: Cost-Effective Science and Technology Platforms for Emerging and Developing Nations. Advances in Space Research, 47, 663-684. https://doi.org/10.1016/j.asr.2010.10.009
|
[21]
|
Swartwout, M. (2004) University-Class Satellites: From Marginal Utility to ‘Disruptive’ Research Platforms. Proceedings of AIAA/USU Conference on Small Satellites, Logan, 10 August 2004.
|
[22]
|
Lyke, J., Fronterhouse, D., Cannon, S., et al. (2005) Space Plug-and-Play Avionics. Proceedings of the AIAA 3rd Responsive Space Conference, Long Beach, 30 August-1 September 2005, 1-5.
|
[23]
|
McNutt, C., Vick, R., Whiting, H., et al. (2009) Modular Nanosatellites-(Plug-and-Play) PnP CubeSat. 7th Responsive Space Conference 2009, Los Angles, 27-30 April 2009, 4003.
|
[24]
|
Westley, D., Grau, J., Jordan, L. and McDermott, S. (2004) Modular Spacecraft Standards: Supporting Low-Cost, Responsive Space. Space 2004 Conference and Exhibit, San Diego, 28-30 September 2004, 6098. https://doi.org/10.2514/6.2004-6098
|
[25]
|
Howell, J.T., Mankins, J.C. and Carrington, C. (2005) Modular, Reconfigurable, High-Energy Systems Stepp. 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Fukuoka, 17-21 October 2005, 1-11. https://doi.org/10.2514/6.iac-05-d3.2.04
|
[26]
|
Carrington, C. and Howell, J. (2007) Modular, Reconfigurable, High-Energy Technology Development. 2007 IEEE Aerospace Conference, Big Sky, 3-10 March 2007, 1-18. https://doi.org/10.1109/aero.2007.352663
|
[27]
|
Higashi, K., Nakasuka, S., Sugawara, Y., et al. (2006) Thermal Control of Panel Extension Satellite (PETSAT). 25th International Symposium on Space Technology and Science, Kanazawa, 4-11 June 2006, 951.
|
[28]
|
Sugawara, Y., Sahara, H., Nakasuka, S., Greenland, S., Morimoto, T., Koyama, K., et al. (2008) A Satellite for Demonstration of Panel Extension Satellite (Petsat). Acta Astronautica, 63, 228-237. https://doi.org/10.1016/j.actaastro.2007.12.016
|
[29]
|
Hicks, M., Enoch, M., Capots, L., et al. (2005) HEXPAK—A Flexible, Scalable Architecture for Responsive Spacecraft. 3rd Responsive Space Conference, Los Angeles, 25-28 April 2005.
|
[30]
|
Seo, J., Paik, J. and Yim, M. (2019) Modular Reconfigurable Robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2, 63-88.
|
[31]
|
Castano, A. and Will, P. (2001) Representing and Discovering the Configuration of Conro Robots. Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), Seoul, 21-26 May 2001, 3503-3509. https://doi.org/10.1109/robot.2001.933160
|
[32]
|
Yim, M., Zhang, Y., Roufas, K., et al. (2002) Connecting and Disconnecting for Chain Self-Reconfiguration with PolyBot. IEEE/ASME Transactions on Mechatronics, 7, 442-451.
|
[33]
|
Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C. and Homans, S. (2003) Modular Reconfigurable Robots in Space Applications. Autonomous Robots, 14, 225-237. https://doi.org/10.1023/a:1022287820808
|
[34]
|
Yim, M., Shirmohammadi, B., Sastra, J., et al. (2007) Towards Robotic Self-Reassembly after Explosion. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, 29 October-2 November, 2767-2772.
|
[35]
|
Shen, W., Salemi, B. and Moll, M. (2006) Modular, Multifunctional and Reconfigurable Superbot for Space Applications. https://doi.org/10.2514/6.2006-7405
|
[36]
|
Andreev, A.S., Leonova, A.V. and Popov, A.M. (2020) Demand for Satellite Reconfigurability. IOP Conference Series: Materials Science and Engineering, 822, Article 012036. https://doi.org/10.1088/1757-899x/822/1/012036
|
[37]
|
Tanaka, H., Kawahara, Y., Yairi, T., et al. (2004) Research on Reconfigurable Space System using Orbital Servicing Robots and Cellular Satellites. Proceedings of the 24th International Symposium on Space Technology and Science, Miyazaki, 30 May-6 June 2004.
|
[38]
|
Tanaka, H. (2005) Autonomous Assembly of Cellular Satellite by Robot for Sustainable Space System. International Astronautical Congress, Fukuoka, 17-21 October 2005.
