[1]
|
尹令实, 文晓凤, 黄佳丽, 等. 洞庭湖区微塑料污染及其与农村、农业的相互影响[J]. 长沙理工大学学报(自然科学版), 2022, 19(2): 15-27.
|
[2]
|
Ding, J., Liang, Z., Lv, M., Li, X., Lu, S., Ren, S., et al. (2024) Aging in Soil Increases the Disturbance of Microplastics to the Gut Microbiota of Soil Fauna. Journal of Hazardous Materials, 461, Article ID: 132611. https://doi.org/10.1016/j.jhazmat.2023.132611
|
[3]
|
Meizoso-Regueira, T., Fuentes, J., Cusworth, S.J. and Rillig, M.C. (2024) Prediction of Future Microplastic Accumulation in Agricultural Soils. Environmental Pollution, 359, Article ID: 124587. https://doi.org/10.1016/j.envpol.2024.124587
|
[4]
|
Ning, C., Sun, S., Gao, Y., Xie, H., Wu, L., Zhang, H., et al. (2025) Characterization of Natural and Anthropogenic Dissolved Organic Matter in the Yangtze River Basin Using FT-ICR Ms. Water Research, 268, Article ID: 122636. https://doi.org/10.1016/j.watres.2024.122636
|
[5]
|
Nebbioso, A. and Piccolo, A. (2013) Molecular Characterization of Dissolved Organic Matter (DOM): A Critical Review. Analytical and Bioanalytical Chemistry, 405, 109-124. https://doi.org/10.1007/s00216-012-6363-2
|
[6]
|
Yu, H., Wang, L., Wang, Z., Ren, C. and Zhang, B. (2019) Using Landsat OLI and Random Forest to Assess Grassland Degradation with Aboveground Net Primary Production and Electrical Conductivity Data. ISPRS International Journal of Geo-Information, 8, Article 511. https://doi.org/10.3390/ijgi8110511
|
[7]
|
Wen, W., Zhuang, Y., Jiang, T., Li, W., Li, H., Cai, W., et al. (2024) “Period-Area-Source” Hierarchical Management for Agricultural Non-Point Source Pollution in Typical Watershed with Integrated Planting and Breeding. Journal of Hydrology, 635, Article ID: 131198. https://doi.org/10.1016/j.jhydrol.2024.131198
|
[8]
|
Hammitt, J.K. (2021) The Future Costs of Methane Emissions. Nature, 592, 514-515. https://doi.org/10.1038/d41586-021-00972-6
|
[9]
|
Zhu, F., Zhu, C., Wang, C. and Gu, C. (2019) Occurrence and Ecological Impacts of Microplastics in Soil Systems: A Review. Bulletin of Environmental Contamination and Toxicology, 102, 741-749. https://doi.org/10.1007/s00128-019-02623-z
|
[10]
|
张振. 淮河流域安徽段水田与旱地农作物种植地微塑料环境行为比较研究[D]: [硕士学位论文]. 淮南: 安徽理工大学, 2022.
|
[11]
|
李帅东, 张明礼, 杨浩, 等. 昆明松华坝库区表层土壤溶解性有机质(DOM)的光谱特性[J]. 光谱学与光谱分析, 2017, 37(4): 1183-1188.
|
[12]
|
Chen, M., Liu, S., Bi, M., Yang, X., Deng, R. and Chen, Y. (2022) Aging Behavior of Microplastics Affected DOM in Riparian Sediments: From the Characteristics to Bioavailability. Journal of Hazardous Materials, 431, Article ID: 128522. https://doi.org/10.1016/j.jhazmat.2022.128522
|
[13]
|
Li, C., Wang, C. and Liu, L. (2024) Effects of Microplastics and Organic Fertilizer Regulation on Soil Dissolved Organic Matter Evolution. Toxics, 12, Article 695. https://doi.org/10.3390/toxics12100695
|
[14]
|
Ren, Z., Gui, X., Xu, X., Zhao, L., Qiu, H. and Cao, X. (2021) Microplastics in the Soil-Groundwater Environment: Aging, Migration, and Co-Transport of Contaminants—A Critical Review. Journal of Hazardous Materials, 419, Article ID: 126455. https://doi.org/10.1016/j.jhazmat.2021.126455
|
[15]
|
Feng, Z., Zhu, N., Wu, H., Li, M., Chen, J., Yuan, X., et al. (2024) Microplastic Coupled with Soil Dissolved Organic Matter Mediated Changes in the Soil Chemical and Microbial Characteristics. Chemosphere, 359, Article ID: 142361. https://doi.org/10.1016/j.chemosphere.2024.142361
|
[16]
|
Dilling, J. and Kaiser, K. (2002) Estimation of the Hydrophobic Fraction of Dissolved Organic Matter in Water Samples Using UV Photometry. Water Research, 36, 5037-5044. https://doi.org/10.1016/s0043-1354(02)00365-2
|
[17]
|
Li, R., Xi, B., Tan, W. and Yuan, Y. (2022) Spatiotemporal Heterogeneous Effects of Microplastics Input on Soil Dissolved Organic Matter (DOM) under Field Conditions. Science of The Total Environment, 847, Article ID: 157605. https://doi.org/10.1016/j.scitotenv.2022.157605
|
[18]
|