|
[39]
|
Kong, E.M., Saenz-Otero, A., Nolet, S., et al. (2004) SPHERES as a Formation Flight Algorithm Development and Validation Testbed: Current Progress and beyond. Goddard Space Flight Center.
|
[40]
|
Nolet, S., Kong, E. and Miller, D.W. (2004) Autonomous Docking Algorithm Development and Experimentation Using the SPHERES Testbed. In: Spacecraft Platforms and Infrastructure, International Society for Optics and Photonics, 1-15.
|
[41]
|
Schervan, T., Kortmann, M., Schroder, K., et al. (2017) iBOSS Modular Plug & Play-Standardized Building Block Solutions for Future Space Systems Enhancing Capabilities and Flexibility, Design, Architecture and Operations. 68th International Astronautical Congress (IAC), Adelaide, 25-29 September 2017.
|
[42]
|
Kortman, M., Ruhl, S., Weise, J., et al. (2015) Building Block Based iBoss Approach: Fully Modular Systems with Standard Interface to Enhance Future Satellites. 66th International Astronautical Congress (Jersualem), Jerusalem, 12-16 October 2015, 1-11.
|
[43]
|
Oberländer, J., Uhl, K., Pfotzer, L., et al. (2012) Management and Manipulation of Modular and Reconfigurable Satellites. ROBOTIK 2012 7th German Conference on Robotics, Germany, 21-22 May 2012, 1-6.
|
[44]
|
陈罗婧, 郝金华, 袁春柱, 等. “凤凰”计划关键技术及其启示[J]. 航天器工程, 2013, 22(5): 119-128.
|
[45]
|
Barnhart, D., Hill, L., Fowler, E., et al. (2013) A Market for Satellite Cellularization: A First Look at the Implementation and Potential Impact of Settles. AIAA Space 2013 Conference and Exposition, San Diego, 10-12 September 2013, 5486.
|
[46]
|
Barnhart, D., Hill, L., Fowler, E., et al. (2013) DARPA Phoenix Payload Orbit Delivery System (PODS). AIAA Space 2013 Conference and Exposition, San Diego, 10-12 September 2013, 5484.
|
[47]
|
Chang, H., Huang, P., Lu, Z., et al. (2016) Cellular Space Robot and Its Interactive Model Identification for Spacecraft Takeover Control. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, 9-14 October 2016, 3069-3074.
|
[48]
|
Chang, H., Huang, P., Lu, Z., Zhang, Y., Meng, Z. and Liu, Z. (2017) Inertia Parameters Identification for Cellular Space Robot through Interaction. Aerospace Science and Technology, 71, 464-474. https://doi.org/10.1016/j.ast.2017.09.044
|
[49]
|
Helvajian, H. (2020) Hive: A New Architecture for Space. Proceedings of the 70th International Astronautical Congress (iac-2019), Washington, 21-25 October 2019.
|
[50]
|
Romanishin, J.W., Gilpin, K., Claici, S. and Rus, D. (2015) 3D M-Blocks: Self-Reconfiguring Robots Capable of Locomotion via Pivoting in Three Dimensions. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, 26-30 May 2015, 1925-1932. https://doi.org/10.1109/icra.2015.7139450
|
[51]
|
Letier, P., Yan, X.T., Deremetz, M., et al. (2019) MOSAR: Modular Spacecraft Assembly and Reconfiguration Demonstrator. 15th Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk, 27-28 May 2019, 1-7.
|
[52]
|
Letier, P., Siedel, T., Deremetz, M., et al. (2020) HOTDOCK: Design and Validation of a New Generation of Standard Robotic Interface for On-Orbit Servicing. 71st International Astronautical Congress, Location12-14 October 2020, 1-8.
|
[53]
|
Underwood, C., Pellegrino, S., Lappas, V.J., Bridges, C.P. and Baker, J. (2015) Using Cubesat/Micro-Satellite Technology to Demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (Aarest). Acta Astronautica, 114, 112-122. https://doi.org/10.1016/j.actaastro.2015.04.008
|
[54]
|
吴勤. 美国F6计划概况[J]. 国际太空, 2008(5): 1-5.
|
[55]
|
Brown, O., Eremenko, P. and Collopy, P. (2009) Value-Centric Design Methodologies for Fractionated Spacecraft: Progress Summary from Phase I of the DARPA System F6 Program. AIAA Space 2009 Conference & Exposition, Pasadena, 14-17 September 2009, 6540. https://doi.org/10.2514/6.2009-6540
|
[56]
|
Post, M.A., Yan, X. and Letier, P. (2021) Modularity for the Future in Space Robotics: A Review. Acta Astronautica, 189, 530-547.
|
[57]
|
Yan, X.T., Brinkmann, W., Palazzetti, R., et al. (2018) Integrated Mechanical, Thermal, Data, and Power Transfer Interfaces for Future Space Robotics. Frontiers in Robotics and AI, 5, Article 64.
|
[58]
|
Brunete, A., Ranganath, A., Segovia, S., et al. (2017) Current Trends in Reconfigurable Modular Robots Design. International Journal of Advanced Robotic Systems, 14, Article 1729881417710457.
|
[59]
|
Wenzel, W., Palazzetti, R., Yan, X.T., et al. (2017) Mechanical, Thermal, Data and Power Transfer Types for Robotic Space Interfaces for Orbital and Planetary Missions—A Technical Review. European Space Agency.
|
[60]
|
Jankovic, M., Brinkmann, W. and Bartsch, S. (2018) Concepts of Active Payload Modules and End-Effectors Suitable for Standard Interface for Robotic Manipulation of Payloads in Future Space Missions (SIROM) Interface. 2018 IEEE Aerospace Conference, Big Sky, 3-10 March 2018, 1-15.
|
[61]
|
Vinals, J., Urgoiti, E., Guerra, G., et al. (2018) Multi-Functional Interface for Flexibility and Reconfigurability of future European Space Robotic Systems. Advances in Astronautics Science and Technology, 1, 119-133.
|
[62]
|
Gaska, T., Watkin, C. and Chen, Y. (2015) Integrated Modular Avionics—Past, Present, and Future. IEEE Aerospace and Electronic Systems Magazine, 30, 12-23.
|
[63]
|
Fraboul, C. and Martin, F. (1998) Modeling and Simulation of Integrated Modular Avionics. Proceedings of the Sixth Euromicro Workshop on Parallel and Distributed Processing, Madrid, 21-23 January 1998, 102-110.
|
[64]
|
Li, X. and Xiong, H. (2009) Modelling and Simulation of Integrated Modular Avionics Systems. 2009 IEEE/AIAA 28th Digital Avionics Systems Conference, Orlando, 25-29 October 2009, 7.B.31-7.B.38.
|
[65]
|
赵沛, 闫涛, 陶淑婷. 宇航总线网络技术的发展[C]//中国航天电子技术研究院科学技术委员会. 第六届航天电子战略研究论坛论文集. 2019: 32-37.
|
[66]
|
Zhang, Z., Li, X., Li, Y., Hu, G., Wang, X., Zhang, G., et al. (2023) Modularity, Reconfigurability, and Autonomy for the Future in Spacecraft: A Review. Chinese Journal of Aeronautics, 36, 282-315. https://doi.org/10.1016/j.cja.2023.04.019
|
[67]
|
杨柳青, 张亚航, 袁珺, 等. 航天器多维动态可配置健康管理系统设计[J]. 计算机测量与控制, 2019, 27(12): 10-13+28.
|
[68]
|
房红征, 年夫强, 罗凯, 等. 基于机器学习建模的航天器健康管理平台研究[J]. 计算机测量与控制, 2022, 30(12): 112-118.
|
[69]
|
Buettner, T., Tanev, A., Pfotzer, L., et al. (2018) The Intelligence Computer Aided Satellite Designer iCASD-Creating Viable Configuration for Modular Satellites. 2018 NASA/ESA Conference on Adaptive Hardware and Systems, Edinburgh, 6-9 August 2018, 25-32.
|
[70]
|
Wlaker, J.L. and Mckinnon, D. (2015) Future Digital Flexible and Software Defined Payload Systems for Commercial Space. AIAA International Communications Satellite Systems Conference and Exhibition, Queensland, 7-10 September 2015, 2-13.
|
[71]
|
赵军锁, 吴凤鸽, 刘光明, 等. 发展软件定义卫星的总体思路与技术实践[J]. 卫星与网络, 2018(4): 44-49.
|
[72]
|
He, X., Li, J., Bai, F., Jia, X., Huang, X. and Xu, M. (2023) Avionics System Architectures for Software-Defined Spacecraft. In: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Springer, 150-164. https://doi.org/10.1007/978-3-031-34497-8_13
|
[73]
|
崔玉福, 刘质加, 王靖. 数字孪生卫星技术发展与展望[J]. 国际太空, 2021(10): 27-31.
|
[74]
|
王璐, 赵寒, 宋文龙, 等. AR/VR仿真建模技术在航天器研制中的应用探索[J]. 制造业自动化, 2017, 39(8): 138-141.
|