Retelletti Brogi, S., Ha, S., Kim, K., Derrien, M., Lee, Y.K. and Hur, J. (2018) Optical and Molecular Characterization of Dissolved Organic Matter (DOM) in the Arctic Ice Core and the Underlying Seawater (Cambridge Bay, Canada): Implication for Increased Autochthonous DOM during Ice Melting. Science of The Total Environment, 627, 802-811. https://doi.org/10.1016/j.scitotenv.2018.01.251
|
[19]
|
Gao, Z. and Guéguen, C. (2017) Size Distribution of Absorbing and Fluorescing DOM in Beaufort Sea, Canada Basin. Deep Sea Research Part I: Oceanographic Research Papers, 121, 30-37. https://doi.org/10.1016/j.dsr.2016.12.014
|
[20]
|
Zhu, F., Yan, Y., Doyle, E., Zhu, C., Jin, X., Chen, Z., et al. (2022) Microplastics Altered Soil Microbiome and Nitrogen Cycling: The Role of Phthalate Plasticizer. Journal of Hazardous Materials, 427, Article ID: 127944. https://doi.org/10.1016/j.jhazmat.2021.127944
|
[21]
|
Zhang, H., Zhu, W., Zhang, J., Müller, C., Wang, L. and Jiang, R. (2024) Enhancing Soil Gross Nitrogen Transformation through Regulation of Microbial Nitrogen-Cycling Genes by Biodegradable Microplastics. Journal of Hazardous Materials, 478, Article ID: 135528. https://doi.org/10.1016/j.jhazmat.2024.135528
|
[22]
|
Khan, I., Tariq, M., Alabbosh, K.F., Rehman, A., Jalal, A., Khan, A.A., et al. (2024) Soil Microplastics: Impacts on Greenhouse Gasses Emissions, Carbon Cycling, Microbial Diversity, and Soil Characteristics. Applied Soil Ecology, 197, Article ID: 105343. https://doi.org/10.1016/j.apsoil.2024.105343
|
[23]
|
Iqbal, S., Xu, J., Arif, M.S., Worthy, F.R., Jones, D.L., Khan, S., et al. (2024) Do Added Microplastics, Native Soil Properties, and Prevailing Climatic Conditions Have Consequences for Carbon and Nitrogen Contents in Soil? A Global Data Synthesis of Pot and Greenhouse Studies. Environmental Science & Technology, 58, 8464-8479. https://doi.org/10.1021/acs.est.3c10247
|
[24]
|
Yu, H., Xi, B., Shi, L. and Tan, W. (2023) Chemodiversity of Soil Dissolved Organic Matter Affected by Contrasting Microplastics from Different Types of Polymers. Frontiers of Environmental Science & Engineering, 17, Article No. 153. https://doi.org/10.1007/s11783-023-1753-6
|
[25]
|
Gong, K., Peng, C., Hu, S., Xie, W., Chen, A., Liu, T., et al. (2024) Aging of Biodegradable Microplastics and Their Effect on Soil Properties: Control from Soil Water. Journal of Hazardous Materials, 480, Article ID: 136053. https://doi.org/10.1016/j.jhazmat.2024.136053
|
[26]
|
Zhang, H., Huang, Y., Shen, J., Xu, F., Hou, H., Xie, C., et al. (2024) Mechanism of Polyethylene and Biodegradable Microplastic Aging Effects on Soil Organic Carbon Fractions in Different Land-Use Types. Science of The Total Environment, 912, Article ID: 168961. https://doi.org/10.1016/j.scitotenv.2023.168961
|
[27]
|
Li, P., Wu, M., Li, T., Dumbrell, A.J., Saleem, M., Kuang, L., et al. (2023) Molecular Weight of Dissolved Organic Matter Determines Its Interactions with Microbes and Its Assembly Processes in Soils. Soil Biology and Biochemistry, 184, Article ID: 109117. https://doi.org/10.1016/j.soilbio.2023.109117
|
[28]
|
Bravo-Escobar, A.V., O’Donnell, A.J., Middleton, J.A. and Grierson, P.F. (2024) Differences in Dissolved Organic Matter (DOM) Composition of Soils from Native Eucalypt Forests and Exotic Pine Plantations Impacted by Wildfire in Southwest Australia. Geoderma Regional, 37, e00793. https://doi.org/10.1016/j.geodrs.2024.e00793
|
[29]
|
Li, S., Hou, X., Shi, Y., Huang, T., Yang, H. and Huang, C. (2020) Rapid Photodegradation of Terrestrial Soil Dissolved Organic Matter (DOM) with Abundant Humic-Like Substances under Simulated Ultraviolet Radiation. Environmental Monitoring and Assessment, 192, Article No. 103. https://doi.org/10.1007/s10661-019-7945-7
|
[30]
|
Xu, P., Ge, W., Chai, C., Zhang, Y., Jiang, T. and Xia, B. (2019) Sorption of Polybrominated Diphenyl Ethers by Microplastics. Marine Pollution Bulletin, 145, 260-269. https://doi.org/10.1016/j.marpolbul.2019.05.050
|